1
|
Du Y, Wu H, Zhan S, Zhang R, Zhang G, Bu N. Calcium/Calmodulin-Dependent Protein Kinase II β Regulates Autophagy Dependent Ferroptosis of Neurons after Cerebral Ischemic Injury by Activating the AREG/JUN/ELAVL1 Pathway. Neurochem Res 2025; 50:140. [PMID: 40220216 DOI: 10.1007/s11064-025-04392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Ferroptosis is an iron-dependent regulatory cell death characterized by lipid peroxidation. The molecular mechanism of calcium/calmodulin-dependent protein kinase II β (CAMK2B) affecting cerebral ischemic injury through autophagy-dependent ferroptosis is still unclear. Here, we aimed to study the regulatory effect of CAMK2B on autophagy-dependent ferroptosis and its effect on cerebral ischemic injury. We found that CAMK2B was significantly upregulated in oxygen and glucose deprivation/recovery (OGD/R)-induced PC12 cells and primary hippocampal neurons. CAMK2B knockdown inhibited OGD/R-induced autophagy-dependent ferroptosis in PC12 cells and primary hippocampal neurons. In addition, CAMK2B was co-localized with amphiregulin (AREG) in PC12 cells, and overexpression of AREG reversed the effect of CAMK2B knockdown on OGD/R-induced autophagy-dependent ferroptosis in PC12 cells and primary hippocampal neurons. Further molecular mechanism studies showed that AREG enhanced the transcriptional activation of embryonic lethal abnormal vision-like 1 (ELAVL1) through Jun Proto-Oncogene (c-Jun), thereby inducing autophagy-dependent ferroptosis in PC12 cells and primary hippocampal neurons. Moreover, CAMK2B was significantly upregulated in the ipsilateral penumbra neurons of cerebral ischemia-reperfusion (I/R) mice, and the level of autophagy-dependent ferroptosis was increased in the brain tissue of I/R mice. Knockdown of CAMK2B alleviated neuronal damage by inhibiting autophagy-dependent ferroptosis in the brain tissue of model mice. This study suggests that CAMK2B plays a key role in regulating neuronal autophagy-dependent ferroptosis, and CAMK2B may be a potential target for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Yun Du
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xi Wu Road, Xin Cheng District, Xi'an, 710004, Shaanxi Province, China.
| | - Haiqin Wu
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xi Wu Road, Xin Cheng District, Xi'an, 710004, Shaanxi Province, China
| | - Shuqin Zhan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xi Wu Road, Xin Cheng District, Xi'an, 710004, Shaanxi Province, China
| | - Ru Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xi Wu Road, Xin Cheng District, Xi'an, 710004, Shaanxi Province, China
| | - Guilian Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xi Wu Road, Xin Cheng District, Xi'an, 710004, Shaanxi Province, China
| | - Ning Bu
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, Xi Wu Road, Xin Cheng District, Xi'an, 710004, Shaanxi Province, China
| |
Collapse
|
2
|
Howells T, Hånell A, Svedung Wettervik T, Enblad P. Vasomotion and Cerebral Blood Flow in Patients With Traumatic Brain Injury and Subarachnoid Hemorrhage: Cerebrovascular Autoregulation Versus Autonomic Control. J Neurotrauma 2025; 42:700-713. [PMID: 39723450 DOI: 10.1089/neu.2024.0426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
This study compared the roles of extraparenchymal autonomic nervous system (ANS) control of cerebral blood flow (CBF) versus intraparenchymal cerebrovascular autoregulation in 487 patients with aneurysmal subarachnoid hemorrhage (SAH) and 413 patients with traumatic brain injury (TBI). Vasomotion intensity of extraparenchymal and intraparenchymal vessels were quantified as the amplitude of oscillations of arterial blood pressure (ABP) and intracranial pressure (ICP) in the very low frequency range of 0.02-0.07 Hz, or periods of 55-15 sec, computed with a bandpass filter. A version of the pressure reactivity index (PRx-55-15) was computed as the correlation of the filtered waveforms, ABP-55-15 and ICP-55-15. Since ABP-55-15 is measured in the radial artery, any influence of cerebral factors must be mediated by the ANS. ICP-55-15 is measured in the brain and is influenced by intraparenchymal chemical and metabolic factors in addition to the ANS. Patient outcome was assessed using the Extended Glasgow Outcome Score (GOSe). Ten-day mean cerebral perfusion pressure (CPP) was negatively correlated with GOSe in the TBI cohort (R = -0.13, p = 0.01) but positively correlated with GOSe in the SAH cohort, (R = 0.32, p < 0.00001), indicating a much greater dependence on ANS support in the form of elevated CPP in SAH. The optimal CPP range for TBI was 60-70 mmHg, but for SAH it was 110-120 mmHg. The percentage of monitoring time with PRx-55-15 < 0.8, indicating very pressure-active cerebral vessels that resist ANS influence via systemic ABP, is positively correlated with GOSe in the TBI cohort (R = 0.14, p = 0.003), but negatively correlated with GOSe in the SAH cohort (R = -0.10, p = 0.004). The TBI cohort optimal PRx-55-15 for patient outcome was -1.0, while the SAH optimum was 0.3. For the TBI cohort, the correlation of ABP-55-15 amplitude with 10-day mean ICP-55-15 amplitude was 0.29. For the SAH cohort the correlation was 0.51, which is stronger (p = 0.0001). The TBI cohort had a median GOSe of 5 (interquartile range [IQR] 3-7), while SAH had a median of 3 (IQR 3-5), which is worse (p < 0.00001). The higher optimal CPP in patients with SAH, more passive optimal pressure reactivity, and greater dependence of cerebral on systemic vasomotion indicate that they require more active support by the ANS and systemic circulation for CBF than patients with TBI. CBF in patients with TBI is more reliant on cerebrovascular autoregulation based on metabolic demand. This appears to be deficient following SAH, making the heightened ANS support necessary. Although this support is beneficial, it does not fully compensate for the loss of cerebrovascular autoregulation, as reflected in the problems in the SAH cohort with delayed cerebral ischemia and poor outcome.
Collapse
Affiliation(s)
- Timothy Howells
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Anders Hånell
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | | | - Per Enblad
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Schenck H, van Craenenbroeck C, van Kuijk S, Gommer E, Veldeman M, Temel Y, Aries M, Mess W, Haeren R. Systematic review and meta-analysis of transcranial doppler biomarkers for the prediction of delayed cerebral ischemia following subarachnoid hemorrhage. J Cereb Blood Flow Metab 2025:271678X251313746. [PMID: 40110695 PMCID: PMC11926817 DOI: 10.1177/0271678x251313746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Delayed cerebral ischemia (DCI) following an aneurysmal subarachnoid hemorrhage (aSAH) significantly impacts mortality, morbidity, and healthcare costs. This study assessed the diagnostic accuracy of Transcranial Doppler (TCD)-derived biomarkers for predicting DCI via a systematic review and meta-analysis. Included studies had to correctly define DCI and report data on sensitivity, specificity, positive predictive value, and negative predictive value. Univariate or bivariate analyses with a random effects model were used, and risk of bias was evaluated with the Quality Assessment of Diagnostic Accuracy Studies. From 23 eligible articles (n = 2371 patients), three biomarker categories were identified: cerebral blood flow velocities (CBFV), cerebral autoregulation, and microembolic signals (MES). The highest sensitivity (0.86, 95% CI 0.71-0.94) and specificity (0.75, 95% CI 0.52-0.94) for DCI prediction were achieved with a mean CBFV of 120 cm/s combined with a Lindegaard ratio. The transient hyperemic response test showed the best performance among autoregulatory biomarkers with a sensitivity of 0.88, (95% CI 0.54-0.98) and specificity of 0.82 (95% CI 0.52-0.94). MES were less effective predictors. Combining CBFV with autoregulatory biomarkers enhanced TCD's predictive value. High heterogeneity and risk of bias were noted, indicating the need for a standardized TCD approach for improved DCI evaluation.
