1
|
Santos RSMD, Naeem M, da Silva AL, De Medeiros Aires M, de Sousa RRM, de Carvalho Costa TH, Rocha HAO, De Melo MCN, Feitor MC. Novel Synthesis of Zinc Oxide on Cotton Fabric by Cathodic Cage Plasma Deposition for Photocatalytic and Antibacterial Performance. Int J Mol Sci 2024; 25:10192. [PMID: 39337679 PMCID: PMC11432322 DOI: 10.3390/ijms251810192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Cotton fabrics with zinc oxide (ZnO) coating are of significant interest due to their excellent antibacterial performance. Thus, they are widely in demand in the textile industry due to their medical and hygienic properties. However, conventional techniques used to deposit ZnO on fabric require long processing times in deposition, complex and expensive equipment, and multiple steps for deposition, such as a separate process for nanoparticle synthesis and subsequent deposition on fabric. In this study, we proposed a new method for the deposition of ZnO on fabric, using cathodic cage plasma deposition (CCPD), which is commonly used for coating deposition on conductor materials and is not widely used for fabric due to the temperature sensitivity of the fabric. The effect of gas composition, including argon and a hydrogen-argon mixture, on the properties of ZnO deposition is investigated. The deposited samples are characterized by XRD, SEM, EDS, photocatalytic, and antibacterial performance against Staphylococcus aureus and Pseudomonas aeruginosa bacteria. It is observed that ZnO-deposited cotton fabric exhibits excellent photocatalytic degradation of methylene blue and antibacterial performance, specifically when a hydrogen-argon mixture is used in CCPD. The results demonstrate that CCPD can be used effectively for ZnO deposition on cotton fabric; this system is already used in industrial-scale applications and is thus expected to be of significant interest to garment manufacturers and hospitals.
Collapse
Affiliation(s)
| | - Muhammad Naeem
- Department of Physics, Women University of Azad Jammu and Kashmir Bagh, Bagh 12500, Pakistan
| | - Anderson Lucas da Silva
- Textile Engineering Department, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Michelle De Medeiros Aires
- Textile Engineering Post-Graduation, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Textile Engineering Department, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | | | | | | | - Maria Celeste Nunes De Melo
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Michelle Cequeira Feitor
- Textile Engineering Post-Graduation, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Textile Engineering Department, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| |
Collapse
|
2
|
Ansari AA, Lv R, Gai S, Parchur AK, Solanki PR, Archana, Ansari Z, Dhayal M, Yang P, Nazeeruddin M, Tavakoli MM. ZnO nanostructures – Future frontiers in photocatalysis, solar cells, sensing, supercapacitor, fingerprint technologies, toxicity, and clinical diagnostics. Coord Chem Rev 2024; 515:215942. [DOI: 10.1016/j.ccr.2024.215942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Krishna SBN, Jakmunee J, Mishra YK, Prakash J. ZnO based 0-3D diverse nano-architectures, films and coatings for biomedical applications. J Mater Chem B 2024; 12:2950-2984. [PMID: 38426529 DOI: 10.1039/d4tb00184b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Thin-film nano-architecting is a promising approach that controls the properties of nanoscale surfaces to increase their interdisciplinary applications in a variety of fields. In this context, zinc oxide (ZnO)-based various nano-architectures (0-3D) such as quantum dots, nanorods/nanotubes, nanothin films, tetrapods, nanoflowers, hollow structures, etc. have been extensively researched by the scientific community in the past decade. Owing to its unique surface charge transport properties, optoelectronic properties and reported biomedical applications, ZnO has been considered as one of the most important futuristic bio-nanomaterials. This review is focused on the design/synthesis and engineering of 0-3D nano-architecture ZnO-based thin films and coatings with tunable characteristics for multifunctional biomedical applications. Although ZnO has been extensively researched, ZnO thin films composed of 0-3D nanoarchitectures with promising thin film device bio-nanotechnology applications have rarely been reviewed. The current review focuses on important details about the technologies used to make ZnO-based thin films, as well as the customization of properties related to bioactivities, characterization, and device fabrication for modern biomedical uses that are relevant. It features biosensing, tissue engineering/wound healing, antibacterial, antiviral, and anticancer activity, as well as biomedical diagnosis and therapy with an emphasis on a better understanding of the mechanisms of action. Eventually, key issues, experimental parameters and factors, open challenges, etc. in thin film device fabrications and applications, and future prospects will be discussed, followed by a summary and conclusion.
Collapse
Affiliation(s)
- Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban-4000, South Africa
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban-4000, South Africa
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur 177005, (H.P.), India.
| |
Collapse
|
4
|
Soni SK, Marya T, Sharma A, Thakur B, Soni R. A systematic overview of metal nanoparticles as alternative disinfectants for emerging SARS-CoV-2 variants. Arch Microbiol 2024; 206:111. [PMID: 38372809 DOI: 10.1007/s00203-023-03818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 02/20/2024]
Abstract
Coronaviruses are a diverse family of viruses, and new strains can emerge. While the majority of coronavirus strains cause mild respiratory illnesses, a few are responsible for severe diseases such as Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). SARS-CoV-2, the virus responsible for COVID-19, is an example of a coronavirus that has led to a pandemic. Coronaviruses can mutate over time, potentially leading to the emergence of new variants. Some of these variants may have increased transmissibility or resistance to existing vaccines and treatments. The emergence of the COVID-19 pandemic in the recent past has sparked innovation in curbing virus spread, with sanitizers and disinfectants taking center stage. These essential tools hinder pathogen dissemination, especially for unvaccinated or rapidly mutating viruses. The World Health Organization supports the use of alcohol-based sanitizers and disinfectants globally against pandemics. However, there are ongoing concerns about their widespread usage and their potential impact on human health, animal well-being, and ecological equilibrium. In this ever-changing scenario, metal nanoparticles hold promise in combating a range of pathogens, including SARS-CoV-2, as well as other viruses such as norovirus, influenza, and HIV-1. This review explores their potential as non-alcoholic champions against SARS-CoV-2 and other pandemics of tomorrow. This extends beyond metal nanoparticles and advocates a balanced examination of pandemic control tools, exploring their strengths and weaknesses. The manuscript thus involves the evaluation of metal nanoparticle-based alternative approaches as hand sanitizers and disinfectants, providing a comprehensive perspective on this critical issue.
