1
|
Zhang X, Pan S, Chen D, Pan Y, Bhanot D, Xu T, Gupta S, Zhang J, Huang Y. WGCNA analysis and identification of key genes in tobacco in response to different nitrogen levels. BMC PLANT BIOLOGY 2025; 25:465. [PMID: 40217162 PMCID: PMC11992758 DOI: 10.1186/s12870-025-06435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/21/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Nitrogen (N) supply directly impacts growth and quality in flue-cured tobacco. To decipher molecular responses to N gradients, we integrated transcriptomics and weighted gene co-expression network analysis (WGCNA) on leaves from four N treatments: 0 (inherent soil fertility), 60 (low), 105 (standard), and 150 kg/hm2 (high). RESULTS Phenotypic analysis revealed dose-dependent increases in leaf nitrogen content with higher N application, accompanied by excessive vegetative growth and delayed maturity at 150 kg/hm2. Transcriptome sequencing identified 47,216 genes, with differentially expressed genes (DEGs) increasing linearly with N levels (1,458-2,147 DEGs). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment highlighted nitrogen metabolism pathways, yielding 14 DEGs (11 in assimilation, 3 in transport). Weighted gene co-expression network analysis (WGCNA) uncovered two modules (lightcyan1 and black) strongly associated with N responses, harboring transcription factors NtERF11 (AP2/ERF), NtWRKY3 (WRKY), and NtSRM1 (MYB). Sub-network analysis within these modules identified five hub genes: NtGLN1-1, two uncharacterized genes, NtDFC, and NtGDSL. NtGDSL may enhance nitrogen use efficiency (NUE) through stress-responsive mechanisms, while NtDFC could integrate N signaling with developmental processes. These findings provide novel insights into N regulatory networks in flue-cured tobacco. CONCLUSIONS This study reveals the effects of nitrogen application rates on flue-cured tobacco growth and gene expression. By identifying key transcription factors and genes regulating nitrogen metabolism, it provides a theoretical basis for dissecting nitrogen regulatory mechanisms, optimizing fertilization strategies, and improving nitrogen use efficiency in tobacco production.
Collapse
Affiliation(s)
- Xinwang Zhang
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Shouhui Pan
- Anshun Tobacco Branch Company, Guizhou Tobacco Company, Guiyang, 561000, People's Republic of China
| | - Dong Chen
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yuqi Pan
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Deepak Bhanot
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Tianju Xu
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Sachin Gupta
- Department of Robotics and Control, School of Electronics and Electrical Engineering, Lovely Professional University, Phagwara, Punjab, PIN: 144411, India
| | - Jinling Zhang
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yin Huang
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China.
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
2
|
Zhang J, Yang X, Huo C, Fan X, Liu Q, Liu Z, Su Y, Chen Z. Eucalyptus grandis WRKY genes provide insight into the role of arbuscular mycorrhizal symbiosis in defense against Ralstonia solanacearum. FRONTIERS IN PLANT SCIENCE 2025; 16:1510196. [PMID: 40007963 PMCID: PMC11853260 DOI: 10.3389/fpls.2025.1510196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
Introduction WRKY transcription factors are essential for plant growth, health, and responses to biotic and abiotic stress. Methods In this study, we performed a deep in silico characterization of the WRKY gene family in the genome of Eucalyptus grandis. We also analyzed the expression profiles of these genes upon colonization by the arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis (Ri) and infection with the bacterial pathogen Ralstonia solanacearum (Rs). Results A total of 117 EgWRKYs were identified. Phylogenetic analysis divided the EgWRKY proteins into three groups: group I (21 proteins, 17.95%), group II (65 proteins, 55.56%), and group III (24 proteins, 20.51%). Additionally, seven EgWRKY proteins (5.98%) were categorized into group IV due to the absence of the WRKY domain or zinc-finger structure. All EgWRKY genes are distributed irregularly across the 11 chromosomes, with 25 pairs identified as segmental duplicates and four as tandem duplicates. The promoter regions of 50% of members of each subfamily contain plant hormone-related cis-elements associated with defense responses, such as ABREs, TGACG motifs, and CGTCA motifs. All subfamilies (except for group IV-b and IV-c) contain AW-boxes, which are related to mycorrhizal induction. Furthermore, transcriptomic analysis revealed that 21 EgWRKYs were responsive to the AMF Ri, with 13 and 8 genes strongly up- and downregulated, respectively. Several genes (including EgWRKY116, EgWRKY62, and EgWRKY107) were significantly induced by Ri; these genes might enhance the defense of E. grandis against Rs. Discussion Therefore, we identified E. grandis WRKY genes that are regulated by AMF colonization, some of which might improve the defense of E. grandis against R. solanacearum. These findings provide insights into E. grandis WRKY genes involved in interactions among the host plant, AMFs, and R. solanacearum.