Collapse
Affiliation(s)
- Hanna Schenck
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
- Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands
| | - Céline van Craenenbroeck
- Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Sander van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Erik Gommer
- Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Michael Veldeman
- Department of Neurosurgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
- Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands
| | - Marcel Aries
- Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands
- Department of Intensive Care, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Werner Mess
- Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Roel Haeren
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
- Mental Health and Neuroscience Institute (MHeNs), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
4
|
Aoki K, Kawakita F, Hakozaki K, Kanamaru H, Asada R, Suzuki H, Group PSEED. Increased Plasma Levels of Thrombin-Cleaved Osteopontin in Patients with Delayed Cerebral Infarction After Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2025; 26:2781. [PMID: 40141423 PMCID: PMC11943441 DOI: 10.3390/ijms26062781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Osteopontin (OPN), a matricellular protein, is produced as a full-length OPN (FL-OPN) and cleaved by thrombin, thus generating the N-terminal half of OPN (OPN N-half) with new functions. Although plasma FL-OPN levels have been associated with neurovascular events after aneurysmal subarachnoid hemorrhage (SAH), plasma OPN N-half levels have never been investigated. In this study, prospective clinical data and plasma samples were collected from 108 consecutive SAH patients with ruptured aneurysms undergoing acute treatment via surgery, and FL-OPN and OPN N-half levels were measured in plasma with a particular focus on delayed cerebral infarction (DCIn), which has the greatest impact on outcomes. Plasma FL-OPN and OPN N-half levels were intercorrelated and significantly higher in patients with DCIn at days 10-12 post-SAH; a greater area under the receiver-operating characteristic curve was observed for OPN N-half levels, with a cut-off value of 70.42 pmol/L. Multivariate analyses revealed that plasma OPN N-half levels of ≥70.42 pmol/L at days 10-12 were independently associated with DCIn development (adjusted odds ratio, 5.65; 95% confidence interval, 1.68-18.97; p = 0.005). Based on the findings of this study and previous reports, an increase in the OPN N-half level may be indicative of a protective mechanism against DCIn development, and, thus, it holds promise as a new therapeutic target against DCIn after aneurysmal SAH.
Collapse
Affiliation(s)
| | | | | | | | | | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Mie, Japan; (K.A.); (F.K.); (K.H.); (H.K.); (R.A.)
| | | |
Collapse
|
5
|
Yang H, Xiang Y, Wang J, Ke Z, Zhou W, Yin X, Zhang M, Chen Z. Modulating the blood-brain barrier in CNS disorders: A review of the therapeutic implications of secreted protein acidic and rich in cysteine (SPARC). Int J Biol Macromol 2025; 288:138747. [PMID: 39674451 DOI: 10.1016/j.ijbiomac.2024.138747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Secreted protein acidic and rich in cysteine (SPARC), an essential stromal cell protein, plays a crucial role in angiogenesis and maintaining endothelial barrier function. This protein is expressed by diverse cell types, including endothelial cells, fibroblasts, and macrophages, with increased expression found in regions of tissues undergoing active remodeling, repair, and proliferation. The role of SPARC in non-neural tissues is of significant interest. In the central nervous system (CNS), SPARC is highly expressed in blood vessels during early development. It becomes down-regulated as the brain matures, a pattern consistent with its role in angiogenesis and blood-brain barrier (BBB) establishment. In this review, we explore the multifaceted roles of SPARC in regulating CNS disorders, particularly its action in angiogenesis, inflammatory responses, neural system development and repair, barrier establishment, maintenance of BBB function, and the pathogenesis of CNS disorders triggered by BBB dysfunction.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Yuanyuan Xiang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Jiaxuan Wang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Zunliang Ke
- Department of Neurosurgery, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Weixin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Xiaoping Yin
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Manqing Zhang
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Zhiying Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China.
| |
Collapse
|
6
|
Yang BSK, Blackburn SL, Lorenzi PL, Choi HA, Gusdon AM. Metabolomic and lipidomic pathways in aneurysmal subarachnoid hemorrhage. Neurotherapeutics 2025; 22:e00504. [PMID: 39701893 PMCID: PMC11840353 DOI: 10.1016/j.neurot.2024.e00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) results in a complex systemic response that is critical to the pathophysiology of late complications and has important effects on outcomes. Omics techniques have expanded our investigational scope and depth into this phenomenon. In particular, metabolomics-the study of small molecules, such as blood products, carbohydrates, amino acids, and lipids-can provide a snapshot of dynamic subcellular processes and thus broaden our understanding of molecular-level pathologic changes that lead to the systemic response after aSAH. Lipids are especially important due to their abundance in the circulating blood and numerous physiological roles. They are comprised of a wide variety of subspecies and are critical for cellular energy metabolism, the integrity of the blood-brain barrier, the formation of cell membranes, and intercellular signaling including neuroinflammation and ferroptosis. In this review, metabolomic and lipidomic pathways associated with aSAH are summarized, centering on key metabolites from each metabolomic domain.
Collapse
Affiliation(s)
- Bosco Seong Kyu Yang
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, and Memorial Hermann Hospital at the Texas Medical Center, United States
| | - Spiros L Blackburn
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, and Memorial Hermann Hospital at the Texas Medical Center, United States
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center (MDACC), United States
| | - Huimahn A Choi
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, and Memorial Hermann Hospital at the Texas Medical Center, United States
| | - Aaron M Gusdon
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, and Memorial Hermann Hospital at the Texas Medical Center, United States.
| |
Collapse
|
7
|
Liu JC, Lei SY, Zhang DH, He QY, Sun YY, Zhu HJ, Qu Y, Zhou SY, Yang Y, Li C, Guo ZN. The pleiotropic effects of statins: a comprehensive exploration of neurovascular unit modulation and blood-brain barrier protection. Mol Med 2024; 30:256. [PMID: 39707228 DOI: 10.1186/s10020-024-01025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
The blood-brain barrier (BBB) is the most central component of the neurovascular unit (NVU) and is crucial for the maintenance of the internal environment of the central nervous system and the regulation of homeostasis. A multitude of neuroprotective agents have been developed to exert neuroprotective effects and improve the prognosis of patients with ischemic stroke. These agents have been designed to maintain integrity and promote BBB repair. Statins are widely used as pharmacological agents for the treatment and prevention of ischemic stroke, making them a cornerstone in the pharmacological armamentarium for this condition. The primary mechanism of action is the reduction of serum cholesterol through the inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which results in a decrease in low-density lipoprotein cholesterol (LDL-C) and an increase in cholesterol clearance. Nevertheless, basic and clinical research has indicated that statins may exert additional pleiotropic effects beyond LDL-C reduction. Previous studies on ischemic stroke have demonstrated that statins can enhance neurological function, reduce inflammation, and promote angiogenic and synaptic processes following ischemic stroke. The BBB has been increasingly recognized for its role in the development and progression of ischemic stroke. Statins have also been found to play a potential BBB protective role by affecting members of the NVU. This review aimed to provide a comprehensive theoretical basis for the clinical application of statins by systematically detailing how statins influence the BBB, particularly focusing on the regulation of the function of each member of the NVU.
