1
|
García G, Soto J, Díaz A, Barreto J, Soto C, Pérez AB, Boffill S, Gutiérrez Á, Cano RDJ. Clinical and In Vitro Safety of Heyndrickxia coagulans AO 1167B: A Double-Blind, Placebo-Controlled Trial. Microorganisms 2024; 12:2584. [PMID: 39770785 PMCID: PMC11677179 DOI: 10.3390/microorganisms12122584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
(1) Background: Heyndrickxia coagulans, a lactic acid-producing bacterium, displays characteristics of both Lactobacillus and Bacillus genera. Clinical evidence suggests its potential health benefits. This study evaluated the safety of H. coagulans AO1167B as a candidate probiotic supplement. (2) Methods: Strain identification was confirmed through morphological, cultural, and genomic analyses, including 16S RNA and whole genome sequencing to assess antimicrobial resistance and virulence factors. Phenotypic tests, such as disk diffusion for antimicrobial resistance, and safety assays for cytotoxicity and hemolytic activity, were conducted. In a phase I, double-blind, placebo-controlled clinical trial, healthy adults were randomized into H. coagulans AO1167B and placebo groups for 60 days. Daily capsule consumption was monitored through clinical and hematological evaluations, adverse event tracking, and health surveys. (3) Results: The genome of H. coagulans AO1167B revealed no concerning features. Disk diffusion tests showed no antimicrobial resistance. The strain exhibited no cytotoxic or hemolytic activity, indicating in vitro safety. No significant differences in clinical or hematological parameters were observed between groups. The most common adverse event, gas, diminished over time. (4) Conclusions: H. coagulans AO1167B demonstrates a suitable safety profile, genetic stability, and probiotic potential for gastrointestinal health, justifying further clinical research.
Collapse
Affiliation(s)
- Gissel García
- Pathology Department, Clinical Hospital “Hermanos Ameijeiras”, Calle San Lázaro No 701, Esq. a Belascoaín, La Habana 10400, Cuba;
| | - Josanne Soto
- Clinical Laboratory Department, Clinical Hospital “Hermanos Ameijeiras”, Calle San Lázaro No 701, Esq. a Belascoaín, La Habana 10400, Cuba;
| | - Antonio Díaz
- Statistical Department, Clinical Hospital “Hermanos Ameijeiras”, Calle San Lázaro No 701, Esq. a Belascoaín, La Habana 10400, Cuba; (A.D.); (Á.G.)
| | - Jesús Barreto
- Nutrition Department, Clinical Hospital “Hermanos Ameijeiras”, Calle San Lázaro No 701, Esq. a Belascoaín, La Habana 10400, Cuba; (J.B.); (S.B.)
| | - Carmen Soto
- Biochemistry Department, Biology Faculty, Havana University Cuba, Calle 25 Esquina J Vedado, La Habana 10200, Cuba;
| | - Ana Beatriz Pérez
- Cellular Immunology Laboratory, Virology Department, Tropical Medicine Institute “Pedro Kourí”, Autopista Novia del Medio Día Km 6 ½, La Habana 11400, Cuba;
| | - Suselys Boffill
- Nutrition Department, Clinical Hospital “Hermanos Ameijeiras”, Calle San Lázaro No 701, Esq. a Belascoaín, La Habana 10400, Cuba; (J.B.); (S.B.)
| | - Ángela Gutiérrez
- Statistical Department, Clinical Hospital “Hermanos Ameijeiras”, Calle San Lázaro No 701, Esq. a Belascoaín, La Habana 10400, Cuba; (A.D.); (Á.G.)
