1
|
Zhang H, Xu G, Mubeen S, Wei R, Rehman M, Cao S, Wang C, Yue J, Pan J, Jin G, Li R, Chen T, Chen P. Physiological and Transcriptome Analysis Reveal the Underlying Mechanism of Salicylic Acid-Alleviated Drought Stress in Kenaf ( Hibiscus cannabinus L.). Life (Basel) 2025; 15:281. [PMID: 40003690 PMCID: PMC11856667 DOI: 10.3390/life15020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Salicylic acid (SA) plays a crucial role in alleviating drought stress in plants. However, little is known about the molecular mechanisms underlying exogenous SA on the drought tolerance of kenaf. In this study, the kenaf seedlings were subjected to physiological and transcriptomic analysis under control (CK), moderate drought stress (D), and moderate drought stress with 1 mM SA (D_SA). Under drought conditions, SA significantly improved the plant biomass, leaf area, antioxidant enzyme activities (SOD, POD, and CAT), soluble sugars, starch and proline contents, and photosynthesis, while the contents of MDA, H2O2, and O2- were significantly decreased. A total of 3430 (1118 up-regulated and 2312 down-regulated) genes were differentially expressed in group D, compared with group CK. At the same time, 92 (56 up-regulated and 36 down-regulated) genes were differentially expressed in group D_SA compared with group D. GO and KEGG analysis showed that the differentially expressed genes (DEGs) were enriched in various metabolic pathways, such as carbohydrate metabolism, lipid metabolism, and the metabolism of terpenoids and polyketides. Results showed that the genes related to the antioxidant system, sucrose and starch synthesis, osmoregulation, ABA signal regulation, and differentially expressed transcription factors, such as AP2/ERF4 and NF-Y1, were involved in the increased drought tolerance of kenaf under exogenous SA. Virus-induced gene silencing (VIGS)-mediated silencing of salicylate binding protein 2 gene (HcSABP2) decreased the drought resistance of kenaf seedlings. Thus, the present study provides valuable insights into the regulatory mechanism of exogenous SA in alleviating drought stress in kenaf.
Collapse
Affiliation(s)
- Hui Zhang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning 530004, China; (H.Z.); (G.X.); (S.M.); (R.W.); (M.R.); (S.C.); (C.W.); (J.Y.); (J.P.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China;
| | - Guofeng Xu
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning 530004, China; (H.Z.); (G.X.); (S.M.); (R.W.); (M.R.); (S.C.); (C.W.); (J.Y.); (J.P.)
| | - Samavia Mubeen
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning 530004, China; (H.Z.); (G.X.); (S.M.); (R.W.); (M.R.); (S.C.); (C.W.); (J.Y.); (J.P.)
| | - Rujian Wei
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning 530004, China; (H.Z.); (G.X.); (S.M.); (R.W.); (M.R.); (S.C.); (C.W.); (J.Y.); (J.P.)
| | - Muzammal Rehman
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning 530004, China; (H.Z.); (G.X.); (S.M.); (R.W.); (M.R.); (S.C.); (C.W.); (J.Y.); (J.P.)
| | - Shan Cao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning 530004, China; (H.Z.); (G.X.); (S.M.); (R.W.); (M.R.); (S.C.); (C.W.); (J.Y.); (J.P.)
| | - Caijin Wang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning 530004, China; (H.Z.); (G.X.); (S.M.); (R.W.); (M.R.); (S.C.); (C.W.); (J.Y.); (J.P.)
| | - Jiao Yue
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning 530004, China; (H.Z.); (G.X.); (S.M.); (R.W.); (M.R.); (S.C.); (C.W.); (J.Y.); (J.P.)
| | - Jiao Pan
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning 530004, China; (H.Z.); (G.X.); (S.M.); (R.W.); (M.R.); (S.C.); (C.W.); (J.Y.); (J.P.)
| | - Gang Jin
- Guangxi Subtropical Crops Research Institute, Nanning 530001, China; (G.J.); (T.C.)