Collapse
Affiliation(s)
- Jia-Cheng Liu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Shuang-Yin Lei
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Dian-Hui Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Ying-Ying Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Hong-Jing Zhu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Sheng-Yu Zhou
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Xinmin Street 1#, Changchun, 130021, China
| | - Chao Li
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Xinmin Street 1#, Changchun, 130021, China.
- Neuroscience Research Center, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
| |
Collapse
|
8
|
Wang Y, Liu A, Hui F, Han N, Zhang W, Sang Y. Correlation between peripheral blood inflammatory markers and delayed cerebral ischemia after intracerebral hemorrhage. Am J Transl Res 2024; 16:7749-7756. [PMID: 39822513 PMCID: PMC11733345 DOI: 10.62347/zxpv4184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/31/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVE To assess the predictive value of peripheral blood inflammatory markers for delayed cerebral ischemia (DCI) in patients with intracerebral hemorrhage (ICH) and explore methods for early intervention. METHODS This single-center retrospective study reviewed medical records of ICH patients admitted to Cangzhou People's Hospital over a 12-month period from January 2022 to December 2023. Of the 150 identified patients with ICH, including 80 patients without DCI (control group) and 70 with DCI (observation group). Demographics and blood biochemical markers during hospitalization were recorded. Binary logistic regression was used to identify independent factors influencing DCI occurrence. RESULTS Significant differences were observed between the two groups in neutrophil percentage, lymphocyte percentage, lymphocytes absolute and neutrophil-to-lymphocyte ratio (NLR) (all P<0.05). Logistic regression analysis identified mRS score, lymphocyte percentage, educational level, uric acid, neutrophils percentage, and NLR as independent risk factors for DCI. CONCLUSION Neutrophil percentage and NLR are independent factors influencing delayed cerebral ischemia after intracerebral hemorrhage. These markers are readily accessible and may provide valuable insights for early ICH management.
Collapse
Affiliation(s)
- Yuhua Wang
- Department of Neurosurgery, Cangzhou People’s HospitalCangzhou 061000, Hebei, China
| | - Aijun Liu
- Department of Neurosurgery, Cangzhou People’s HospitalCangzhou 061000, Hebei, China
| | - Fengju Hui
- Department of Neurosurgery, Cangzhou People’s HospitalCangzhou 061000, Hebei, China
| | - Ning Han
- Department of Neurosurgery, Cangzhou People’s HospitalCangzhou 061000, Hebei, China
| | - Wei Zhang
- Department of Neurosurgery, Cangzhou People’s HospitalCangzhou 061000, Hebei, China
| | - Yinzhou Sang
- Department of Pathology, Cangzhou People’s HospitalCangzhou 061000, Hebei, China
| |
Collapse
|
9
|
Kawakita F, Nakajima H, Suzuki Y, Nampei M, Oinaka H, Suzuki H. Effects of Haptoglobin on Early Brain Injury, Vasospasm, and Lymphatic Drainage After Subarachnoid Hemorrhage in Mice. Stroke 2024; 55:2885-2895. [PMID: 39474674 PMCID: PMC11593995 DOI: 10.1161/strokeaha.124.048048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Erythrolysis releases free Hb (hemoglobin), which is one of the most upstream and important molecules causing early brain injury and cerebral vasospasm after subarachnoid hemorrhage (SAH). The purpose of this study was to investigate if a Hb scavenger protein Hp (haptoglobin) supplementation prevents early brain injury and cerebral vasospasm and influences the lymphatic drainage mechanism in an established SAH model of mice by a blood injection into the prechiasmatic cistern. METHODS This study consisted of 4 parts, with a total of 317 C57BL/6 male mice undergoing sham or SAH modeling, randomly followed by 24-hour intracerebroventricular infusion of no vehicle, 30.1 mg/mL BSA, 30.1 mg/mL Hp (100%; a mixture of Hp1-1, Hp2-1, and Hp2-2), 50% Hp, 25% Hp, and 12.5% Hp solutions from 30 minutes postmodeling. The effects were evaluated at 24 and 48 hours postmodeling. RESULTS The 100%Hp decreased mortality and brain edema until 48 hours post-SAH and suppressed post-SAH neurological impairments, Hb infiltrations into the perivascular spaces and brain tissues, fibrinogen-positive microthrombi formation, microglial activation, and caspase-dependent neuronal apoptosis, as well as large-vessel vasospasm on India-ink angiography at 24 hours compared with vehicle-treated SAH mice. The Hp solutions up to 50% concentrations also prevented post-SAH neurological impairments, and those up to 25% concentrations suppressed post-SAH neuronal apoptosis and vasospasm development until 48 hours. Immunohistochemical staining of deep cervical and mandibular lymph nodes demonstrated that Hb was increased in the lymphatic sinus after SAH and was further increased by Hp administration in SAH animals. CONCLUSIONS This study first showed that an Hp concentrate prevented early brain injury and cerebral vasospasm by inhibiting Hb penetration into brain tissues and increasing lymphatic drainage of free Hb in an established SAH model of mice.
Collapse
Affiliation(s)
- Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hideki Nakajima
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yume Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Mai Nampei
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroki Oinaka
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
10
|
Nakajima H, Kawakita F, Okada T, Oinaka H, Suzuki Y, Nampei M, Kitano Y, Nishikawa H, Fujimoto M, Miura Y, Yasuda R, Toma N, Suzuki H. Treatment factors to suppress delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage based on VASOGRADE: multicenter cohort study. Neurosurg Rev 2024; 47:564. [PMID: 39242404 DOI: 10.1007/s10143-024-02795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 08/23/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Delayed cerebral ischemia (DCI) is one of the most important outcome determinants for aneurysmal subarachnoid hemorrhage (aSAH). VASOGRADE, which combines World Federation of Neurological Surgeons grade and modified Fisher grade, is a useful scale for predicting DCI after aSAH. However, no studies have investigated whether VASOGRADE influences the treatment options. We retrospectively analyzed 781 aSAH patients who were prospectively enrolled in 9 primary stroke centers from 2013 to 2021. The total cohort consisted of 76 patients (9.7%) with VASOGRADE-Green, 390 patients (49.9%) with VASOGRADE-Yellow, and 315 patients (40.3%) with VASOGRADE-Red. Worse VASOGRADE had higher incidences of DCI, which occurred in 190 patients (24.3%). As only 5 patients (6.6%) with VASOGRADE-Green developed DCI, we searched for DCI-associated factors in patients with VASOGRADEs-Yellow and -Red. Multivariate analyses revealed independent treatment factors suppressing DCI as follows: no postoperative hemorrhagic complication, combined administration of fasudil hydrochloride and cilostazol, combination of clipping and cisternal drainage, and coiling for VASOGRADE-Yellow; and clipping, and administration of fasudil hydrochloride with or without cilostazol for VASOGRADE-Red. The findings suggest that treatment strategies should be determined based on VASOGRADE to prevent DCI after aSAH.