Collapse
Affiliation(s)
- Sanjeev Kumar Soni
- Department of Microbiology, Panjab University, Chandigarh, 160014, India.
| | - Tripta Marya
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Apurav Sharma
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Bishakha Thakur
- Department of Microbiology, Panjab University, Chandigarh, 160014, India
| | - Raman Soni
- Department of Biotechnology, DAV College, Chandigarh, 160011, India
| |
Collapse
|
5
|
Li Y, Li J, Li M, Sun J, Shang X, Ma Y. Biological mechanism of ZnO nanomaterials. J Appl Toxicol 2024; 44:107-117. [PMID: 37518903 DOI: 10.1002/jat.4522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Modern nanotechnology has made zinc oxide nanomaterials (ZnO NMts) multifunctional, stable, and low cost, enabling them to be widely used in commercial and biomedical fields. With its wide application, the risk of human direct contact and their release into the environment also increases. This review aims to summarize the toxicity studies of ZnO NMts in vivo, including neurotoxicity, inhalation toxicity, and reproductive toxicity. The antibacterial and antiviral mechanisms of ZnO NMts in vitro and the toxicity to eukaryotic cells were summarized. The summary found that it was mainly related to reactive oxygen species (ROS) produced by oxidative stress. It also discusses the potential harm to body and the favorable prospects of the widespread use of antibacterial and antiviral in the future medical field. The review also emphasizes that the dosage and use method of ZnO NMts will be the focus of future biomedical research.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Jingjing Li
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Mei Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Jiwen Sun
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Xiaofen Shang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Yonghua Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| |
Collapse
|
6
|
Fan X, Ren C, Ning K, Shoala MA, Ke Q, Zhou Y, Wu Y, Qiu R, Liang J, Xiao S. Enantioselective Antiviral Activities of Chiral Zinc Oxide Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58251-58259. [PMID: 38053348 DOI: 10.1021/acsami.3c15463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Chiral nanoparticles (C-NPs) play a crucial role in biomedical applications, especially in their biological effects on cytotoxicity and metabolism. However, there are rare reports about the antivirus property of C-NPs and their working mechanism. Here, three different types of chiral ZnO NPs (l-ZnO, d-ZnO, and dl-ZnO) were prepared as enantioselective antivirals. Biocompatibility test results showed that the three different chiral ZnO NPs varied significantly in cytotoxicity. Evaluation of their effects against porcine reproductive and respiratory syndrome virus (PRRSV) indicated that compared with d-ZnO and dl-ZnO NPs, l-ZnO NPs exhibited stronger anti-PRRSV activity due to their higher cognate cell adhesion and uptake. Furthermore, the high concentration of l-ZnO NPs can obviously reduce cellular reactive oxygen species (ROS) in MARC-145 cells, thus effectively preventing PRRSV-induced oxidative damage. This study demonstrated the outstanding antiviral properties of l-ZnO NPs, which may facilitate the development and application of C-NPs in antiviral drugs and tissue engineering.
Collapse
Affiliation(s)
- Xiaoxia Fan
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Caifeng Ren
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Keke Ning
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Mohamed A Shoala
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Qiyun Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yuan Wu
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Runhui Qiu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
7
|
Reyes-Carmona L, Sepúlveda-Robles OA, Almaguer-Flores A, Bello-Lopez JM, Ramos-Vilchis C, Rodil SE. Antimicrobial activity of silver-copper coating against aerosols containing surrogate respiratory viruses and bacteria. PLoS One 2023; 18:e0294972. [PMID: 38079398 PMCID: PMC10712891 DOI: 10.1371/journal.pone.0294972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
The transmission of bacteria and respiratory viruses through expelled saliva microdroplets and aerosols is a significant concern for healthcare workers, further highlighted during the SARS-CoV-2 pandemic. To address this issue, the development of nanomaterials with antimicrobial properties for use as nanolayers in respiratory protection equipment, such as facemasks or respirators, has emerged as a potential solution. In this study, a silver and copper nanolayer called SakCu® was deposited on one side of a spun-bond polypropylene fabric using the magnetron sputtering technique. The antibacterial and antiviral activity of the AgCu nanolayer was evaluated against droplets falling on the material and aerosols passing through it. The effectiveness of the nanolayer was assessed by measuring viral loads of the enveloped virus SARS-CoV-2 and viability assays using respiratory surrogate viruses, including PaMx54, PaMx60, PaMx61 (ssRNA, Leviviridae), and PhiX174 (ssDNA, Microviridae) as representatives of non-enveloped viruses. Colony forming unit (CFU) determination was employed to evaluate the survival of aerobic and anaerobic bacteria. The results demonstrated a nearly exponential reduction in SARS-CoV-2 viral load, achieving complete viral load reduction after 24 hours of contact incubation with the AgCu nanolayer. Viability assays with the surrogate viruses showed a significant reduction in viral replication between 2-4 hours after contact. The simulated viral filtration system demonstrated inhibition of viral replication ranging from 39% to 64%. The viability assays with PhiX174 exhibited a 2-log reduction in viral replication after 24 hours of contact and a 16.31% inhibition in viral filtration assays. Bacterial growth inhibition varied depending on the species, with reductions ranging from 70% to 92% for aerobic bacteria and over 90% for anaerobic strains. In conclusion, the AgCu nanolayer displayed high bactericidal and antiviral activity in contact and aerosol conditions. Therefore, it holds the potential for incorporation into personal protective equipment to effectively reduce and prevent the transmission of aerosol-borne pathogenic bacteria and respiratory viruses.