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China;
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning 530001, China; (G.J.); (T.C.)
| | - Peng Chen
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, College of Agriculture, Guangxi University, Nanning 530004, China; (H.Z.); (G.X.); (S.M.); (R.W.); (M.R.); (S.C.); (C.W.); (J.Y.); (J.P.)
| |
Collapse
|
2
|
Wu X, Xia M, Su P, Zhang Y, Tu L, Zhao H, Gao W, Huang L, Hu Y. MYB transcription factors in plants: A comprehensive review of their discovery, structure, classification, functional diversity and regulatory mechanism. Int J Biol Macromol 2024; 282:136652. [PMID: 39427786 DOI: 10.1016/j.ijbiomac.2024.136652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The MYB transcription factor (TF) family is one of the largest families in plants and performs highly diverse regulatory functions, particularly in relation to pathogen/pest resistance, nutrient/noxious substance absorption, drought/salt resistance, trichome growth, stamen development, leaf senescence, and flavonoid/terpenoid biosynthesis. Owing to their vital role in various biological regulatory processes, the mechanisms of MYB TFs have been extensively studied. Notably, MYB TFs not only directly regulate targets, such as phytohormones, reactive oxygen species signaling and secondary cell wall formation, but also serve as crucial points of crosstalk between these signaling networks. Here, we have comprehensively described the structures, classifications, and biological functions of MYB TFs, with a specific focus on their roles and mechanisms in the response to biotic and abiotic stresses, plant morphogenesis, and secondary metabolite biosynthesis. Different from other reported reviews, this review provides comprehensive knowledge on plant MYB TFs and will provide valuable insights in understanding regulatory networks and associated functions of plant MYB TFs to apply in resistance breeding and crop improvement.
Collapse
Affiliation(s)
- Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Meng Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Yifeng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Lichan Tu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, PR China
| | - Huan Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Yating Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
3
|
Sun L, Wang L, Niu J, Yang W, Li Z, Liu L, Gao S. The maize gene ZmSBP17 encoding an SBP transcription factor confers osmotic resistance in transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1483486. [PMID: 39574449 PMCID: PMC11578699 DOI: 10.3389/fpls.2024.1483486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 11/24/2024]
Abstract
Among the major abiotic stresses, salt and drought have considerably affected agricultural development globally by interfering with gene expression profiles and cell metabolism. Transcription factors play crucial roles in activating or inhibiting the expression of stress-related genes in response to abiotic stress in plants. In this study, the Zea mays L. SQUAMOSA promoter-binding protein gene (ZmSBP17) was identified, and the molecular regulatory mechanism of osmotic stress tolerance was analyzed. Phylogenetic analysis confirmed that ZmSBP17 is part of the SBP gene family and is closely related to OsSBP17. The ZmSBP17-GFP fusion protein exhibited green fluorescence in the nucleus, as determined via tobacco epidermal transient transformation system. Acting as a transcriptional activator, the overexpression of ZmSBP17 in Arabidopsis significantly enhanced the expression of genes encoding superoxide dismutases (CSD1/2, MSD1), catalases (CAT1/2), ascorbate peroxidase 1 (APX1), and myeloblastosis transcription factors (AtMYB53/65), which increased the activity of reactive oxygen species (ROS)-scavenging enzymes and reduced ROS levels. Additionally, the expression of abiotic stress-related genes, such as AtDREB2A and AtNHX1, was significantly upregulated by ZmSBP17. Furthermore, ZmSBP17 specifically bound to cis-acting elements containing GTAC core sequences in the promoters of stress-related genes, suggesting that ZmSBP17 regulates the transcription of certain genes by recognizing these sequences. These results indicate that the overexpression of ZmSBP17 in Arabidopsis thaliana significantly increased tolerance to osmotic stress during the germination and seedling stages, which may enhance our understanding of the biological functions of SBPs in maize under abiotic stresses.