Collapse
Affiliation(s)
- Hideki Nakajima
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Takeshi Okada
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hiroki Oinaka
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yume Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Mai Nampei
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yotaro Kitano
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hirofumi Nishikawa
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masashi Fujimoto
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoichi Miura
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ryuta Yasuda
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Naoki Toma
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
11
|
Maida CD, Norrito RL, Rizzica S, Mazzola M, Scarantino ER, Tuttolomondo A. Molecular Pathogenesis of Ischemic and Hemorrhagic Strokes: Background and Therapeutic Approaches. Int J Mol Sci 2024; 25:6297. [PMID: 38928006 PMCID: PMC11203482 DOI: 10.3390/ijms25126297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke represents one of the neurological diseases most responsible for death and permanent disability in the world. Different factors, such as thrombus, emboli and atherosclerosis, take part in the intricate pathophysiology of stroke. Comprehending the molecular processes involved in this mechanism is crucial to developing new, specific and efficient treatments. Some common mechanisms are excitotoxicity and calcium overload, oxidative stress and neuroinflammation. Furthermore, non-coding RNAs (ncRNAs) are critical in pathophysiology and recovery after cerebral ischemia. ncRNAs, particularly microRNAs, and long non-coding RNAs (lncRNAs) are essential for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. This review summarizes the intricate molecular mechanisms underlying ischemic and hemorrhagic stroke and delves into the function of miRNAs in the development of brain damage. Furthermore, we will analyze new perspectives on treatment based on molecular mechanisms in addition to traditional stroke therapies.
Collapse
Affiliation(s)
- Carlo Domenico Maida
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
- Molecular and Clinical Medicine Ph.D. Programme, University of Palermo, 90133 Palermo, Italy
| | - Rosario Luca Norrito
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Salvatore Rizzica
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
| | - Marco Mazzola
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Elisa Rita Scarantino
- Division of Geriatric and Intensive Care Medicine, Azienda Ospedaliera Universitaria Careggi, University of Florence, 50134 Florence, Italy;
| | - Antonino Tuttolomondo
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| |
Collapse
|
12
|
Luo Y, Zhao J. The dynamic changes of peripheral blood cell counts predict the clinical outcomes of aneurysmal subarachnoid hemorrhage. Heliyon 2024; 10:e29763. [PMID: 38681624 PMCID: PMC11053216 DOI: 10.1016/j.heliyon.2024.e29763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
Background Aneurysmal subarachnoid hemorrhage (aSAH) is a serious type of hemorrhagic stroke. It is very important to predict the prognosis at early phase. In this work, we intend to characterize early changes in peripheral blood cells after aSAH and explore the association between peripheral blood cells and clinical outcomes after aSAH. Methods aSAH patients admitted between December 2019 and September 2022 were enrolled. A retrospective observational study was performed. Total leukocytes, monocytes, neutrophils, erythrocytes, lymphocytes and platelets counts were recorded on the day of admission (day 1), day 3, day 5 and day 7. Statistical tests included Chi-square test, analysis of variance and multivariate logistic regression (MLR) models. 197 patients were analyzed. Results Leukocytes and neutrophils were higher in poor outcome groups from day 1 to day 7 and in delayed cerebral ischemia (DCI) groups from day 3 to day 7. Lymphocytes were higher at day 5 and day 7 in good outcome groups and no DCI groups. Neutrophil-to-lymphocyte ratio (NLR) was lower from day 3 to day 7 in good outcome groups and no DCI groups. Erythrocytes were higher from day 3 to day 7 in good outcome groups and no DCI groups. Lymphocytes were negatively related to poor outcomes on day 1 (OR = 0.457), indicating higher lymphocytes predicted good outcomes, Neutrophils were positively related to poor outcomes on day 3 (OR = 3.003) indicating higher neutrophils predicted poor outcomes. Lymphocytes were negatively related to DCI on day 5 (OR = 0.388) indicating higher lymphocytes predicted no DCI, Erythrocytes were negatively related to DCI on day 5 (OR = 0.335) and day 7 (OR = 0.204) indicating higher erythrocytes predicted no DCI. The improved ability of neutrophils, lymphocytes and erythrocytes to predict DCI or poor functional outcomes were revealed by ROC curve analysis. Conclusions The dynamic changes of peripheral blood cell counts were related to poor functional outcomes and DCI after aSAH. Elevated neutrophils, leukocytes, NLR, and decreased lymphocytes, erythrocytes were accompanied by DCI and poor outcome. Neutrophils, lymphocytes and erythrocytes counts could be beneficial to predict DCI and outcomes after aSAH.
Collapse
Affiliation(s)
- Yi Luo
- Department of Neurology, The First People's Hospital of Jing Zhou, The First Affiliated Hospital of Yangtze University, Jing zhou, 434000, China
- Department of Stroke Center, The First People's Hospital of Jing Zhou, The First Affiliated Hospital of Yangtze University, Jing zhou, 434000, China
| | - Jian Zhao
- Department of Neurosurgery, The First People's Hospital of Jing Zhou, The First Affiliated Hospital of Yangtze University, Jing zhou, 434000, China
- Department of Stroke Center, The First People's Hospital of Jing Zhou, The First Affiliated Hospital of Yangtze University, Jing zhou, 434000, China
| |
Collapse
|
13
|
Kawakita F, Nakano F, Kanamaru H, Asada R, Suzuki H. Anti-Apoptotic Effects of AMPA Receptor Antagonist Perampanel in Early Brain Injury After Subarachnoid Hemorrhage in Mice. Transl Stroke Res 2024; 15:462-475. [PMID: 36757633 DOI: 10.1007/s12975-023-01138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/12/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
This study was aimed to investigate if acute neuronal apoptosis is induced by activation of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate) receptors (AMPARs) and inhibited by a clinically available selective AMPAR antagonist and antiepileptic drug perampanel (PER) in subarachnoid hemorrhage (SAH), and if the mechanisms include upregulation of an inflammation-related matricellular protein periostin. Sham-operated and endovascular perforation SAH mice randomly received an administration of 3 mg/kg PER or the vehicle intraperitoneally. Post-SAH neurological impairments and increased caspase-dependent neuronal apoptosis were associated with activation of AMPAR subunits GluA1 and GluA2, and upregulation of periostin and proinflammatory cytokines interleukins-1β and -6, all of which were suppressed by PER. PER also inhibited post-SAH convulsion-unrelated increases in the total spectral power on video electroencephalogram (EEG) monitoring. Intracerebroventricularly injected recombinant periostin blocked PER's anti-apoptotic effects on neurons. An intracerebroventricular injection of a selective agonist for GluA1 and GluA2 aggravated neurological impairment, neuronal apoptosis as well as periostin upregulation, but did not increase the EEG total spectral power after SAH. A higher dosage (10 mg/kg) of PER had even more anti-apoptotic effects compared with 3 mg/kg PER. Thus, this study first showed that AMPAR activation causes post-SAH neuronal apoptosis at least partly via periostin upregulation. A clinically available AMPAR antagonist PER appears to be neuroprotective against post-SAH early brain injury through the anti-inflammatory and anti-apoptotic effects, independent of the antiepileptic action, and deserves further study.