| | - Raúl de Jesús Cano
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
2
|
Ojeda-Martinez D, Diaz I, Santamaria ME, Ortego F. Comparative genomics reveals carbohydrate enzymatic fluctuations and herbivorous adaptations in arthropods. Comput Struct Biotechnol J 2024; 23:3744-3758. [PMID: 39525084 PMCID: PMC11543626 DOI: 10.1016/j.csbj.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Background Arthropods represent the largest and most diverse phylum on Earth, playing a pivotal role in the biosphere. One key to their evolutionary success is their ability to feed on plant material. However, their endogenous enzymatic repertoire, which contributes to plant digestion, remains largely unexplored and poorly understood. Results We analyzed 815 arthropod proteomes and identified a total of 268,171 carbohydrate-active modules. Our findings revealed a strong correlation between enzymatic content and feeding habits, with herbivorous species possessing significantly higher enzyme levels. We identified widespread carbohydrate-active families across the AA, CBM, GH, and GT classes, and observed a progressive increase in taxa-exclusive families in more recent arthropod lineages. Notably, we highlighted the impact of the transition from ametabolous to holometabolous development on carbohydrate metabolism, as well as the ecological adaptations of different species groups. By reconstructing the ancestral enzymatic profiles of arthropods, we identified significant fluctuations in 10 carbohydrate-active families over time. Conclusions Our analysis advances the understanding of the evolutionary mechanisms utilized by the megadiverse phylum Arthropoda. We emphasize the critical role of herbivory as a selective force shaping enzymatic strategies, particularly those involved in carbohydrate metabolism. The distribution and exclusivity of carbohydrate-active families across different arthropod groups provide insights into their evolutionary trajectories and offer a clearer picture of the metabolic pathways that led their ancestors to their present forms.
Collapse
Affiliation(s)
- Dairon Ojeda-Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - M. Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Félix Ortego
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
3
|
Duncan R, Mantegazza G, Gargari G, Pierallini E, Russo R, Guglielmetti S. Heyndrickxia coagulans LMG S-24828 Is a Safe Probiotic Strain Capable of Germinating in the Human Gut. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10383-4. [PMID: 39432229 DOI: 10.1007/s12602-024-10383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Ensuring the viability and efficacy of probiotic microorganisms during manufacturing and gastrointestinal transit remains challenging, particularly for sensitive strains such as certain lactic acid bacteria and bifidobacteria. This has led to increased interest in spore-forming bacteria, such as Heyndrickxia coagulans (formerly Bacillus coagulans), which can endure environmental stresses through their endospore forms. This study presents a comprehensive analysis of the probiotic potential of strain LMG S-24828, originally isolated from healthy human feces. The genomic analysis confirmed the strain's taxonomic placement within the species H. coagulans and revealed no extrachromosomal plasmid DNA, suggesting genetic stability. Safety assessments demonstrated that LMG S-24828 does not produce D-lactate, deconjugate bile salts, or exhibit hemolytic activity, and it lacks transmissible antibiotic resistances. Phenotypic tests showed the strain's metabolic versatility, including its ability to hydrolyze complex carbohydrates and adhere to intestinal epithelial cells. Moreover, LMG S-24828 exhibited robust survival and germination during in vitro and in vivo gastrointestinal simulations, with evidence of significant spore germination in the human gut. These findings suggest that H. coagulans LMG S-24828 possesses several advantageous traits for probiotic applications, warranting further clinical evaluation to confirm its health benefits.
Collapse
Affiliation(s)
- Robin Duncan
- Division of Food Microbiology and Bioprocesses, Department of Food, Environment, and Nutritional Science, Università Degli Studi Di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Giacomo Mantegazza
- Division of Food Microbiology and Bioprocesses, Department of Food, Environment, and Nutritional Science, Università Degli Studi Di Milano, Via Celoria 2, 20133, Milan, Italy
- μbEat Lab, Department of Biotechnology and Biosciences (BtBs), University of Milano-Bicocca, Piazza Della Scienza 4, 20133, Milan, Italy
| | - Giorgio Gargari
- Division of Food Microbiology and Bioprocesses, Department of Food, Environment, and Nutritional Science, Università Degli Studi Di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Elena Pierallini
- μbEat Lab, Department of Biotechnology and Biosciences (BtBs), University of Milano-Bicocca, Piazza Della Scienza 4, 20133, Milan, Italy
| | - Rosario Russo
- Province of Monza and Brianza, Giellepi S.P.A, Via G. Verdi, 41/Q, 20831, Seregno, Italy
| | - Simone Guglielmetti
- μbEat Lab, Department of Biotechnology and Biosciences (BtBs), University of Milano-Bicocca, Piazza Della Scienza 4, 20133, Milan, Italy.