Collapse
Affiliation(s)
- Lifang Sun
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| | - Lijiao Wang
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Jinping Niu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Wei Yang
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Zhifang Li
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Libin Liu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| | - Shuren Gao
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, Agronomy College of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| |
Collapse
|
4
|
Balhara R, Verma D, Kaur R, Singh K. MYB transcription factors, their regulation and interactions with non-coding RNAs during drought stress in Brassica juncea. BMC PLANT BIOLOGY 2024; 24:999. [PMID: 39448923 PMCID: PMC11515528 DOI: 10.1186/s12870-024-05736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Brassica juncea (L.) Czern is an important oilseed crop affected by various abiotic stresses like drought, heat, and salt. These stresses have detrimental effects on the crop's overall growth, development and yield. Various Transcription factors (TFs) are involved in regulation of plant stress response by modulating expression of stress-responsive genes. The myeloblastosis (MYB) TFs is one of the largest families of TFs associated with various developmental and biological processes such as plant growth, secondary metabolism, stress response etc. However, MYB TFs and their regulation by non-coding RNAs (ncRNAs) in response to stress have not been studied in B. juncea. Thus, we performed a detailed study on the MYB TF family and their interactions with miRNAs and Long non coding RNAs. RESULTS Computational investigation of genome and proteome data presented a comprehensive picture of the MYB genes and their protein architecture, including intron-exon organisation, conserved motif analysis, R2R3 MYB DNA-binding domains analysis, sub-cellular localization, protein-protein interaction and chromosomal locations. Phylogenetically, BjuMYBs were further classified into different subclades on the basis of topology and classification in Arabidopsis. A total of 751 MYBs were identified in B. juncea corresponding to 297 1R-BjuMYBs, 440 R2R3-BjuMYBs, 12 3R-BjuMYBs, and 2 4R-BjuMYBs types. We validated the transcriptional profiles of nine selected BjuMYBs under drought stress through RT-qPCR. Promoter analysis indicated the presence of drought-responsive cis-regulatory components. Additionally, the miRNA-MYB TF interactions was also studied, and most of the microRNAs (miRNAs) that target BjuMYBs were involved in abiotic stress response and developmental processes. Regulatory network analysis and expression patterns of lncRNA-miRNA-MYB indicated that selected long non-coding RNAs (lncRNAs) acted as strong endogenous target mimics (eTMs) of the miRNAs regulated expression of BjuMYBs under drought stress. CONCLUSIONS The present study has established preliminary groundwork of MYB TFs and their interaction with ncRNAs in B. juncea and it will help in developing drought- tolerant Brassica crops.
Collapse
Affiliation(s)
- Rinku Balhara
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Deepika Verma
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Ravneet Kaur
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
5
|
Zhao X, Wang S, Zhang H, Dong S, Chen J, Sun Y, Zhang Y, Liu Q. Genome-wide identification, expression analysis of the R2R3-MYB gene family and their potential roles under cold stress in Prunus sibirica. BMC Genomics 2024; 25:953. [PMID: 39402463 PMCID: PMC11472476 DOI: 10.1186/s12864-024-10868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The R2R3-MYB transcription factors in plants participate in various physiological and biochemical processes and responds to various external stimuli. Prunus sibirica (known as Siberian apricot) is a drupe tree species that produces extremely high nutritional value kernels. However, it is susceptiblility to frost damage during the flowering period, results in a marked reduction in kernel yield. RESULTS In this study, the MYB gene family of P. sibirica (PsMYB) was systematically analyzed, and 116 R2R3-MYB genes that were distributed unevenly over eight chromosomes were ultimately screened. Phylogenetic analysis divided these 116 genes into 30 subgroups. We discovered that 37 PsMYBs had cold stress-responsive promoters, and six PsMYBs were annotated to be associated with cold response. Intraspecific homology analysis identified segmental duplication as the primary gene amplification mechanism, and homology analysis of the PsMYB genes with those of five other species revealed phylogenetic relationships with Rosaceae species. Protein interaction studies revealed collaborative regulation of the PsMYB proteins with Arabidopsis protein, and transcriptome analysis identified PsMYB genes that were highly expressed at low temperatures. Additionally, the expression levels of 22 PsMYBs in different tissue parts of P. sibirica and under different low-temperature stress conditions were evaluated using quantitative real-time PCR, with the results verifying that PsMYBs are specifically expressed in different plant parts and may be involved in the growth and development of P. sibirica species. Genes upregulated after exposure to low-temperature stress and likely involved in cold response were identified. CONCLUSION This study lays a foundation for understanding the molecular biology of PsMYBs in P. sibirica and provides a theoretical basis for the future study of transgenic lines with cold resistance during the flowering period of this tree.