Collapse
Affiliation(s)
- Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Mie , 514-8507, Tsu, Japan
| | - Fumi Nakano
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Mie , 514-8507, Tsu, Japan
| | - Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Mie , 514-8507, Tsu, Japan
| | - Reona Asada
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Mie , 514-8507, Tsu, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Mie , 514-8507, Tsu, Japan.
| |
Collapse
|
14
|
Ivraghi MS, Zamanian MY, Gupta R, Achmad H, Alsaab HO, Hjazi A, Romero‐Parra RM, Alwaily ER, Hussien BM, Hakimizadeh E. Neuroprotective effects of gemfibrozil in neurological disorders: Focus on inflammation and molecular mechanisms. CNS Neurosci Ther 2024; 30:e14473. [PMID: 37904726 PMCID: PMC10916451 DOI: 10.1111/cns.14473] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Gemfibrozil (Gem) is a drug that has been shown to activate PPAR-α, a nuclear receptor that plays a key role in regulating lipid metabolism. Gem is used to lower the levels of triglycerides and reduce the risk of coronary heart disease in patients. Experimental studies in vitro and in vivo have shown that Gem can prevent or slow the progression of neurological disorders (NDs), including cerebral ischemia (CI), Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Neuroinflammation is known to play a significant role in these disorders. METHOD The literature review for this study was conducted by searching Scopus, Science Direct, PubMed, and Google Scholar databases. RESULT The results of this study show that Gem has neuroprotective effects through several cellular and molecular mechanisms such as: (1) Gem has the ability to upregulate pro-survival factors (PGC-1α and TFAM), promoting the survival and function of mitochondria in the brain, (2) Gem strongly inhibits the activation of NF-κB, AP-1, and C/EBPβ in cytokine-stimulated astroglial cells, which are known to increase the expression of iNOS and the production of NO in response to proinflammatory cytokines, (3) Gem protects dopamine neurons in the MPTP mouse model of PD by increasing the expression of PPARα, which in turn stimulates the production of GDNF in astrocytes, (4) Gem reduces amyloid plaque pathology, reduces the activity of glial cells, and improves memory, (5) Gem increases myelin genes expression (MBP and CNPase) via PPAR-β, and (6) Gem increases hippocampal BDNF to counteract depression. CONCLUSION According to the study, Gem was investigated for its potential therapeutic effect in NDs. Further research is needed to fully understand the therapeutic potential of Gem in NDs.
Collapse
Affiliation(s)
| | - Mohammad Yasin Zamanian
- Neurophysiology Research CenterHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | - Reena Gupta
- Institute of Pharmaceutical Research, GLA UniversityMathuraIndia
| | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of DentistryHasanuddin UniversityMakassarIndonesia
| | - Hashem O. Alsaab
- Pharmaceutics and Pharmaceutical TechnologyTaif UniversityTaifSaudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory SciencesCollege of Applied Medical Sciences, Prince Sattam bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | | | - Enas R. Alwaily
- Microbiology Research GroupCollege of Pharmacy, Al‐Ayen UniversityThi‐QarIraq
| | - Beneen M. Hussien
- Medical Laboratory Technology DepartmentCollege of Medical Technology, The Islamic UniversityNajafIraq
| | - Elham Hakimizadeh
- Physiology‐Pharmacology Research CenterResearch Institute of Basic Medical Sciences, Rafsanjan University of Medical SciencesRafsanjanIran
| |
Collapse
|
15
|
Kazmi S, Salehi-Pourmehr H, Sadigh-Eteghad S, Farhoudi M. The efficacy and safety of interleukin-1 receptor antagonist in stroke patients: A systematic review. J Clin Neurosci 2024; 120:120-128. [PMID: 38237490 DOI: 10.1016/j.jocn.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/29/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Stroke is the leading cause of disability worldwide, yet there is currently no effective treatment available to mitigate its negative consequences. Pro-inflammatory cytokines, such as interleukin-1 (IL-1), are known to play a crucial role in exacerbating the aftermath of stroke. Thus, it is hypothesized that blocking inflammation and administering anti-inflammatory drugs at an optimal time and dosage may improve the long-term quality of life for stroke patients. This systematic review examines the effectiveness and safety of IL-1 receptor antagonist (IL-1Ra), commercially known as "anakinra," in clinical studies involving the treatment of stroke patients. A comprehensive literature search was conducted until October 2023 to identify relevant studies. The search yielded 1403 articles, out of which 598 were removed due to duplication. After a thorough review of 805 titles and abstracts, 797 articles were further excluded, resulting in 8 studies being included in this systematic review. The findings from all the included studies demonstrate that IL-1Ra is safe for use in acute ischemic and hemorrhagic stroke patients, with no significant adverse events reported. Additionally, biomarkers, clinical assessments, serious adverse events (AEs), and non-serious AEs consistently showed more favorable outcomes in IL-1Ra receiving patients. Stroke elevates the levels of several inflammatory cytokines, however, administration of IL-1RA directly or indirectly modulates these markers and improves some clinical outcomes, suggesting a potential therapeutic benefit of this intervention.
Collapse
Affiliation(s)
- Sareh Kazmi
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center (NSRC), Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-Base Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Kaiser S, Henrich L, Kiessling I, Loy B, Schallner N. Neuroprotection via Carbon Monoxide Depends on the Circadian Regulation of CD36-Mediated Microglial Erythrophagocytosis in Hemorrhagic Stroke. Int J Mol Sci 2024; 25:1680. [PMID: 38338958 PMCID: PMC10855856 DOI: 10.3390/ijms25031680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The molecular basis for circadian dependency in stroke due to subarachnoid hemorrhagic stroke (SAH) remains unclear. We reasoned that microglial erythrophagocytosis, crucial for SAH response, follows a circadian pattern involving carbon monoxide (CO) and CD36 surface expression. The microglial BV-2 cell line and primary microglia (PMG) under a clocked medium change were exposed to blood ± CO (250 ppm, 1 h) in vitro. Circadian dependency and the involvement of CD36 were analyzed in PMG isolated from control mice and CD36-/- mice and by RNA interference targeting Per-2. In vivo investigations, including phagocytosis, vasospasm, microglia activation and spatial memory, were conducted in an SAH model using control and CD36-/- mice at different zeitgeber times (ZT). In vitro, the surface expression of CD36 and its dependency on CO and phagocytosis occurred with changed circadian gene expression. CD36-/- PMG exhibited altered circadian gene expression, phagocytosis and impaired responsiveness to CO. In vivo, control mice with SAH demonstrated circadian dependency in microglia activation, erythrophagocytosis and CO-mediated protection at ZT2, in contrast to CD36-/- mice. Our study indicates that circadian rhythmicity modulates microglial activation and subsequent CD36-dependent phagocytosis. CO altered circadian-dependent neuroprotection and CD36 induction, determining the functional outcome in a hemorrhagic stroke model. This study emphasizes how circadian rhythmicity influences neuronal damage after neurovascular events.
Collapse
Affiliation(s)
- Sandra Kaiser
- Department of Anesthesiology & Critical Care Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany (N.S.)
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Luise Henrich
- Department of Anesthesiology & Critical Care Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany (N.S.)
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Iva Kiessling
- Department of Anesthesiology & Critical Care Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany (N.S.)
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Benedikt Loy
- Department of Anesthesiology & Critical Care Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany (N.S.)
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Nils Schallner
- Department of Anesthesiology & Critical Care Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany (N.S.)
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
17
|
Nampei M, Suzuki Y, Nakajima H, Oinaka H, Kawakita F, Suzuki H. Acute-Phase Plasma Pigment Epithelium-Derived Factor Predicting Outcomes after Aneurysmal Subarachnoid Hemorrhage in the Elderly. Int J Mol Sci 2024; 25:1701. [PMID: 38338974 PMCID: PMC10855834 DOI: 10.3390/ijms25031701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) has increased with the aging of the population, but the outcome for elderly SAH patients is very poor. Therefore, predicting the outcome is important for determining whether to pursue aggressive treatment. Pigment epithelium-derived factor (PEDF) is a matricellular protein that is induced in the brain, and the plasma levels could be used as a biomarker for the severity of metabolic diseases. This study investigated whether acute-phase plasma PEDF levels could predict outcomes after aneurysmal SAH in the elderly. Plasma samples and clinical variables were collected over 1-3 days, post-SAH, from 56 consecutive elderly SAH patients ≥75 years of age registered in nine regional stroke centers in Japan between September 2013 and December 2016. The samples and variables were analyzed in terms of 3-month outcomes. Acute-phase plasma PEDF levels were significantly elevated in patients with ultimately poor outcomes, and the cutoff value of 12.6 µg/mL differentiated 3-month outcomes with high sensitivity (75.6%) and specificity (80.0%). Acute-phase plasma PEDF levels of ≥12.6 µg/mL were an independent and possibly better predictor of poor outcome than previously reported clinical variables. Acute-phase plasma PEDF levels may serve as the first biomarker to predict 3-month outcomes and to select elderly SAH patients who should be actively treated.