| |
Collapse
|
4
|
Gallo G, Imbimbo P, Aulitto M. The Undeniable Potential of Thermophiles in Industrial Processes. Int J Mol Sci 2024; 25:7685. [PMID: 39062928 PMCID: PMC11276739 DOI: 10.3390/ijms25147685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Extremophilic microorganisms play a key role in understanding how life on Earth originated and evolved over centuries. Their ability to thrive in harsh environments relies on a plethora of mechanisms developed to survive at extreme temperatures, pressures, salinity, and pH values. From a biotechnological point of view, thermophiles are considered a robust tool for synthetic biology as well as a reliable starting material for the development of sustainable bioprocesses. This review discusses the current progress in the biomanufacturing of high-added bioproducts from thermophilic microorganisms and their industrial applications.
Collapse
Affiliation(s)
- Giovanni Gallo
- Division of Microbiology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany;
| | - Paola Imbimbo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy
| | - Martina Aulitto
- Department of Biology, University of Napoli Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Napoli, Italy
| |
Collapse
|
5
|
Maresca E, Aulitto M, Contursi P. Harnessing the dual nature of Bacillus (Weizmannia) coagulans for sustainable production of biomaterials and development of functional food. Microb Biotechnol 2024; 17:e14449. [PMID: 38593329 PMCID: PMC11003712 DOI: 10.1111/1751-7915.14449] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024] Open
Abstract
Bacillus coagulans, recently renamed Weizmannia coagulans, is a spore-forming bacterium that has garnered significant interest across various research fields, ranging from health to industrial applications. The probiotic properties of W. coagulans enhance intestinal digestion, by releasing prebiotic molecules including enzymes that facilitate the breakdown of not-digestible carbohydrates. Notably, some enzymes from W. coagulans extend beyond digestive functions, serving as valuable biotechnological tools and contributing to more sustainable and efficient manufacturing processes. Furthermore, the homofermentative thermophilic nature of W. coagulans renders it an exceptional candidate for fermenting foods and lignocellulosic residues into L-(+)-lactic acid. In this review, we provide an overview of the dual nature of W. coagulans, in functional foods and for the development of bio-based materials.
Collapse
Affiliation(s)
- Emanuela Maresca
- Department of BiologyUniversity of Naples “Federico II”NaplesItaly
| | - Martina Aulitto
- Department of BiologyUniversity of Naples “Federico II”NaplesItaly
- Institute for Polymers, Composites and Biomaterials—IPCB, National Research Council of Italy (CNR)PozzuoliItaly
| | - Patrizia Contursi
- Department of BiologyUniversity of Naples “Federico II”NaplesItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro‐Environmental TechnologyUniversity of Naples “Federico II”PorticiItaly
- Task Force on Microbiome StudiesUniversity of Naples “Federico II”NaplesItaly
| |
Collapse
|
6
|
Aulitto M, Alfano A, Maresca E, Avolio R, Errico ME, Gentile G, Cozzolino F, Monti M, Pirozzi A, Donsì F, Cimini D, Schiraldi C, Contursi P. Thermophilic biocatalysts for one-step conversion of citrus waste into lactic acid. Appl Microbiol Biotechnol 2024; 108:155. [PMID: 38244047 PMCID: PMC10799777 DOI: 10.1007/s00253-023-12904-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 01/22/2024]
Abstract
Agri-food residues offer significant potential as a raw material for the production of L-lactic acid through microbial fermentation. Weizmannia coagulans, previously known as Bacillus coagulans, is a spore-forming, lactic acid-producing, gram-positive, with known probiotic and prebiotic properties. This study aimed to evaluate the feasibility of utilizing untreated citrus waste as a sustainable feedstock for the production of L-lactic acid in a one-step process, by using the strain W. coagulans MA-13. By employing a thermophilic enzymatic cocktail (Cellic CTec2) in conjunction with the hydrolytic capabilities of MA-13, biomass degradation was enhanced by up to 62%. Moreover, batch and fed-batch fermentation experiments demonstrated the complete fermentation of glucose into L-lactic acid, achieving a concentration of up to 44.8 g/L. These results point to MA-13 as a microbial cell factory for one-step production of L-lactic acid, by combining cost-effective saccharification with MA-13 fermentative performance, on agri-food wastes. Moreover, the potential of this approach for sustainable valorization of agricultural waste streams is successfully proven. KEY POINTS: • Valorization of citrus waste, an abundant residue in Mediterranean countries. • Sustainable production of the L-( +)-lactic acid in one-step process. • Enzymatic pretreatment is a valuable alternative to the use of chemical.