Collapse
Affiliation(s)
- Jianlang Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinzhu Yang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Chunyu Huo
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinyi Fan
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Qiutong Liu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zhihong Liu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yu Su
- Guangzhou Collaborative Innovation Center on Science-tech of Ecology and Landscape, Guangzhou Institute of Forestry and Landscape Architect, Guangzhou, China
| | - Zujing Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Rehman S, Bahadur S, Xia W. Unlocking nature's secrets: The pivotal role of WRKY transcription factors in plant flowering and fruit development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112150. [PMID: 38857658 DOI: 10.1016/j.plantsci.2024.112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
The WRKY transcription factor family is a key player in the regulatory mechanisms of flowering plants, significantly influencing both their biotic and abiotic response systems as well as being vital to numerous physiological and biological functions. Over the past two decades, the functionality of WRKY proteins has been the subject of extensive research in over 50 plant species, with a strong focus on their roles in responding to various stresses. Despite this extensive research, there remains a notable gap in comprehensive studies aimed at understanding how specific WRKY genes directly influence the timing of flowering and fruit development. This review offers an up-to-date look at WRKY family genes and provides insights into the key genes of WRKY to control flowering, enhance fruit ripening and secondary metabolism synthesis, and maintain fruit quality of various plants, including annuals, perennials, medicinal, and crop plants. The WRKY transcription factors serve as critical regulators within the transcriptional regulatory network, playing a crucial role in the precise enhancement of flowering processes. It is also involved in the up-regulation of fruit ripening was strongly demonstrated by combined transcriptomics and metabolomic investigation. Therefore, we speculated that the WRKY family is known to be a key regulator of flowering and fruiting in plants. This detailed insight will enable the identification of the series of molecular occurrences featuring WRKY proteins throughout the stages of flowering and fruiting.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution, Hainan University, Sanya, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228, China; College of Life and Health Sciences, Hainan University, Haikou 570228, China.
| | - Wei Xia
- Sanya Nanfan Research Institution, Hainan University, Sanya, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Nguyen QM, Iswanto ABB, Kang H, Moon J, Phan KAT, Son GH, Suh MC, Chung EH, Gassmann W, Kim SH. The processed C-terminus of AvrRps4 effector suppresses plant immunity via targeting multiple WRKYs. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1769-1787. [PMID: 38869289 DOI: 10.1111/jipb.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 06/14/2024]
Abstract
Pathogens generate and secrete effector proteins to the host plant cells during pathogenesis to promote virulence and colonization. If the plant carries resistance (R) proteins that recognize pathogen effectors, effector-triggered immunity (ETI) is activated, resulting in a robust immune response and hypersensitive response (HR). The bipartite effector AvrRps4 from Pseudomonas syringae pv. pisi has been well studied in terms of avirulence function. In planta, AvrRps4 is processed into two parts. The C-terminal fragment of AvrRps4 (AvrRps4C) induces HR in turnip and is recognized by the paired resistance proteins AtRRS1/AtRPS4 in Arabidopsis. Here, we show that AvrRps4C targets a group of Arabidopsis WRKY, including WRKY46, WRKY53, WRKY54, and WRKY70, to induce its virulence function. Indeed, AvrRps4C suppresses the general binding and transcriptional activities of immune-positive regulator WRKY54 and WRKY54-mediated resistance. AvrRps4C interferes with WRKY54's binding activity to target gene SARD1 in vitro, suggesting WRKY54 is sequestered from the SARD1 promoter by AvrRps4C. Through the interaction of AvrRps4C with four WRKYs, AvrRps4 enhances the formation of homo-/heterotypic complexes of four WRKYs and sequesters them in the cytoplasm, thus inhibiting their function in plant immunity. Together, our results provide a detailed virulence mechanism of AvrRps4 through its C-terminus.