Collapse
Affiliation(s)
- Lorena Reyes-Carmona
- Laboratorio de Biointerfases, DEPeI, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX, México
- Programa de Maestría y Doctorado en Ciencias Médicas Odontológicas y de la Salud, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX, México
| | - Omar A. Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), CDMX, México
| | - Argelia Almaguer-Flores
- Laboratorio de Biointerfases, DEPeI, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX, México
| | - Juan Manuel Bello-Lopez
- Dirección de Investigación, Hospital Juárez de México, Magdalena de las Salinas, CDMX, México
| | - Carlos Ramos-Vilchis
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CDMX, México
| | - Sandra E. Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CDMX, México
| |
Collapse
|
8
|
Abdelgawad FAM, El-Hawary SS, Abd El-Kader EM, Alshehri SA, Rabeh MA, El-Mosallamy AEMK, El Raey MA, El Gedaily RA. Phytochemical Profiling and Antiviral Activity of Green Sustainable Nanoparticles Derived from Maesa indica (Roxb.) Sweet against Human Coronavirus 229E. PLANTS (BASEL, SWITZERLAND) 2023; 12:2813. [PMID: 37570967 PMCID: PMC10420985 DOI: 10.3390/plants12152813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Plant secondary metabolites are key components for new, safe and effective drugs. Ethanolic extract of Maesa indica Roxb. Sweet (ME) aerial parts were used for biosynthesis of sustainable green zinc oxide nanoparticles (ZnO NPs) with an average particle size 6.80 ± 1.47 nm and zeta potential -19.7 mV. Both transmission electron microscopy and X-ray diffraction assay confirmed the hexagonal shape of ZnO NPs. Phenolic ingredients in ME were identified using LC-ESI-MS/MS-MRM revealing the identification of chlorogenic acid, gallic acid, caffeic acid, rutin, coumaric acid, vanillin, naringenin, quercetin, ellagic acid, 3.4-dihydroxybenzoic acid, methyl gallate, kaempferol, ferulic acid, syringic acid, and luteolin. The major compound was chlorogenic acid at concentration of 1803.84 μg/g. The antiviral activity of ME, ZnO NPs, and combination of ME with ZnO NPs against coronavirus 229E were investigated. ZnO NPs had superior antiviral effect against coronavirus 229E than ME while their combination showed the highest anti-coronavirus 229E effect, with 50% inhibition concentration (IC50) of 5.23 ± 0.18 µg/mL and 50% cytotoxic concentration (CC50) of 138.49 ± 0.26 µg/mL while the selectivity index (SI) was 26.47. The current study highlighted the possible novel anti-coronavirus 229E activity of green ZnO NPs synthesized from Maesa indica. More studies are needed to further investigate this antiviral activity to be utilized in future biomedical and environmental applications.
Collapse
Affiliation(s)
| | - Seham S. El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt;
| | - Essam M. Abd El-Kader
- Department of Timber Trees Research, Horticultural Research Institute (ARC), Giza 12619, Egypt;
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62251, Saudi Arabia; (S.A.A.); (M.A.R.)
| | - Mohamed Abdelaaty Rabeh
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62251, Saudi Arabia; (S.A.A.); (M.A.R.)
| | | | - Mohamed A. El Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Division, National Research Centre, 33 El Bohouth Street, Cairo 12622, Egypt;
| | - Rania A. El Gedaily
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt;
| |
Collapse
|
9
|
Cimini A, Imperi E, Picano A, Rossi M. Electrospun nanofibers for medical face mask with protection capabilities against viruses: State of the art and perspective for industrial scale-up. APPLIED MATERIALS TODAY 2023; 32:101833. [PMID: 37152683 PMCID: PMC10151159 DOI: 10.1016/j.apmt.2023.101833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
Face masks have proven to be a useful protection from airborne viruses and bacteria, especially in the recent years pandemic outbreak when they effectively lowered the risk of infection from Coronavirus disease (COVID-19) or Omicron variants, being recognized as one of the main protective measures adopted by the World Health Organization (WHO). The need for improving the filtering efficiency performance to prevent penetration of fine particulate matter (PM), which can be potential bacteria or virus carriers, has led the research into developing new methods and techniques for face mask fabrication. In this perspective, Electrospinning has shown to be the most efficient technique to get either synthetic or natural polymers-based fibers with size down to the nanoscale providing remarkable performance in terms of both particle filtration and breathability. The aim of this Review is to give further insight into the implementation of electrospun nanofibers for the realization of the next generation of face masks, with functionalized membranes via addiction of active material to the polymer solutions that can give optimal features about antibacterial, antiviral, self-sterilization, and electrical energy storage capabilities. Furthermore, the recent advances regarding the use of renewable materials and green solvent strategies to improve the sustainability of electrospun membranes and to fabricate eco-friendly filters are here discussed, especially in view of the large-scale nanofiber production where traditional membrane manufacturing may result in a high environmental and health risk.