Collapse
Affiliation(s)
- Xin Zhao
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shipeng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hongrui Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shengjun Dong
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jianhua Chen
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yongqiang Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yueyuan Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Quangang Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
6
|
Peng D, Li L, Wei A, Zhou L, Wang B, Liu M, Lei Y, Xie Y, Li X. TaMYB44-5A reduces drought tolerance by repressing transcription of TaRD22-3A in the abscisic acid signaling pathway. PLANTA 2024; 260:52. [PMID: 39003354 DOI: 10.1007/s00425-024-04485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
MAIN CONCLUSION TaMYB44-5A identified as a transcription factor negatively regulates drought tolerance in transgenic Arabidopsis. Drought can severely reduce yields throughout the wheat-growing season. Many studies have shown that R2R3-MYB transcription factors are involved in drought stress responses. In this study, the R2R3-MYB transcription factor MYB44-5A was identified in wheat (Triticum aestivum L.) and functionally analyzed. Three homologs of TaMYB44 were isolated, all of which localized to the nucleus. Overexpression of TaMYB44-5A reduced drought tolerance in Arabidopsis thaliana. Further analysis showed that TaMYB44-5A reduced the sensitivity of transgenic Arabidopsis to ABA. Genetic and transcriptional regulation analyses demonstrated that the expression levels of drought- and ABA-responsive genes were downregulated by TaMYB44-5A, and TaMYB44-5A directly bound to the MYB-binding site on the promoter to repress the transcription level of TaRD22-3A. Our results provide insights into a novel molecular pathway in which the R2R3-MYB transcription factor negatively regulates ABA signaling in response to drought stress.
Collapse
Affiliation(s)
- De Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Aosong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Ling Zhou
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Bingxin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Mingliu Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Yanhong Lei
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Yanzhou Xie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Zhang L, Jiang G, Wang X, Bai Y, Zhang P, Liu J, Li L, Huang L, Qin P. Identifying Core Genes Related to Low-Temperature Stress Resistance in Quinoa Seedlings Based on WGCNA. Int J Mol Sci 2024; 25:6885. [PMID: 38999994 PMCID: PMC11241592 DOI: 10.3390/ijms25136885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Quinoa is a nutritious crop that is tolerant to extreme environmental conditions; however, low-temperature stress can affect quinoa growth, development, and quality. Considering the lack of molecular research on quinoa seedlings under low-temperature stress, we utilized a Weighted Gene Co-Expression Network Analysis to construct weighted gene co-expression networks associated with physiological indices and metabolites related to low-temperature stress resistance based on transcriptomic data. We screened 11 co-expression modules closely related to low-temperature stress resistance and selected 12 core genes from the two modules that showed the highest associations with the target traits. Following the functional annotation of these genes to determine the key biological processes and metabolic pathways involved in low-temperature stress, we identified four important transcription factors involved in resistance to low-temperature stress: gene-LOC110731664, gene-LOC110736639, gene-LOC110684437, and gene-LOC110720903. These results provide insights into the molecular genetic mechanism of quinoa under low-temperature stress and can be used to breed lines with tolerance to low-temperature stress.