Collapse
Affiliation(s)
- Martina Aulitto
- Department of Biology, University of Naples "Federico II,", Naples, Italy
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078, Pozzuoli, Italy
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alberto Alfano
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology Naples, University of Campania L. Vanvitelli, Naples, Italy
| | - Emanuela Maresca
- Department of Biology, University of Naples "Federico II,", Naples, Italy
| | - Roberto Avolio
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Maria Emanuela Errico
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Gennaro Gentile
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples "Federico II," Naples, Italy; CEINGE Advanced Biotechnologies, Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples "Federico II," Naples, Italy; CEINGE Advanced Biotechnologies, Naples, Italy
| | - Annachiara Pirozzi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Donatella Cimini
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology Naples, University of Campania L. Vanvitelli, Naples, Italy.
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology Naples, University of Campania L. Vanvitelli, Naples, Italy
| | - Patrizia Contursi
- Department of Biology, University of Naples "Federico II,", Naples, Italy.
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy.
| |
Collapse
|
7
|
Shaikh SS, Jhala D, Patel A, Chettiar SS, Ghelani A, Malik A, Sengupta P. In-silico analysis of probiotic attributes and safety assessment of probiotic strain Bacillus coagulans BCP92 for human application. Lett Appl Microbiol 2024; 77:ovad145. [PMID: 38148133 DOI: 10.1093/lambio/ovad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 12/28/2023]
Abstract
The whole genome sequence (WGS) of Bacillus coagulans BCP92 is reported along with its genomic analysis of probiotics and safety features. The identification of bacterial strain was carried out using the 16S rDNA sequencing method. Furthermore, gene-related probiotic features, safety assessment (by in vitro and in silico), and genome stability were also studied using the WGS analysis for the possible use of the bacterial strain as a probiotic. From the BLAST analysis, bacterial strain was identified as Bacillus (Heyndrickxia) coagulans. WGS analysis indicated that the genome consists of a 3 475 658 bp and a GC-content of 46.35%. Genome mining of BCP92 revealed that the strain is consist of coding sequences for d-lactate dehydrogenase and l-lactate dehydrogenases, 36 genes involved in fermentation activities, 29 stress-responsive as well as many adhesions related genes. The genome, also possessing genes, is encoded for the synthesis of novel circular bacteriocin. Using an in-silico approach for the bacterial genome study, it was possible to determine that the Bacillus (Heyndrickxia) coagulans strain BCP92 contains genes that are encoded for the probiotic abilities and did not harbour genes that are risk associated, thus confirming the strain's safety and suitability as a probiotic to be used for human application.