Collapse
Affiliation(s)
- A Cimini
- Department of Basic and Applied Sciences for Engineering, University of Rome Sapienza, Rome 00161, Italy
- LABOR s.r.l., Industrial Research Laboratory, Via Giacomo Peroni, 386, Rome, Italy
| | - E Imperi
- LABOR s.r.l., Industrial Research Laboratory, Via Giacomo Peroni, 386, Rome, Italy
| | - A Picano
- LABOR s.r.l., Industrial Research Laboratory, Via Giacomo Peroni, 386, Rome, Italy
| | - M Rossi
- Department of Basic and Applied Sciences for Engineering, University of Rome Sapienza, Rome 00161, Italy
- Research Center for Nanotechnology for Engineering of Sapienza (CNIS), University of Rome Sapienza, Rome 00185, Italy
| |
Collapse
|
10
|
Wolfgruber S, Rieger J, Cardozo O, Punz B, Himly M, Stingl A, Farias PMA, Abuja PM, Zatloukal K. Antiviral Activity of Zinc Oxide Nanoparticles against SARS-CoV-2. Int J Mol Sci 2023; 24:ijms24098425. [PMID: 37176131 PMCID: PMC10179150 DOI: 10.3390/ijms24098425] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The highly contagious SARS-CoV-2 virus is primarily transmitted through respiratory droplets, aerosols, and contaminated surfaces. In addition to antiviral drugs, the decontamination of surfaces and personal protective equipment (PPE) is crucial to mitigate the spread of infection. Conventional approaches, including ultraviolet radiation, vaporized hydrogen peroxide, heat and liquid chemicals, can damage materials or lack comprehensive, effective disinfection. Consequently, alternative material-compatible and sustainable methods, such as nanomaterial coatings, are needed. Therefore, the antiviral activity of two novel zinc-oxide nanoparticles (ZnO-NP) against SARS-CoV-2 was investigated in vitro. Each nanoparticle was produced by applying highly efficient "green" synthesis techniques, which are free of fossil derivatives and use nitrate, chlorate and sulfonate salts as starting materials and whey as chelating agents. The two "green" nanomaterials differ in size distribution, with ZnO-NP-45 consisting of particles ranging from 30 nm to 60 nm and ZnO-NP-76 from 60 nm to 92 nm. Human lung epithelial cells (Calu-3) were infected with SARS-CoV-2, pre-treated in suspensions with increasing ZnO-NP concentrations up to 20 mg/mL. Both "green" materials were compared to commercially available ZnO-NP as a reference. While all three materials were active against both virus variants at concentrations of 10-20 mg/mL, ZnO-NP-45 was found to be more active than ZnO-NP-76 and the reference material, resulting in the inactivation of the Delta and Omicron SARS-CoV-2 variants by a factor of more than 106. This effect could be due to its greater total reactive surface, as evidenced by transmission electron microscopy and dynamic light scattering. Higher variations in virus inactivation were found for the latter two nanomaterials, ZnO-NP-76 and ZnO-NP-ref, which putatively may be due to secondary infections upon incomplete inactivation inside infected cells caused by insufficient NP loading of the virions. Taken together, inactivation with 20 mg/mL ZnO-NP-45 seems to have the greatest effect on both SARS-CoV-2 variants tested. Prospective ZnO-NP applications include an antiviral coating of filters or PPE to enhance user protection.
Collapse
Affiliation(s)
- Stella Wolfgruber
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Julia Rieger
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Olavo Cardozo
- PHORNANO Holding GmbH, Kleinengersdorferstrasse 24, 2100 Korneuburg, Austria
- Post-Graduate Program on Electrical Engineering, Federal University of Pernambuco, Cidade Universitaria, Recife 50670-901, Brazil
| | - Benjamin Punz
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Martin Himly
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Andreas Stingl
- PHORNANO Holding GmbH, Kleinengersdorferstrasse 24, 2100 Korneuburg, Austria
| | - Patricia M A Farias
- PHORNANO Holding GmbH, Kleinengersdorferstrasse 24, 2100 Korneuburg, Austria
- Department of Biophysics and Radiobiology, Post-Graduate Program on Material Sciences, Federal University of Pernambuco, Cidade Universitaria, Recife 50670-901, Brazil
| | - Peter M Abuja
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Kurt Zatloukal
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
11
|
Ivanoska-Dacikj A, Oguz-Gouillart Y, Hossain G, Kaplan M, Sivri Ç, Ros-Lis JV, Mikucioniene D, Munir MU, Kizildag N, Unal S, Safarik I, Akgül E, Yıldırım N, Bedeloğlu AÇ, Ünsal ÖF, Herwig G, Rossi RM, Wick P, Clement P, Sarac AS. Advanced and Smart Textiles during and after the COVID-19 Pandemic: Issues, Challenges, and Innovations. Healthcare (Basel) 2023; 11:1115. [PMID: 37107948 PMCID: PMC10137734 DOI: 10.3390/healthcare11081115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
The COVID-19 pandemic has hugely affected the textile and apparel industry. Besides the negative impact due to supply chain disruptions, drop in demand, liquidity problems, and overstocking, this pandemic was found to be a window of opportunity since it accelerated the ongoing digitalization trends and the use of functional materials in the textile industry. This review paper covers the development of smart and advanced textiles that emerged as a response to the outbreak of SARS-CoV-2. We extensively cover the advancements in developing smart textiles that enable monitoring and sensing through electrospun nanofibers and nanogenerators. Additionally, we focus on improving medical textiles mainly through enhanced antiviral capabilities, which play a crucial role in pandemic prevention, protection, and control. We summarize the challenges that arise from personal protective equipment (PPE) disposal and finally give an overview of new smart textile-based products that emerged in the markets related to the control and spread reduction of SARS-CoV-2.