Collapse
Affiliation(s)
- Lingyuan Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Guofei Jiang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Xuqin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Yutao Bai
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Liubin Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
8
|
Xiang W, Guo Z, Han J, Gao Y, Ma F, Gong X. The apple autophagy-related gene MdATG10 improves drought tolerance and water use efficiency in transgenic apple plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108214. [PMID: 38016369 DOI: 10.1016/j.plaphy.2023.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/19/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
The Loess Plateau is the main apple production area in China; low precipitation is one of the most important factors limiting apple production here. Autophagy is a conserved process in eukaryotes that recycles cell contents or damaged macromolecules. Previously, we identified an autophagy-related gene MdATG10 from apple plants, which was involved in the responses to stressed conditions. In this study, we found that MdATG10 improved the drought tolerance and water use efficiency (WUE) of transgenic apple plants. MdATG10-overexpressing (OE) apple plants were more tolerant of short-term drought stress, as evidenced by their fewer drought-related injuries, compared with wild-type (WT) apple plants. In addition, the WUE of OE plants was higher than that of WT plants under long-term moderate water deficit conditions. The growth rate, biomass accumulation, photosynthetic efficiency, and stomatal aperture were higher in OE plants than in WT plants under long-term moderate drought conditions. During the process of adapting to drought, the expressions of genes involved in the abscisic acid (ABA) pathway were reduced in OE plants to decrease the synthesis of ABA, which helped maintain the stomatal opening for gas exchange. Furthermore, autophagic activity was higher in OE plants than in WT plants, as evidenced by the higher expressions of ATG genes and the greater number of autophagy bodies. In sum, our results suggested that overexpression of MdATG10 improved drought tolerance and WUE in apple plants, possibly by regulating stomatal movement and enhancing autophagic activity, which then enhanced the photosynthetic efficiency and reduced damage, as well as the reactive oxygen species (ROS) accumulation in apple plants.
Collapse
Affiliation(s)
- Weijia Xiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zijian Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jifa Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiran Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiaoqing Gong
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
9
|
Yu Y, He L, Wu Y. Wheat WRKY transcription factor TaWRKY24 confers drought and salt tolerance in transgenic plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108137. [PMID: 37977027 DOI: 10.1016/j.plaphy.2023.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Drought and salt stress are major environmental conditions that severely limit plant growth and productivity. WRKY transcription factors play a vital role in the responses against biotic or abiotic stress. In this study, TaWRKY24, a gene of the IIe WRKY family identified in wheat, was cloned and characterized. TaWRKY24 was mainly expressed in wheat leaf and stem and induced by treatment with PEG6000, salt, H2O2, ABA, MeJA, and ethrel. TaWRKY24 transient expression in onion epidermal cells suggested its nuclear localization and its transcriptional activation capability characteristics. Overexpression of TaWRKY24 in tobacco improved the seed germination rate and root growth of seedlings in transgenic lines when subjected to higher mannitol and NaCl concentrations. Further research showed that transgenic lines had higher proline and soluble sugars and lower levels of reactive oxygen species (ROS) and malondialdehyde (MDA). Moreover, compared to normal and negative control plants, TaWRKY24 silenced wheat seedlings had reduced growth under salt and drought stress. This study shows that wheat TaWRKY24 is crucial to plant stress, providing an excellent candidate gene for wheat resistance breeding.
Collapse
Affiliation(s)
- Yongang Yu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China; Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science of Technology, XinXiang, 453003, China.
| | - Lingyun He
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yanxia Wu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| |
Collapse
|
10
|
Wang X, Wang B, Yuan F. Deciphering the roles of unknown/uncharacterized genes in plant development and stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1276559. [PMID: 38078098 PMCID: PMC10701545 DOI: 10.3389/fpls.2023.1276559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/08/2023] [Indexed: 10/16/2024]
Abstract
In recent years, numerous genes that encode proteins with specific domains that participate in different biological processes or have different molecular functions have been identified. A class of genes with typical domains whose function has rarely been identified and another type of genes with no typical domains have attracted increasing attentions. As many of these so-called as unknown/uncharacterized (U/U) genes are involved in important processes, such as plant growth and plant stress resistance, there is much interest in deciphering their molecular roles. Here, we summarize our current understanding of these genes, including their structures, classifications, and roles in plant growth and stress resistance, summarize progress in the methods used to decipher the roles of these genes, and provide new research perspectives. Unveiling the molecular functions of unknown/uncharacterized genes may suggest strategies to fine-tune important physiological processes in plants, which will enrich the functional network system of plants and provide more possibilities for adaptive improvement of plants.