Collapse
Affiliation(s)
- Sohel S Shaikh
- Pellucid Lifesciences Pvt Ltd, Plot No.:3538, Phase-4, GIDC Industrial Estate, Chhatral, Gandhinagar 382729, India
| | - Devendrasinh Jhala
- Zoology Department, School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Alpesh Patel
- Genexplore Diagnostics & Research Centre Pvt Ltd, 1201 to 1210, Iconic Shyamal, Shyamal, Ahmedabad 380015, India
| | - Shiva Shankaran Chettiar
- Genexplore Diagnostics & Research Centre Pvt Ltd, 1201 to 1210, Iconic Shyamal, Shyamal, Ahmedabad 380015, India
| | - Anjana Ghelani
- Shree Ramkrishna Institute of Computer Education and Applied Sciences, M.T.B. College Campus, B/h P.T. Science College, Opp. Chowpati, Athwalines, Surat 395001, India
| | - Anis Malik
- Pellucid Lifesciences Pvt Ltd, Plot No.:3538, Phase-4, GIDC Industrial Estate, Chhatral, Gandhinagar 382729, India
| | - Priyajit Sengupta
- Pellucid Lifesciences Pvt Ltd, Plot No.:3538, Phase-4, GIDC Industrial Estate, Chhatral, Gandhinagar 382729, India
| |
Collapse
|
8
|
Wang Y, Gu Z, Zhang S, Li P. Complete Genome Sequencing Revealed the Potential Application of a Novel Weizmannia coagulans PL-W Production with Promising Bacteriocins in Food Preservative. Foods 2023; 12:216. [PMID: 36613432 PMCID: PMC9818457 DOI: 10.3390/foods12010216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
Weizmannia coagulans is an important potential probiotic with dual characteristics of Bacillus and Lactobacillus. This study describes a novel Weizmannia coagulans PL-W with excellent antibacterial activity isolated from Mongolian traditional cheese, in which safety and probiotic potential were evaluated by complete genome sequencing. The crude bacteriocins of W. coagulans PL-W showed antibacterial activity against various foodborne pathogens, including Listeria monocytogenes CMCC 54,004, Bacillus cereus ATCC 14,579, and Staphylococcus aureus ATCC 25,923. Moreover, the crude bacteriocins have outstanding stability against pH, temperature, surfactants, and are sensitive to protease. The complete genome sequencing revealed W. coagulans PL-W consists of 3,666,052-base pair (bp) circular chromosomes with a GC content of 46.24% and 3485 protein-coding genes. It contains 84 tRNA, 10 23S rRNA, 10 16S rRNA, and 10 5S rRNA. In addition, no risk-related genes such as acquired antibiotic resistance genes, virulence, and pathogenic factors were identified, demonstrating that W. coagulans PL-W is safe to use. Furthermore, the presence of gene clusters involved in bacteriocin synthesis, adhesion-related genes, and genes contributing to acid and bile tolerance indicate that W. coagulans PL-W is a potential candidate probiotic. Thus, antimicrobial activity and genome characterization of W. coagulans PL-W demonstrate that it has extensive potential applications as a food protective culture.
Collapse
Affiliation(s)
| | | | | | - Pinglan Li
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
9
|
Carbonaro M, Aulitto M, Gallo G, Contursi P, Limauro D, Fiorentino G. Insight into CAZymes of Alicyclobacillus mali FL18: Characterization of a New Multifunctional GH9 Enzyme. Int J Mol Sci 2022; 24:ijms24010243. [PMID: 36613686 PMCID: PMC9820247 DOI: 10.3390/ijms24010243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
In the bio-based era, cellulolytic and hemicellulolytic enzymes are biocatalysts used in many industrial processes, playing a key role in the conversion of recalcitrant lignocellulosic waste biomasses. In this context, many thermophilic microorganisms are considered as convenient sources of carbohydrate-active enzymes (CAZymes). In this work, a functional genomic annotation of Alicyclobacillus mali FL18, a recently discovered thermo-acidophilic microorganism, showed a wide reservoir of putative CAZymes. Among them, a novel enzyme belonging to the family 9 of glycosyl hydrolases (GHs), named AmCel9, was identified; in-depth in silico analyses highlighted that AmCel9 shares general features with other GH9 members. The synthetic gene was expressed in Escherichia coli and the recombinant protein was purified and characterized. The monomeric enzyme has an optimal catalytic activity at pH 6.0 and has comparable activity at temperatures ranging from 40 °C to 70 °C. It also has a broad substrate specificity, a typical behavior of multifunctional cellulases; the best activity is displayed on β-1,4 linked glucans. Very interestingly, AmCel9 also hydrolyses filter paper and microcrystalline cellulose. This work gives new insights into the properties of a new thermophilic multifunctional GH9 enzyme, that looks a promising biocatalyst for the deconstruction of lignocellulose.
Collapse
Affiliation(s)
- Miriam Carbonaro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Martina Aulitto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Giovanni Gallo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Patrizia Contursi
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Danila Limauro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Gabriella Fiorentino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Correspondence:
| |
Collapse
|
10
|
Application of Weizmannia coagulans in the medical and livestock industry. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Products enriched with probiotics have always been fashionable. Weizmannia coagulans has become a hot research topic in the academic community due to their multiple functional properties and high resistance to stress, which can retain their activity in a variety of harsh environments. This review aims to evaluate the probiotic effects of different strains of Weizmannia coagulans in animals and humans and to inspire better exploitation of the value of this strain.