Collapse
Affiliation(s)
- Aleksandra Ivanoska-Dacikj
- Research Centre for Environment and Materials, Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia
| | - Yesim Oguz-Gouillart
- Department of Building and Urban Environment, Innovative Textile Material, JUNIA, 59000 Lille, France
| | - Gaffar Hossain
- V-Trion GmbH Textile Research, Millennium Park 15, 6890 Lustenau, Austria
| | - Müslüm Kaplan
- Department of Textile Engineering, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Çağlar Sivri
- Management Engineering Department, Faculty of Engineering and Natural Sciences, Bahcesehir University, İstanbul 34349, Turkey
| | - José Vicente Ros-Lis
- Centro de Reconocimiento Molecular y Desarrollo Tecnologico (IDM), Unidad Mixta Universitat Politecnica de Valencia, Universitat de Valencia, Departamento de Química Inorgánica, Universitat de València, Doctor Moliner 56, 46100 Valencia, Spain
| | - Daiva Mikucioniene
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56, 50404 Kaunas, Lithuania
| | - Muhammad Usman Munir
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56, 50404 Kaunas, Lithuania
| | - Nuray Kizildag
- Institute of Nanotechnology, Gebze Technical University, Gebze, Kocaeli 41400, Turkey
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Pendik, Istanbul 34906, Turkey
| | - Serkan Unal
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Pendik, Istanbul 34906, Turkey
- Faculty of Engineering and Natural Sciences, Material Science and Nanoengineering, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Esra Akgül
- Department of Industrial Design Engineering, Faculty of Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Nida Yıldırım
- Trabzon Vocational School, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Ayşe Çelik Bedeloğlu
- Department of Polymer Materials Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa 16310, Turkey
| | - Ömer Faruk Ünsal
- Department of Polymer Materials Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa 16310, Turkey
| | - Gordon Herwig
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particle-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Pietro Clement
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particle-Biology Interactions, 9014 St. Gallen, Switzerland
| | - A. Sezai Sarac
- Department of Chemistry, Polymer Science and Technology, Faculty of Sciences and Letters, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
12
|
Uskoković V. Lessons from the history of inorganic nanoparticles for inhalable diagnostics and therapeutics. Adv Colloid Interface Sci 2023; 315:102903. [PMID: 37084546 DOI: 10.1016/j.cis.2023.102903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
The respiratory tract is one of the most accessible ones to exogenous nanoparticles, yet drug delivery by their means to it is made extraordinarily challenging because of the plexus of aerodynamic, hemodynamic and biomolecular factors at cellular and extracellular levels that synergistically define the safety and efficacy of this process. Here, the use of inorganic nanoparticles (INPs) for inhalable diagnostics and therapies of the lung is viewed through the prism of the history of studies on the interaction of INPs with the lower respiratory tract. The most conceptually and methodologically innovative and illuminative studies are referred to in the chronological order, as they were reported in the literature, and the trends in the progress of understanding this interaction of immense therapeutic and toxicological significance are being deduced from it. The most outstanding actual trends delineated include the diminishment of toxicity via surface functionalization, cell targeting, tagging and tracking via controlled binding and uptake, hybrid INP treatments, magnetic guidance, combined drug and gene delivery, use as adjuvants in inhalable vaccines, and other. Many of the understudied research directions, which have been accomplished by the nanostructured organic polymers in the pulmonary niche, are discussed. The progress in the use of INPs as inhalable diagnostics or therapeutics has been hampered by their well-recognized inflammatory potential and toxicity in the respiratory tract. However, the annual numbers of methodologically innovative studies have been on the rise throughout the past two decades, suggesting that this is a prolific direction of research, its comparatively poor commercial takings notwithstanding. Still, the lack of consensus on the effects of many INP compositions at low but therapeutically effective doses, the plethora of contradictory reports on ostensibly identical chemical compositions and NP properties, and the many cases of antagonism in combinatorial NP treatments imply that the rational design of inhalable medical devices based on INPs must rely on qualitative principles for the most part and embrace a partially stochastic approach as well. At the same time, the fact that the most studied INPs for pulmonary applications have been those with some of the thickest records of pulmonary toxicity, e.g., carbon, silver, gold, silica and iron oxide, is a silent call for the expansion of the search for new inorganic compositions for use in inhalable therapies to new territories.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano LLC, 7 Park Vista, Irvine, CA 92604, USA; Department of Mechanical Engineering, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| |