Collapse
Affiliation(s)
| | | | | | | | | | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (M.N.); (Y.S.); (H.N.); (H.O.); (F.K.)
| | | |
Collapse
|
18
|
Suzuki H, Miura Y, Yasuda R, Yago T, Mizutani H, Ichikawa T, Miyazaki T, Kitano Y, Nishikawa H, Kawakita F, Fujimoto M, Toma N. Effects of New-Generation Antiepileptic Drug Prophylaxis on Delayed Neurovascular Events After Aneurysmal Subarachnoid Hemorrhage. Transl Stroke Res 2023; 14:899-909. [PMID: 36333650 DOI: 10.1007/s12975-022-01101-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Neuroelectric disruptions such as seizures and cortical spreading depolarization may contribute to the development of delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (SAH). However, effects of antiepileptic drug prophylaxis on outcomes remain controversial in SAH. The authors investigated if prophylactic administration of new-generation antiepileptic drugs levetiracetam and perampanel was beneficial against delayed neurovascular events after SAH. This was a retrospective single-center cohort study of 121 consecutive SAH patients including 56 patients of admission World Federation of Neurological Surgeons grades IV - V who underwent aneurysmal obliteration within 72 h post-SAH from 2013 to 2021. Prophylactic antiepileptic drugs differed depending on the study terms: none (2013 - 2015), levetiracetam for patients at high risks of seizures (2016 - 2019), and perampanel for all patients (2020 - 2021). The 3rd term had the lowest occurrence of delayed cerebral microinfarction on diffusion-weighted magnetic resonance imaging, which was related to less development of DCI. Other outcome measures were similar among the 3 terms including incidences of angiographic vasospasm, computed tomography-detectable delayed cerebral infarction, seizures, and 3-month good outcomes (modified Rankin Scale 0 - 2). The present study suggests that prophylactic administration of levetiracetam and perampanel was not associated with worse outcomes and that perampanel may have the potential to reduce DCI by preventing microcirculatory disturbances after SAH. Further studies are warranted to investigate anti-DCI effects of a selective α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor antagonist perampanel in SAH patients in a large-scale prospective study.
Collapse
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Yoichi Miura
- Center for Vessels and Heart, Mie University Hospital, Tsu, Japan
| | - Ryuta Yasuda
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Tetsushi Yago
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hisashi Mizutani
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Tomonori Ichikawa
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Takahiro Miyazaki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yotaro Kitano
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hirofumi Nishikawa
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masashi Fujimoto
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Naoki Toma
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
19
|
Suzuki H. How to Promote Hemoglobin Scavenging or Clearance and Detoxification in Hemorrhagic Stroke. Transl Stroke Res 2023; 14:625-627. [PMID: 35943719 DOI: 10.1007/s12975-022-01075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
20
|
Sanicola HW, Stewart CE, Luther P, Yabut K, Guthikonda B, Jordan JD, Alexander JS. Pathophysiology, Management, and Therapeutics in Subarachnoid Hemorrhage and Delayed Cerebral Ischemia: An Overview. PATHOPHYSIOLOGY 2023; 30:420-442. [PMID: 37755398 PMCID: PMC10536590 DOI: 10.3390/pathophysiology30030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke resulting from the rupture of an arterial vessel within the brain. Unlike other stroke types, SAH affects both young adults (mid-40s) and the geriatric population. Patients with SAH often experience significant neurological deficits, leading to a substantial societal burden in terms of lost potential years of life. This review provides a comprehensive overview of SAH, examining its development across different stages (early, intermediate, and late) and highlighting the pathophysiological and pathohistological processes specific to each phase. The clinical management of SAH is also explored, focusing on tailored treatments and interventions to address the unique pathological changes that occur during each stage. Additionally, the paper reviews current treatment modalities and pharmacological interventions based on the evolving guidelines provided by the American Heart Association (AHA). Recent advances in our understanding of SAH will facilitate clinicians' improved management of SAH to reduce the incidence of delayed cerebral ischemia in patients.
Collapse
Affiliation(s)
- Henry W. Sanicola
- Department of Neurology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - Caleb E. Stewart
- Department of Neurosurgery, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - Patrick Luther
- School of Medicine, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA; (P.L.); (K.Y.)
| | - Kevin Yabut
- School of Medicine, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA; (P.L.); (K.Y.)
| | - Bharat Guthikonda
- Department of Neurosurgery, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - J. Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - J. Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
21
|
Mehra A, Gomez F, Bischof H, Diedrich D, Laudanski K. Cortical Spreading Depolarization and Delayed Cerebral Ischemia; Rethinking Secondary Neurological Injury in Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:9883. [PMID: 37373029 DOI: 10.3390/ijms24129883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Poor outcomes in Subarachnoid Hemorrhage (SAH) are in part due to a unique form of secondary neurological injury known as Delayed Cerebral Ischemia (DCI). DCI is characterized by new neurological insults that continue to occur beyond 72 h after the onset of the hemorrhage. Historically, it was thought to be a consequence of hypoperfusion in the setting of vasospasm. However, DCI was found to occur even in the absence of radiographic evidence of vasospasm. More recent evidence indicates that catastrophic ionic disruptions known as Cortical Spreading Depolarizations (CSD) may be the culprits of DCI. CSDs occur in otherwise healthy brain tissue even without demonstrable vasospasm. Furthermore, CSDs often trigger a complex interplay of neuroinflammation, microthrombi formation, and vasoconstriction. CSDs may therefore represent measurable and modifiable prognostic factors in the prevention and treatment of DCI. Although Ketamine and Nimodipine have shown promise in the treatment and prevention of CSDs in SAH, further research is needed to determine the therapeutic potential of these as well as other agents.
Collapse
Affiliation(s)
- Ashir Mehra
- Department of Neurology, University of Missouri, Columbia, MO 65212, USA
| | - Francisco Gomez
- Department of Neurology, University of Missouri, Columbia, MO 65212, USA
| | - Holly Bischof
- Penn Presbyterian Medical Center, Philadelphia, PA 19104, USA
| | - Daniel Diedrich
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN 55905, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
22
|
Tartara F, Montalbetti A, Crobeddu E, Armocida D, Tavazzi E, Cardia A, Cenzato M, Boeris D, Garbossa D, Cofano F. Compartmental Cerebrospinal Fluid Events Occurring after Subarachnoid Hemorrhage: An "Heparin Oriented" Systematic Review. Int J Mol Sci 2023; 24:7832. [PMID: 37175544 PMCID: PMC10178276 DOI: 10.3390/ijms24097832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) represents a severe acute event with high morbidity and mortality due to the development of early brain injury (EBI), secondary delayed cerebral ischemia (DCI), and shunt-related hydrocephalus. Secondary events (SSE) such as neuroinflammation, vasospasm, excitotoxicity, blood-brain barrier disruption, oxidative cascade, and neuronal apoptosis are related to DCI. Despite improvement in management strategies and therapeutic protocols, surviving patients frequently present neurological deficits with neurocognitive impairment. The aim of this paper is to offer to clinicians a practical review of the actually documented pathophysiological events following subarachnoid hemorrhage. To reach our goal we performed a literature review analyzing reported studies regarding the mediators involved in the pathophysiological events following SAH occurring in the cerebrospinal fluid (CSF) (hemoglobin degradation products, platelets, complement, cytokines, chemokines, leucocytes, endothelin-1, NO-synthase, osteopontin, matricellular proteins, blood-brain barrier disruption, microglia polarization). The cascade of pathophysiological events secondary to SAH is very complex and involves several interconnected, but also distinct pathways. The identification of single therapeutical targets or specific pharmacological agents may be a limited strategy able to block only selective pathophysiological paths, but not the global evolution of SAH-related events. We report furthermore on the role of heparin in SAH management and discuss the rationale for use of intrathecal heparin as a pleiotropic therapeutical agent. The combination of the anticoagulant effect and the ability to interfere with SSE theoretically make heparin a very interesting molecule for SAH management.