Methods
This review summarizes the latest research progress of Weizmannia coagulans from two major applications in animal breeding and human health.
Results
The functional properties of Weizmannia coagulans are extensively recognized. In animals, the strain can promote nutrient absorption, reduce mortality, and enhance the slaughter rate in livestock and poultry. In humans, the strain can be used to treat gastrointestinal disorders, immunomodulation, depressive symptoms, and non-alcoholic fatty liver. Weizmannia coagulans is projected as an ideal substitute for antibiotics and other chemical drugs.
Conclusion
Despite the outstanding functional properties of Weizmannia coagulans, there are numerous strains of Weizmannia coagulans and significant differences between strains in functional and physiological properties. Currently, there are few literature reports on the probiotic mechanism and functional gene identification of Weizmannia coagulans, which is crucial for the commercialization of Weizmannia coagulans and the benefit of human society.
Collapse
|
11
|
Alicyclobacillus mali FL18 as a Novel Source of Glycosyl Hydrolases: Characterization of a New Thermophilic β-Xylosidase Tolerant to Monosaccharides. Int J Mol Sci 2022; 23:ijms232214310. [PMID: 36430787 PMCID: PMC9696088 DOI: 10.3390/ijms232214310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
A thermo-acidophilic bacterium, Alicyclobacillus mali FL18, was isolated from a hot spring of Pisciarelli, near Naples, Italy; following genome analysis, a novel putative β-xylosidase, AmβXyl, belonging to the glycosyl hydrolase (GH) family 3 was identified. A synthetic gene was produced, cloned in pET-30a(+), and expressed in Escherichia coli BL21 (DE3) RIL. The purified recombinant protein, which showed a dimeric structure, had optimal catalytic activity at 80 °C and pH 5.6, exhibiting 60% of its activity after 2 h at 50 °C and displaying high stability (more than 80%) at pH 5.0-8.0 after 16 h. AmβXyl is mainly active on both para-nitrophenyl-β-D-xylopyranoside (KM 0.52 mM, kcat 1606 s-1, and kcat/KM 3088.46 mM-1·s-1) and para-nitrophenyl-α-L-arabinofuranoside (KM 10.56 mM, kcat 2395.8 s-1, and kcat/KM 226.87 mM-1·s-1). Thin-layer chromatography showed its ability to convert xylooligomers (xylobiose and xylotriose) into xylose, confirming that AmβXyl is a true β-xylosidase. Furthermore, no inhibitory effect on enzymatic activity by metal ions, detergents, or EDTA was observed except for 5 mM Cu2+. AmβXyl showed an excellent tolerance to organic solvents; in particular, the enzyme increased its activity at high concentrations (30%) of organic solvents such as ethanol, methanol, and DMSO. Lastly, the enzyme showed not only a good tolerance to inhibition by xylose, arabinose, and glucose, but was activated by 0.75 M xylose and up to 1.5 M by both arabinose and glucose. The high tolerance to organic solvents and monosaccharides together with other characteristics reported above suggests that AmβXyl may have several applications in many industrial fields.
Collapse
|
12
|
Aulitto M, Martinez-Alvarez L, Fusco S, She Q, Bartolucci S, Peng X, Contursi P. Genomics, Transcriptomics, and Proteomics of SSV1 and Related Fusellovirus: A Minireview. Viruses 2022; 14:2082. [PMID: 36298638 PMCID: PMC9608457 DOI: 10.3390/v14102082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Saccharolobus spindle-shaped virus 1 (SSV1) was one of the first viruses identified in the archaeal kingdom. Originally isolated from a Japanese species of Saccharolobus back in 1984, it has been extensively used as a model system for genomic, transcriptomic, and proteomic studies, as well as to unveil the molecular mechanisms governing the host-virus interaction. The purpose of this mini review is to supply a compendium of four decades of research on the SSV1 virus.