Collapse
|
13
|
Benatto VG, de Jesus JPA, de Castro AA, Assis LC, Ramalho TC, La Porta FA. Prospects of ZnS and ZnO as smart semiconductor materials in light-activated antimicrobial coatings for mitigation of severe acute respiratory syndrome coronavirus-2 infection. MATERIALS TODAY. COMMUNICATIONS 2023; 34:105192. [PMID: 36570033 PMCID: PMC9758762 DOI: 10.1016/j.mtcomm.2022.105192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/26/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
We carried out theoretical and experimental analyses of ZnO and ZnS nanoparticles as smart semiconductor materials in light-activated antimicrobial coating for application in masks. We used low-cost hydrothermally processable precursors to direct the growth of the coatings on cotton fabric. Both ZnO and ZnS coatings had high reactivities as disinfection agents in photocatalysis reactions for the degradation of a methylene blue dye solution. Also, these coatings showed excellent UV protection properties. For understanding at the molecular level, the broad-spectrum biological activities of the ZnO and ZnS coatings against Fusarium Oxysporum fungi, Escherichia coli bacteria, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus and their variants, were investigated computationally. Hexagonal Zn6O6 and Zn6S6 clusters were used as models for the simulations through excited- and ground-state calculations. The theoretical findings show that changes in the local chemical environment in these excited systems have a profound impact on their physical and chemical properties and thus, can provide a better understanding to engineer new functional materials in light-activated antimicrobial coatings for the mitigation of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- V G Benatto
- Laboratory of Nanotechnology and Computational Chemistry, Federal University of Technology - Paraná, Londrina 86036-370, Brazil
| | - J P A de Jesus
- Laboratory of Nanotechnology and Computational Chemistry, Federal University of Technology - Paraná, Londrina 86036-370, Brazil
| | - A A de Castro
- Department of Chemistry, Federal University of Lavras, Lavras 37200-000, Brazil
| | - L C Assis
- Department of Chemistry, Federal University of Lavras, Lavras 37200-000, Brazil
| | - T C Ramalho
- Department of Chemistry, Federal University of Lavras, Lavras 37200-000, Brazil
| | - F A La Porta
- Laboratory of Nanotechnology and Computational Chemistry, Federal University of Technology - Paraná, Londrina 86036-370, Brazil
| |
Collapse
|
14
|
Manuja A, Chhabra D, Kumar B. Chloroquine chaos and COVID-19: Smart delivery perspectives through pH sensitive polymers/micelles and ZnO nanoparticles. ARAB J CHEM 2023; 16:104468. [PMID: 36466721 PMCID: PMC9710101 DOI: 10.1016/j.arabjc.2022.104468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
The global pandemic of COVID-19 had a consequential impact on our lives. (Hydroxy)chloroquine, a well-known drug for treatment or prevention against malaria and chronic inflammatory conditions, was also used for COVID patients with reported potential efficacy. Although it was well tolerated, however in some cases, it produced severe side effects, including grave cardiac issues. The variable reports on the administration of (hydroxy)chloroquine in COVID19 patients led to chaos. This drug is a well-known zinc ionophore, besides possessing antiviral effects. Zinc ionophores augment the intracellular Zn2+ concentration by facilitating the zinc ions into the cells and subsequently impair virus replication. Zinc oxide nanoparticles (ZnO NPs) have been reported to possess antiviral activity. However, the adverse effects of both components are also reported. We discussed in depth their possible mechanism as antiviral and smart delivery perspectives through pH-sensitive polymers/ micelles and ZnO NPs.
Collapse
Affiliation(s)
- Anju Manuja
- Corresponding authors at: ICAR-National Research Centre on Equines, Hisar-125001, Haryana, India
| | | | - Balvinder Kumar
- Corresponding authors at: ICAR-National Research Centre on Equines, Hisar-125001, Haryana, India
| |
Collapse
|
15
|
An In-Situ Fabrication Method of ZnO and Other Zn(II) Compounds Containing Polypropylene Composites. Int J Mol Sci 2023; 24:ijms24032357. [PMID: 36768677 PMCID: PMC9916773 DOI: 10.3390/ijms24032357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
This study investigated the methods of preparation of zinc oxide-polypropylene nanocomposites and their antibacterial properties. Seven solutions with ZnO nanoparticles or zinc ions were formulated as a PP additive. Two methods of ZnO NPs syntheses were carried out: (1) a modified hydrothermal method where a water solution of zinc acetate dihydrate, PEI, and ammonia were mixed with a final pH 11; (2) a thermal decomposition of a water solution of zinc acetate in the presence of PEI and ammonia using a two-screw extruder. During the experiments, the influence of various amounts of particle stabilizer, heating of the solutions, and the temperatures of the syntheses were examined. As a result, the simultaneous crystallization of ZnO in the extrusion process confirmed this method's attractiveness from the application point of view. Fabricated PP-ZnO composite shows antibacterial properties against Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae.