Collapse
Affiliation(s)
- Quang-Minh Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Kieu Anh Thi Phan
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Geon Hui Son
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Mi Chung Suh
- Department of Life Science, Sogang University, Seoul, 04107, Korea
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, Korea University, Seoul, 02841, Korea
| | - Walter Gassmann
- Division of Plant Science and Technology, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, 65211, Missouri, USA
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science and Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju, 52828, Korea
| |
Collapse
|
5
|
Chen H, Shi Y, An L, Yang X, Liu J, Dai Z, Zhang Y, Li T, Ahammed GJ. Overexpression of SlWRKY6 enhances drought tolerance by strengthening antioxidant defense and stomatal closure via ABA signaling in Solanum lycopersicum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108855. [PMID: 38917736 DOI: 10.1016/j.plaphy.2024.108855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Drought is a major handicap for plant growth and development. WRKY proteins comprise one of the largest families of plant transcription factors, playing important roles in plant growth and stress tolerance. In tomato (Solanum lycopersicum L.), different WRKY transcription factors differentially (positively or negatively) regulate drought tolerance, however, the role of SlWRKY6 in drought response and the associated molecular mechanisms of stress tolerance remain unclear. Here we report that SlWRKY6, a member of the WRKYII-b group, is involved in the functional aspects of drought resistance in tomato. Transcriptional activation assays show that SlWRKY6 is transcriptionally active in yeast cells, while the subcellular localization assay indicates that SlWRKY6 is localized in the nucleus. Overexpression of SlWRKY6 in tomato plants resulted in stronger antioxidant capacity and drought resistance as manifested by increased photosynthetic capacity and decreased reactive oxygen species accumulation, malondialdehyde content and relative electrolyte leakage in transgenic tomato plants compared with wild-type under drought stress. Moreover, increased abscisic acid (ABA) content and transcript abundance of ABA synthesis and signaling genes (NCED1, NCED4, PYL4, AREB1 and SnRK2.6) in the transgenic tomato plants indicated potential involvement of the ABA pathway in SlWRKY6-induced drought resistance in tomato plants. Inspection of 2-kb sequences upstream of the predicted binding sites in the promoter of SlNCED1/4 identified two copies of the core W-box (TTGACC/T) sequence in the promoter of SlNCED1/4, which correlates well with the expression of these genes in response to drought, further suggesting the involvement of ABA-dependent pathway in SlWRKY6-induced drought resistance. The study unveils a critical role of SlWRKY6, which can be useful to further reveal the drought tolerance mechanism and breeding of drought-resistant tomato varieties for sustainable vegetable production in the era of climate change.
Collapse
Affiliation(s)
- Haoting Chen
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yu Shi
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Lu An
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiaohui Yang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jie Liu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zemin Dai
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yi Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
6
|
Miao W, Xiao X, Wang Y, Ge L, Yang Y, Liu Y, Liao Y, Guan Z, Chen S, Fang W, Chen F, Zhao S. CmWRKY6-1-CmWRKY15-like transcriptional cascade negatively regulates the resistance to fusarium oxysporum infection in Chrysanthemum morifolium. HORTICULTURE RESEARCH 2023; 10:uhad101. [PMID: 37577400 PMCID: PMC10419886 DOI: 10.1093/hr/uhad101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/09/2023] [Indexed: 08/15/2023]
Abstract
Chrysanthemum Fusarium wilt is a soil-borne disease that causes serious economic losses to the chrysanthemum industry. However, the molecular mechanism underlying the response of chrysanthemum WRKY to Fusarium oxysporum infection remains largely unknown. In this study, we isolated CmWRKY6-1 from chrysanthemum 'Jinba' and identified it as a transcriptional repressor localized in the nucleus via subcellular localization and transcriptional activation assays. We found that CmWRKY6-1 negatively regulated resistance to F. oxysporum and affected reactive oxygen species (ROS) and salicylic acid (SA) pathways using transgenic experiments and transcriptomic analysis. Moreover, CmWRKY6-1 bound to the W-box element on the CmWRKY15-like promoter and inhibited its expression. Additionally, we observed that CmWRKY15-like silencing in chrysanthemum reduced its resistance to F. oxysporum via transgenic experiments. In conclusion, we revealed the mechanism underlying the CmWRKY6-1-CmWRKY15-like cascade response to F. oxysporum infection in chrysanthemum and demonstrated that CmWRKY6-1 and CmWRKY15-like regulates the immune system.
Collapse
Affiliation(s)
- Weihao Miao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Xiangyu Xiao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Yuean Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Lijiao Ge
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Yanrong Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Ye Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Yuan Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Shuang Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| |
Collapse
|
7
|
Long L, Gu L, Wang S, Cai H, Wu J, Wang J, Yang M. Progress in the understanding of WRKY transcription factors in woody plants. Int J Biol Macromol 2023; 242:124379. [PMID: 37178519 DOI: 10.1016/j.ijbiomac.2023.124379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
The WRKY transcription factor (TF) family, named for its iconic WRKY domain, is among the largest and most functionally diverse TF families in higher plants. WRKY TFs typically interact with the W-box of the target gene promoter to activate or inhibit the expression of downstream genes; these TFs are involved in the regulation of various physiological responses. Analyses of WRKY TFs in numerous woody plant species have revealed that WRKY family members are broadly involved in plant growth and development, as well as responses to biotic and abiotic stresses. Here, we review the origin, distribution, structure, and classification of WRKY TFs, along with their mechanisms of action, the regulatory networks in which they are involved, and their biological functions in woody plants. We consider methods currently used to investigate WRKY TFs in woody plants, discuss outstanding problems, and propose several new research directions. Our objective is to understand the current progress in this field and provide new perspectives to accelerate the pace of research that enable greater exploration of the biological functions of WRKY TFs.