Collapse
Affiliation(s)
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| |
Collapse
|
11
|
Wang J, Chen C, Wu C, Meng Q, Zhuang K, Ma N. SlMYB41 positively regulates tomato thermotolerance by activating the expression of SlHSP90.3. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108106. [PMID: 37879127 DOI: 10.1016/j.plaphy.2023.108106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
High-temperature stress has become a major abiotic factor that dramatically limits plant growth and crop yield. Plants have evolved complex mechanisms to cope with high-temperature stress, but the factors that regulate plant thermotolerance remain to be discovered. Here, a high temperature-induced MYB transcription factor SlMYB41 was cloned from tomato (Solanum lycopersicum). Two individual SlMYB41-RNA interference (RNAi) lines (MR) and one CRISPR/Cas9 mediated myb41 mutant (MC) were obtained to investigate the function of SlMYB41 in tomato thermotolerance. Under high-temperature stress, we found that the MR and MC lines showed more wilting than the wild type (WT), with more ion leakage, more MDA accumulation, lower contents of osmotic adjustment substances, and more accumulation of reactive oxygen species (ROS) which was resulted from lower antioxidative enzyme activities. In addition, the photosynthetic capacity and complex of MR and MC lines were damaged more seriously than WT plants under high-temperature stress, mainly manifested in lower photosynthetic rate and Fv/Fm. Moreover, heat stress-related genes, such as SlHSP17.6, SlHSP17.7, and SlHSP90.3 were downregulated in MR and MC lines. Importantly, Y1H and LUC analysis indicated that SlMYB41 can directly activate the transcription of SlHSP90.3. Together, our study suggest that SlMYB41 positively regulates tomato thermotolerance by activating the expression of SlHSP90.3.
Collapse
Affiliation(s)
- Jieyu Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chong Chen
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274015, China
| | - Chuanzhao Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Nana Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
12
|
Li H, Yang J, Ma R, An X, Pan F, Zhang S, Fu Y. Genome-wide identification and expression analysis of MYB gene family in Cajanus cajan and CcMYB107 improves plant drought tolerance. PHYSIOLOGIA PLANTARUM 2023; 175:e13954. [PMID: 37318225 DOI: 10.1111/ppl.13954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/16/2023]
Abstract
MYB transcription factor (TF) is one of the largest superfamilies that play a vital role in multiple plant biological processes. However, the MYB family has not been comprehensively identified and functionally verified in Cajanus cajan, which is the sixth most important legume crop. Here, 170 CcR2R3-MYBs were identified and divided into 43 functional subgroups. Segmental and tandem duplications and alternative splicing events were found and promoted the expansion of the CcR2R3-MYB gene family. Functional prediction results showed that CcR2R3-MYBs were mainly involved in secondary metabolism, cell fate and identity, developmental processes, and responses to abiotic stress. Cis-acting element analysis of promoters revealed that stress response elements were widespread in the above four functional branches, further suggesting CcR2R3-MYBs were extensively involved in abiotic stress response. The transcriptome data and qRT-PCR results indicated that most of the CcR2R3-MYB genes responded to various stresses, of which the expression of CcMYB107 was significantly induced by drought stress. Overexpression of CcMYB107 enhanced antioxidant enzyme activity and increased proline and lignin accumulation, thus improving the drought resistance of C. cajan. Furthermore, Overexpression of CcMYB107 up-regulated the expression of stress-related genes and lignin biosynthesis genes after drought stress. Our findings established a strong foundation for the investigation of biological function of CcR2R3-MYB TFs in C. cajan.