Collapse
Affiliation(s)
- Fulvio Tartara
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Montalbetti
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Emanuela Crobeddu
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Daniele Armocida
- A.U.O. Policlinico Umberto I, Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Eleonora Tavazzi
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Cardia
- Department of Neurosurgery, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Marco Cenzato
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Davide Boeris
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Diego Garbossa
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| | - Fabio Cofano
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| |
Collapse
|
23
|
Nakajima H, Kawakita F, Oinaka H, Suzuki Y, Nampei M, Kitano Y, Nishikawa H, Fujimoto M, Miura Y, Yasuda R, Toma N, Suzuki H. Plasma SPARC Elevation in Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. Neurotherapeutics 2023; 20:779-788. [PMID: 36781745 PMCID: PMC10275842 DOI: 10.1007/s13311-023-01351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Matricellular proteins have been implicated in pathologies after subarachnoid hemorrhage (SAH). To find a new therapeutic molecular target, the present study aimed to clarify the relationships between serially measured plasma levels of a matricellular protein, secreted protein acidic and rich in cysteine (SPARC), and delayed cerebral ischemia (DCI) in 117 consecutive aneurysmal SAH patients with admission World Federation of Neurological Surgeons (WFNS) grades I-III. DCI developed in 25 patients with higher incidences of past history of hypertension and dyslipidemia, preoperative WFNS grade III, modified Fisher grade 4, spinal drainage, and angiographic vasospasm. Plasma SPARC levels were increased after SAH, and significantly higher in patients with than without DCI at days 7-9, and in patients with VASOGRADE-Yellow compared with VASOGRADE-Green at days 1-3 and 7-9. However, there were no relationships between plasma SPARC levels and angiographic vasospasm. Receiver-operating characteristic curves differentiating DCI from no DCI determined the cut-off value of plasma SPARC ≥ 82.1 ng/ml at days 7 - 9 (sensitivity, 0.800; specificity, 0.533; and area under the curve, 0.708), which was found to be an independent determinant of DCI development in multivariate analyses. This is the first study to show that SPARC is upregulated in peripheral blood after SAH, and that SPARC may be involved in the development of DCI without angiographic vasospasm in a clinical setting.
Collapse
Affiliation(s)
- Hideki Nakajima
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroki Oinaka
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yume Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Mai Nampei
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yotaro Kitano
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hirofumi Nishikawa
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masashi Fujimoto
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoichi Miura
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Ryuta Yasuda
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Naoki Toma
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| |
Collapse
|
24
|
Svedung Wettervik T, Lewén A, Enblad P. Fine tuning of neurointensive care in aneurysmal subarachnoid hemorrhage: From one-size-fits-all towards individualized care. World Neurosurg X 2023; 18:100160. [PMID: 36818739 PMCID: PMC9932216 DOI: 10.1016/j.wnsx.2023.100160] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a severe type of acute brain injury with high mortality and burden of neurological sequelae. General management aims at early aneurysm occlusion to prevent re-bleeding, cerebrospinal fluid drainage in case of increased intracranial pressure and/or acute hydrocephalus, and cerebral blood flow augmentation in case of delayed ischemic neurological deficits. In addition, the brain is vulnerable to physiological insults in the acute phase and neurointensive care (NIC) is important to optimize the cerebral physiology to avoid secondary brain injury. NIC has led to significantly better neurological recovery following aSAH, but there is still great room for further improvements. First, current aSAH NIC management protocols are to some extent extrapolated from those in traumatic brain injury, notwithstanding important disease-specific differences. Second, the same NIC management protocols are applied to all aSAH patients, despite great patient heterogeneity. Third, the main variables of interest, intracranial pressure and cerebral perfusion pressure, may be too superficial to fully detect and treat several important pathomechanisms. Fourth, there is a lack of understanding not only regarding physiological, but also cellular and molecular pathomechanisms and there is a need to better monitor and treat these processes. This narrative review aims to discuss current state-of-the-art NIC of aSAH, knowledge gaps in the field, and future directions towards a more individualized care in the future.
Collapse
Affiliation(s)
- Teodor Svedung Wettervik
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Anders Lewén
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Per Enblad
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| |
Collapse
|
25
|
Kalinichenko SG, Pushchin II, Matveeva NY. Neurotoxic and cytoprotective mechanisms in the ischemic neocortex. J Chem Neuroanat 2023; 128:102230. [PMID: 36603664 DOI: 10.1016/j.jchemneu.2022.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Neuronal damage in ischemic stroke occurs due to permanent imbalance between the metabolic needs of the brain and the ability of the blood-vascular system to maintain glucose delivery and adequate gas exchange. Oxidative stress and excitotoxicity trigger complex processes of neuroinflammation, necrosis, and apoptosis of both neurons and glial cells. This review summarizes data on the structural and chemical changes in the neocortex and main cytoprotective effects induced by focal ischemic stroke. We focus on the expression of neurotrophins (NT) and molecular and cellular changes in neurovascular units in ischemic brain. We also discuss how these factors affect the apoptosis of cortical cells. Ischemic damage involves close interaction of a wide range of signaling molecules, each acting as an efficient marker of cell state in both the ischemic core and penumbra. NTs play the main regulatory role in brain tissue recovery after ischemic injury. Heterogeneous distribution of the BDNF, NT-3, and GDNF immunoreactivity is concordant with the selective response of different types of cortical neurons and glia to ischemic injury and allows mapping the position of viable neurons. Astrocytes are the central link in neurovascular coupling in ischemic brain by providing other cells with a wide range of vasotropic factors. The NT expression coincides with the distribution of reactive astrocytes, marking the boundaries of the penumbra. The development of ischemic stroke is accompanied by a dramatic change in the distribution of GDNF reactivity. In early ischemic period, it is mainly observed in cortical neurons, while in late one, the bulk of GDNF-positive cells are various types of glia, in particular, astrocytes. The proportion of GDNF-positive astrocytes increases gradually throughout the ischemic period. Some factors that exert cytoprotective effects in early ischemic period may display neurotoxic and pro-apoptotic effects later on. The number of apoptotic cells in the ischemic brain tissue correlates with the BDNF levels, corroborating its protective effects. Cytoprotection and neuroplasticity are two lines of brain protection and recovery after ischemic stroke. NTs can be considered an important link in these processes. To develop efficient pharmacological therapy for ischemic brain injury, we have to deepen our understanding of neurochemical adaptation of brain tissue to acute stroke.