Collapse
|
16
|
Izzi M, Chiara Sportelli M, Anna Picca R, Cioffi N. Electrochemical Synthesis and Analytical Characterization of Hybrid Zinc/Calcium Antimicrobial Nano‐Oxides for Cultural Heritage Applications. ChemElectroChem 2023. [DOI: 10.1002/celc.202201132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Margherita Izzi
- Chemistry Department University of Bari Aldo Moro Via E. Orabona 4 Bari 70125 Italy
- Chemistry Dept. of University of Bari CSGI (Center for Colloid and Surface Science) Via E. Orabona 4 Bari 70125 Italy
| | - Maria Chiara Sportelli
- Chemistry Department University of Bari Aldo Moro Via E. Orabona 4 Bari 70125 Italy
- Chemistry Dept. of University of Bari CSGI (Center for Colloid and Surface Science) Via E. Orabona 4 Bari 70125 Italy
| | - Rosaria Anna Picca
- Chemistry Department University of Bari Aldo Moro Via E. Orabona 4 Bari 70125 Italy
- Chemistry Dept. of University of Bari CSGI (Center for Colloid and Surface Science) Via E. Orabona 4 Bari 70125 Italy
| | - Nicola Cioffi
- Chemistry Department University of Bari Aldo Moro Via E. Orabona 4 Bari 70125 Italy
- Chemistry Dept. of University of Bari CSGI (Center for Colloid and Surface Science) Via E. Orabona 4 Bari 70125 Italy
| |
Collapse
|
17
|
Hussain FS, Abro NQ, Ahmed N, Memon SQ, Memon N. Nano-antivirals: A comprehensive review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1064615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nanoparticles can be used as inhibitory agents against various microorganisms, including bacteria, algae, archaea, fungi, and a huge class of viruses. The mechanism of action includes inhibiting the function of the cell membrane/stopping the synthesis of the cell membrane, disturbing the transduction of energy, producing toxic reactive oxygen species (ROS), and inhibiting or reducing RNA and DNA production. Various nanomaterials, including different metallic, silicon, and carbon-based nanomaterials and nanoarchitectures, have been successfully used against different viruses. Recent research strongly agrees that these nanoarchitecture-based virucidal materials (nano-antivirals) have shown activity in the solid state. Therefore, they are very useful in the development of several products, such as fabric and high-touch surfaces. This review thoroughly and critically identifies recently developed nano-antivirals and their products, nano-antiviral deposition methods on various substrates, and possible mechanisms of action. By considering the commercial viability of nano-antivirals, recommendations are made to develop scalable and sustainable nano-antiviral products with contact-killing properties.
Collapse
|
18
|
Farooq A, Khan UA, Ali H, Sathish M, Naqvi SAH, Iqbal S, Ali H, Mubeen I, Amir MB, Mosa WFA, Baazeem A, Moustafa M, Alrumman S, Shati A, Negm S. Green Chemistry Based Synthesis of Zinc Oxide Nanoparticles Using Plant Derivatives of Calotropis gigantea (Giant Milkweed) and Its Biological Applications against Various Bacterial and Fungal Pathogens. Microorganisms 2022; 10:2195. [PMID: 36363787 PMCID: PMC9692802 DOI: 10.3390/microorganisms10112195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 09/15/2023] Open
Abstract
Nanotechnology is a burning field of scientific interest for researchers in current era. Diverse plant materials are considered as potential tool in green chemistry based technologies for the synthesis of metal nanoparticles (NPs) to cope with the hazardous effects of synthetic chemicals, leading to severe abiotic climate change issues in today's agriculture. This study aimed to determine the synthesis and characterization of metal-based nanoparticles using extracts of the selected plant Calotropis gigantea and to evaluate the enzyme-inhibition activities and antibacterial and antifungal activity of extracts of metal-based zinc nanoparticles using C. gigantea extracts. The crystal structure and surface morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). C. gigantea was examined for antimicrobial activity against clinical isolates of bacteria and fungi. The water, ethanolic, and acetone extracts of C. gigantea were studied for their antagonistic action against bacterial strains (E. coli, S. aureus, P. multocida, and B. subtilis) and selected fungal strains (A. paracistic, F. solani, A. niger, S. ferrugenium, and R. nigricans). In vitro antimicrobial activity was determined by the disc diffusion method, where C. gigantea wastested for AChE and BChE inhibitory activity using Ellman's methodology. The kinetic analysis was performed by the proverbial Berthelot reaction for urease inhibition. The results showed that out of all the extracts tested, ethanolic and water extracts possessed zinc nanoparticles. These extracts showed the maximum zone of inhibition against F. solani and P. multocida and the lowest against S. ferrugenium and B. subtilis. A potential source of AChE inhibitors is certainly provided by the abundance of plants in nature. Numerous phyto-constituents, such as AChE and BChE inhibitors, have been reported in this communication. Water extract was active and has the potential for in vitro AChE and BChE inhibitory activity. The urease inhibition with flower extracts of C. gigantea revealed zinc nanoparticles in water extracts that competitively inhibited urease enzymes. In the case of cholinesterase enzymes, it was inferred that the water extract and zinc nanoparticles have more potential for inhibition of BChE than AChE and urease inhibition. Furthermore, zinc nanoparticles with water extract are active inthe inhibition of the bacterial strains E. coli, S. aureus, and P. multocida and the fungal strains A. paracistic, F. solani, and A. niger.
Collapse
Affiliation(s)
- Ammara Farooq
- The Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan
| | - Umair A. Khan
- The Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan
| | - Haider Ali
- School of Bioscience, University of Birmingham, Birmingham B15 2TT, UK
| | - Manda Sathish
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile
| | - Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Shehzad Iqbal
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haider Ali
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Iqra Mubeen
- State Key Laboratory of Rice Biology, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Bilal Amir
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Walid F. A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Alexandria University, Alexandria 21531, Egypt
| | - Alaa Baazeem
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Sulaiman Alrumman
- Department of Biology, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Ali Shati
- Department of Biology, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia
- Unit of Food Bacteriology, Central Laboratory of Food Hygiene, Ministry of Health, Branch in Zagazig, Zagazig 44511, Egypt
| |
Collapse
|
19
|
Prakash J, Krishna SBN, Kumar P, Kumar V, Ghosh KS, Swart HC, Bellucci S, Cho J. Recent Advances on Metal Oxide Based Nano-Photocatalysts as Potential Antibacterial and Antiviral Agents. Catalysts 2022; 12:1047. [DOI: 10.3390/catal12091047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Photocatalysis, a unique process that occurs in the presence of light radiation, can potentially be utilized to control environmental pollution, and improve the health of society. Photocatalytic removal, or disinfection, of chemical and biological species has been known for decades; however, its extension to indoor environments in public places has always been challenging. Many efforts have been made in this direction in the last two–three years since the COVID-19 pandemic started. Furthermore, the development of efficient photocatalytic nanomaterials through modifications to improve their photoactivity under ambient conditions for fighting with such a pandemic situation is a high research priority. In recent years, several metal oxides-based nano-photocatalysts have been designed to work efficiently in outdoor and indoor environments for the photocatalytic disinfection of biological species. The present review briefly discusses the advances made in the last two to three years for photocatalytic viral and bacterial disinfections. Moreover, emphasis has been given to the tailoring of such nano-photocatalysts in disinfecting surfaces, air, and water to stop viral/bacterial infection in the indoor environment. The role of such nano-photocatalysts in the photocatalytic disinfection of COVID-19 has also been highlighted with their future applicability in controlling such pandemics.