Collapse
Affiliation(s)
- Lianxiang Long
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Lijiao Gu
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Shijie Wang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Hongyu Cai
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Jianghao Wu
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Jinmao Wang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China.
| | - Minsheng Yang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China.
| |
Collapse
|
8
|
Ren L, Wan W, Yin D, Deng X, Ma Z, Gao T, Cao X. Genome-wide analysis of WRKY transcription factor genes in Toona sinensis: An insight into evolutionary characteristics and terpene synthesis. FRONTIERS IN PLANT SCIENCE 2023; 13:1063850. [PMID: 36743538 PMCID: PMC9895799 DOI: 10.3389/fpls.2022.1063850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
WRKY transcription factors (TFs), one of the largest TF families, serve critical roles in the regulation of secondary metabolite production. However, little is known about the expression pattern of WRKY genes during the germination and maturation processes of Toona sinensis buds. In the present study, the new assembly of the T. sinensis genome was used for the identification of 78 TsWRKY genes, including gene structures, phylogenetic features, chromosomal locations, conserved protein domains, cis-regulatory elements, synteny, and expression profiles. Gene duplication analysis revealed that gene tandem and segmental duplication events drove the expansion of the TsWRKYs family, with the latter playing a key role in the creation of new TsWRKY genes. The synteny and evolutionary constraint analyses of the WRKY proteins among T. sinensis and several distinct species provided more detailed evidence of gene evolution for TsWRKYs. Besides, the expression patterns and co-expression network analysis show TsWRKYs may multi-genes co-participate in regulating terpenoid biosynthesis. The findings revealed that TsWRKYs potentially play a regulatory role in secondary metabolite synthesis, forming the basis for further functional characterization of WRKY genes with the intention of improving T. sinensis.
Collapse
Affiliation(s)
- Liping Ren
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
- Horticultural Institute, Fuyang Academy of Agricultural Sciences, Fuyang, China
| | - Wenyang Wan
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Dandan Yin
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Xianhui Deng
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
| | - Zongxin Ma
- Horticultural Institute, Fuyang Academy of Agricultural Sciences, Fuyang, China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, China
| | - Xiaohan Cao
- Key Laboratory of Horticultural Plant Biology of Biological and Food Engineering School, Fuyang Normal University, Fuyang, China
| |
Collapse
|
9
|
Rosignoli S, Paiardini A. Boosting the Full Potential of PyMOL with Structural Biology Plugins. Biomolecules 2022; 12:biom12121764. [PMID: 36551192 PMCID: PMC9775141 DOI: 10.3390/biom12121764] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Over the past few decades, the number of available structural bioinformatics pipelines, libraries, plugins, web resources and software has increased exponentially and become accessible to the broad realm of life scientists. This expansion has shaped the field as a tangled network of methods, algorithms and user interfaces. In recent years PyMOL, widely used software for biomolecules visualization and analysis, has started to play a key role in providing an open platform for the successful implementation of expert knowledge into an easy-to-use molecular graphics tool. This review outlines the plugins and features that make PyMOL an eligible environment for supporting structural bioinformatics analyses.
Collapse
|
10
|
Mirza Z, Haque MM, Gupta M. WRKY transcription factors: a promising way to deal with arsenic stress in rice. Mol Biol Rep 2022; 49:10895-10904. [PMID: 35941412 DOI: 10.1007/s11033-022-07772-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Arsenic (As) is a global carcinogenic contaminant, and is one of the significant environmental constraints that limits the development and yield of crop plants. It is always tagged along with rice as rice takes up As and tends to accumulate it in grains. This amassment makes a way for As to get into the food chain that leads to unforeseen human health risks. Being viewed as parallel with toxicity, As in rice is an important global risk that calls for an urgent solution. WRKY Transcription Factors (TFs) seems to be promising in this area. The classical and substantial progress in the molecular mechanism of WRKY TFs, strengthened the understanding of innovative solutions for dealing with As in rice. Here, we review the potential of WRKY TFs under As stressed rice as a genetic solution and also provide insights into As and rice. Further, we develop an understanding of WRKY TF gene family and its regulation in rice. To date, studies on the role of WRKY TFs under As stressed rice are lacking. This area needs to be explored more so that this gene family can be utilized as an effective genetic tool that can break the As cycle to develop low or As free rice cultivar.
Collapse
Affiliation(s)
- Zainab Mirza
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, 25, New Delhi, India
| | - Mohammad Mahfuzul Haque
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, 25, New Delhi, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, 25, New Delhi, India.
| |
Collapse
|