Collapse
Affiliation(s)
- Sergei G Kalinichenko
- Department of Histology, Cytology, and Embryology, Pacific State Medical University, Vladivostok 690950, Russia
| | - Igor I Pushchin
- Laboratory of Physiology, A.V. Zhirmusky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia.
| | - Natalya Yu Matveeva
- Department of Histology, Cytology, and Embryology, Pacific State Medical University, Vladivostok 690950, Russia
| |
Collapse
|
26
|
Construction and Verification of a Risk Prediction Model for the Occurrence of Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage Requiring Mechanical Ventilation. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7656069. [PMID: 36845638 PMCID: PMC9957647 DOI: 10.1155/2023/7656069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023]
Abstract
Objectives Delayed cerebral ischemia (DCI) contributes to poor aneurysm prognosis. Subarachnoid hemorrhage and DCI have irreversible and severe consequences once they occur; therefore, early prediction and prevention are important. We investigated the risk factors for postoperative complications of DCI in patients with aneurysmal subarachnoid hemorrhage (aSAH) requiring mechanical ventilation in intensive care and validated a prediction model. Methods We retrospectively analyzed patients with aSAH who were treated in a French university hospital neuro-ICU between January 2010 and December 2015. The patients were randomized into a training group (144) and verification groups (60). Nomograms were validated in the training and verification groups, where receiver operating characteristic curve analysis was used to verify model discrimination; calibration curve and Hosmer-Lemeshow test were used to determine model calibration; and decision curve analysis (DCA) was used to verify clinical validity of the model. Results External ventricular drain (EVD), duration of mechanical ventilation, and treatment were significantly associated in the univariate analysis; EVD and rebleeding were significantly associated with the occurrence of DCI after aSAH. Binary logistic regression was used to select five clinicopathological characteristics to predict the occurrence of DCI in patients with aSAH requiring mechanical ventilation nomograms of the risk of DCI. Area under the curve values for the training and verification groups were 0.768 and 0.246, with Brier scores of 0.166 and 0.163, respectively. Hosmer-Lemeshow calibration test values for the training and verification groups were x 2 = 3.824 (P = 0.923) and x 2 = 10.868 (P = 0.285), respectively. Calibration curves showed good agreement. DCA indicated that the training and verification groups showed large positive returns in the broad risk range of 0-77% and 0-63%, respectively. Conclusions The predictive model of concurrent DCI in aSAH has theoretical and practical values and can provide individualized treatment options for patients with aSAH who require mechanical ventilation.
Collapse
|
27
|
Shehjar F, Maktabi B, Rahman ZA, Bahader GA, James AW, Naqvi A, Mahajan R, Shah ZA. Stroke: Molecular mechanisms and therapies: Update on recent developments. Neurochem Int 2023; 162:105458. [PMID: 36460240 PMCID: PMC9839659 DOI: 10.1016/j.neuint.2022.105458] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Stroke, a neurological disease, is one of the leading causes of death worldwide, resulting in long-term disability in most survivors. Annual stroke costs in the United States alone were estimated at $46 billion recently. Stroke pathophysiology is complex, involving multiple causal factors, among which atherosclerosis, thrombus, and embolus are prevalent. The molecular mechanisms involved in the pathophysiology are essential to understanding targeted drug development. Some common mechanisms are excitotoxicity and calcium overload, oxidative stress, and neuroinflammation. In addition, various modifiable and non-modifiable risk factors increase the chances of stroke manifolds. Once a patient encounters a stroke, complete restoration of motor ability and cognitive skills is often rare. Therefore, shaping therapeutic strategies is paramount for finding a viable therapeutic agent. Apart from tPA, an FDA-approved therapy that is applied in most stroke cases, many other therapeutic strategies have been met with limited success. Stroke therapies often involve a combination of multiple strategies to restore the patient's normal function. Certain drugs like Gamma-aminobutyric receptor agonists (GABA), Glutamate Receptor inhibitors, Sodium, and Calcium channel blockers, and fibrinogen-depleting agents have shown promise in stroke treatment. Recently, a drug, DM199, a recombinant (synthetic) form of a naturally occurring protein called human tissue kallikrein-1 (KLK1), has shown great potential in treating stroke with fewer side effects. Furthermore, DM199 has been found to overcome the limitations presented when using tPA and/or mechanical thrombectomy. Cell-based therapies like Neural Stem Cells, Hematopoietic stem cells (HSCs), and Human umbilical cord blood-derived mesenchymal stem cells (HUCB-MSCs) are also being explored as a treatment of choice for stroke. These therapeutic agents come with merits and demerits, but continuous research and efforts are being made to develop the best therapeutic strategies to minimize the damage post-stroke and restore complete neurological function in stroke patients.
Collapse
Affiliation(s)
- Faheem Shehjar
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Briana Maktabi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Zainab A Rahman
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Antonisamy William James
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Ahmed Naqvi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Reetika Mahajan
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA.
| |
Collapse
|
28
|
Hauet T, Pisani DF. New Strategies Protecting from Ischemia/Reperfusion. Int J Mol Sci 2022; 23:ijms232415867. [PMID: 36555508 PMCID: PMC9779635 DOI: 10.3390/ijms232415867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
This Special Issue aims to highlight new avenues in the management of Ischemia/Reperfusion (I/R) injury [...].
Collapse
Affiliation(s)
- Thierry Hauet
- INSERM U1313, IRMETIST, Université de Poitiers et CHU de Poitiers, 86021 Poitiers, France
| | | |
Collapse
|
29
|
Kawakita F, Kanamaru H, Asada R, Suzuki Y, Nampei M, Nakajima H, Oinaka H, Suzuki H. Roles of glutamate in brain injuries after subarachnoid hemorrhage. Histol Histopathol 2022; 37:1041-1051. [PMID: 36065974 DOI: 10.14670/hh-18-509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is a stroke type with a high rate of mortality and morbidity. Post-SAH brain injury as a determinant of poor outcome is classified into the following two types: early brain injury (EBI) and delayed cerebral ischemia (DCI). EBI consists of various acute brain pathophysiologies that occur within the first 72 hours of SAH in a clinical setting. The underlying mechanisms of DCI are considered to be cerebral vasospasm or microcirculatory disturbance, which develops mostly 4 to 14 days after clinical SAH. Glutamate is the principal neurotransmitter in the central nervous system, but excessive glutamate is known to induce neurotoxicity. Experimental and clinical studies have revealed that excessive glutamates are released after SAH. In addition, many studies have reported the relationships between excessive glutamate release or overactivation of glutamate receptors and excitotoxicity, cortical spreading depolarization, seizure, increased blood-brain barrier permeability, neuroinflammation, microthrombosis formation, microvasospasm, cerebral vasospasm, impairments of brain metabolic supply and demand, impaired neurovascular coupling, and so on, all of which potentially contribute to the development of EBI or DCI. As glutamates always exert their functions through one or more of 4 major receptors of glutamates, it would be valuable to know the mechanisms as to how glutamates cause these pathologies, and the possibility that a glutamate receptor antagonist may block the pathologies. To prevent the mechanistic steps leading to glutamate-mediated neurotoxicity may ameliorate SAH-induced brain injuries and improve the outcomes. This review addresses the current knowledge of glutamate-mediated neurotoxicity, focusing on EBI and DCI after SAH.
Collapse
Affiliation(s)
- Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Reona Asada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yume Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Mai Nampei
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hideki Nakajima
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroki Oinaka
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| |
Collapse
|