Collapse
Affiliation(s)
- Martina Aulitto
- Dipartimento di Biologia, University of Naples Federico II, 80126 Naples, Italy
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA 94720, USA
| | - Laura Martinez-Alvarez
- Archaea Centre, Department of Biology, University of Copenhagen, DK-1165 Copenhagen, Denmark
| | - Salvatore Fusco
- Biochemistry and Industrial Biotechnology Laboratory, Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 250100, China
| | | | - Xu Peng
- Archaea Centre, Department of Biology, University of Copenhagen, DK-1165 Copenhagen, Denmark
| | - Patrizia Contursi
- Dipartimento di Biologia, University of Naples Federico II, 80126 Naples, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
13
|
Damas MSF, Ferreira RL, Campanini EB, Soares GG, Campos LC, Laprega PM, Soares da Costa A, Freire CCDM, Pitondo-Silva A, Cerdeira LT, da Cunha AF, Pranchevicius MCDS. Whole genome sequencing of the multidrug-resistant Chryseobacterium indologenes isolated from a patient in Brazil. Front Med (Lausanne) 2022; 9:931379. [PMID: 35966843 PMCID: PMC9366087 DOI: 10.3389/fmed.2022.931379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Chryseobacterium indologenes is a non-glucose-fermenting Gram-negative bacillus. This emerging multidrug resistant opportunistic nosocomial pathogen can cause severe infections in neonates and immunocompromised patients. This study aimed to present the first detailed draft genome sequence of a multidrug-resistant C. indologenes strain isolated from the cerebrospinal fluid of an infant hospitalized at the Neonatal Intensive Care Unit of Brazilian Tertiary Hospital. We first analyzed the susceptibility of C. indologenes strain to different antibiotics using the VITEK 2 system. The strain demonstrated an outstanding resistance to all the antibiotic classes tested, including β-lactams, aminoglycosides, glycylcycline, and polymyxin. Next, C. indologenes was whole-genome-sequenced, annotated using Prokka and Rapid Annotation using Subsystems Technology (RAST), and screened for orthologous groups (EggNOG), gene ontology (GO), resistance genes, virulence genes, and mobile genetic elements using different software tools. The draft genome contained one circular chromosome of 4,836,765 bp with 37.32% GC content. The genomic features of the chromosome present numerous genes related to cellular processes that are essential to bacteria. The MDR C. indologenes revealed the presence of genes that corresponded to the resistance phenotypes, including genes to β-lactamases (blaIND–13, blaCIA–3, blaTEM–116, blaOXA–209, blaVEB–15), quinolone (mcbG), tigecycline (tet(X6)), and genes encoding efflux pumps which confer resistance to aminoglycosides (RanA/RanB), and colistin (HlyD/TolC). Amino acid substitutions related to quinolone resistance were observed in GyrA (S83Y) and GyrB (L425I and K473R). A mutation that may play a role in the development of colistin resistance was detected in lpxA (G68D). Chryseobacterium indologenes isolate harbored 19 virulence factors, most of which were involved in infection pathways. We identified 13 Genomic Islands (GIs) and some elements associated with one integrative and conjugative element (ICEs). Other elements linked to mobile genetic elements (MGEs), such as insertion sequence (ISEIsp1), transposon (Tn5393), and integron (In31), were also present in the C. indologenes genome. Although plasmids were not detected, a ColRNAI replicon type and the most resistance genes detected in singletons were identified in unaligned scaffolds. We provided a wide range of information toward the understanding of the genomic diversity of C. indologenes, which can contribute to controlling the evolution and dissemination of this pathogen in healthcare settings.
Collapse
Affiliation(s)
| | - Roumayne Lopes Ferreira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Emeline Boni Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | | | - Pedro Mendes Laprega
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Andrea Soares da Costa
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | - André Pitondo-Silva
- Programa de Pós-graduação em Odontologia e Tecnologia Ambiental, Universidade de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | | | - Maria-Cristina da Silva Pranchevicius
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
- Centro de Ciências Biológicas e da Saúde, Biodiversidade Tropical - BIOTROP, Universidade Federal de São Carlos, São Carlos, Brazil
- *Correspondence: Maria-Cristina da Silva Pranchevicius,
| |
Collapse
|