Collapse
Affiliation(s)
- Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur 177005, Himachal Pradesh, India
- Department of Physics, University of the Free State, Bloemfontein 9300, South Africa
| | - Suresh Babu Naidu Krishna
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban 4000, South Africa
| | - Promod Kumar
- Department of Physics, University of the Free State, Bloemfontein 9300, South Africa
| | - Vinod Kumar
- Department of Physics, College of Natural and Computational Science, Dambi Dollo University, Dambi Dollo P.O. Box 260, Ethiopia
| | - Kalyan S. Ghosh
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur 177005, Himachal Pradesh, India
| | - Hendrik C. Swart
- Department of Physics, University of the Free State, Bloemfontein 9300, South Africa
| | - Stefano Bellucci
- INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - Junghyun Cho
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York (SUNY), Binghamton, NY 13902-6000, USA
| |
Collapse
|
20
|
Sportelli MC, Gaudiuso C, Volpe A, Izzi M, Picca RA, Ancona A, Cioffi N. Biogenic Synthesis of ZnO Nanoparticles and Their Application as Bioactive Agents: A Critical Overview. REACTIONS 2022; 3:423-441. [DOI: 10.3390/reactions3030030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Zinc oxide is a safe material for humans, with high biocompatibility and negligible cytotoxicity. Interestingly, it shows exceptional antimicrobial activity against bacteria, viruses, fungi, etc., especially when reduced to the nanometer size. As it is easily understandable, thanks to its properties, it is at the forefront of safe antimicrobials in this pandemic era. Besides, in the view of the 2022 European Green Deal announced by the European Commission, even science and nanotechnology are moving towards “greener” approaches to the synthesis of nanoparticles. Among them, biogenic ZnO nanoparticles have been extensively studied for their biological applications and environmental remediation. Plants, algae, fungi, yeast, etc., (which are composed of naturally occurring biomolecules) play, in biogenic processes, an active role in the formation of nanoparticles with distinct shapes and sizes. The present review targets the biogenic synthesis of ZnO nanoparticles, with a specific focus on their bioactive properties and antimicrobial application.
Collapse
Affiliation(s)
- Maria Chiara Sportelli
- Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Institute of Photonics and Nanotechnology-National Research Council (IFN-CNR), Via Amendola 173, 70126 Bari, Italy
| | - Caterina Gaudiuso
- Institute of Photonics and Nanotechnology-National Research Council (IFN-CNR), Via Amendola 173, 70126 Bari, Italy
- Physics Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Annalisa Volpe
- Institute of Photonics and Nanotechnology-National Research Council (IFN-CNR), Via Amendola 173, 70126 Bari, Italy
- Physics Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Margherita Izzi
- Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Centre for Colloid and Surface Science (CSGI), University of Bari Aldo Moro, 70125 Bari, Italy
| | - Rosaria Anna Picca
- Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Centre for Colloid and Surface Science (CSGI), University of Bari Aldo Moro, 70125 Bari, Italy
| | - Antonio Ancona
- Institute of Photonics and Nanotechnology-National Research Council (IFN-CNR), Via Amendola 173, 70126 Bari, Italy
- Physics Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari, Italy
- Centre for Colloid and Surface Science (CSGI), University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
21
|
Iraci N, Corsaro C, Giofrè SV, Neri G, Mezzasalma AM, Vacalebre M, Speciale A, Saija A, Cimino F, Fazio E. Nanoscale Technologies in the Fight against COVID-19: From Innovative Nanomaterials to Computer-Aided Discovery of Potential Antiviral Plant-Derived Drugs. Biomolecules 2022; 12:1060. [PMID: 36008954 PMCID: PMC9405735 DOI: 10.3390/biom12081060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
The last few years have increasingly emphasized the need to develop new active antiviral products obtained from artificial synthesis processes using nanomaterials, but also derived from natural matrices. At the same time, advanced computational approaches have found themselves fundamental in the repurposing of active therapeutics or for reducing the very long developing phases of new drugs discovery, which represents a real limitation, especially in the case of pandemics. The first part of the review is focused on the most innovative nanomaterials promising both in the field of therapeutic agents, as well as measures to control virus spread (i.e., innovative antiviral textiles). The second part of the review aims to show how computer-aided technologies can allow us to identify, in a rapid and therefore constantly updated way, plant-derived molecules (i.e., those included in terpenoids) potentially able to efficiently interact with SARS-CoV-2 cell penetration pathways.
Collapse
Affiliation(s)
- Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Carmelo Corsaro
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Salvatore V. Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Angela Maria Mezzasalma
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Martina Vacalebre
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Antonina Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.I.); (S.V.G.); (G.N.); (A.S.); (A.S.)
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy; (A.M.M.); (M.V.); (E.F.)
| |
Collapse
|