Collapse
Affiliation(s)
- Hongquan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Harbin, China
| | - Jie Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Harbin, China
| | - Ruijin Ma
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Harbin, China
| | - Xiaoli An
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Harbin, China
| | - Feng Pan
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Harbin, China
| | - Su Zhang
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
13
|
Ren C, Li Z, Song P, Wang Y, Liu W, Zhang L, Li X, Li W, Han D. Overexpression of a Grape MYB Transcription Factor Gene VhMYB2 Increases Salinity and Drought Tolerance in Arabidopsis thaliana. Int J Mol Sci 2023; 24:10743. [PMID: 37445921 DOI: 10.3390/ijms241310743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
In viticulture, the highly resistant rootstock 'Beta' is widely used in Chinese grape production to avoid the effects of soil salinization and drought on grape growth. However, the mechanism of high resistance to abiotic stress in the 'Beta' rootstock is not clear. In this study, we demonstrated that VhMYB2 as a transcription factor made a significant contribution to salinity and drought stress, which was isolated from the 'Beta' rootstock. The coding sequence of the VhMYB2 gene was 858 bp, encoding 285 amino acids. The subcellular localization of VhMYB2 was located in the nucleus of tobacco epidermal cells. Moreover, RT-qPCR found that VhMYB2 was predominantly expressed in the mature leaf and root of the grape. Under salinity and drought stress, overexpressing VhMYB2 showed a higher resistant phenotype and survival rates in A. thaliana while the transgenic lines had a survival advantage by measuring the contents of proline, chlorophyll, and MDA, and activities of POD, SOD, and CAT, and expression levels of related stress response genes. The results reveal that VhMYB2 may be an important transcription factor regulating 'Beta' resistance in response to abiotic stress.
Collapse
Affiliation(s)
- Chuankun Ren
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zhenghao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Penghui Song
- Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Yu Wang
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Wanda Liu
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Lihua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xingguo Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenhui Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
14
|
He W, Luo L, Xie R, Chai J, Wang H, Wang Y, Chen Q, Wu Z, Yang S, Li M, Lin Y, Zhang Y, Luo Y, Zhang Y, Tang H, Wang X. Transcriptome sequencing analyses uncover mechanisms of citrus rootstock seedlings under waterlogging stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1198930. [PMID: 37324702 PMCID: PMC10264899 DOI: 10.3389/fpls.2023.1198930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
Citrus plants are sensitive to waterlogging, which can cause yield reduction. Their production heavily depends on the rootstock being used for grafting of scion cultivars, and the rootstock is the first organ to be affected by waterlogging stress. However, the underlying molecular mechanisms of waterlogging stress tolerance remain elusive. In this study we investigated the stress response of two waterlogging-tolerant citrus varieties (Citrus junos Sieb ex Tanaka cv. Pujiang Xiangcheng and Ziyang Xiangcheng), and one waterlogging-sensitive variety (red tangerine) at the morphological, physiological, and genetic levels in leaf and root tissues of partially submerged plants. The results showed that waterlogging stress significantly decreased the SPAD value and root length but did not obviously affect the stem length and new root numbers. The malondialdehyde (MDA) content and the enzyme activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), and catalase (CAT) were enhanced in the roots. The RNA-seq analysis revealed that the differentially expressed genes (DEGs) were mainly linked to 'cutin, suberine, and wax biosynthesis', 'diterpenoid biosynthesis', and 'glycerophospholipid metabolism' in the leaves, whereas were linked to 'flavonoid biosynthesis', 'biosynthesis of secondary metabolites and metabolic pathways' in the roots. Finally, we developed a working model based on our results to elucidate the molecular basis of waterlogging-responsive in citrus. Therefore, our data obtained in this study provided valuable genetic resources that will facilitate the breeding of citrus varieties with improved waterlogging tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Wang H, Li N, Li H, Zhang S, Zhang X, Yan X, Wang Z, Yang Y, Zhang S. Overexpression of NtGCN2 improves drought tolerance in tobacco by regulating proline accumulation, ROS scavenging ability, and stomatal closure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107665. [PMID: 37018865 DOI: 10.1016/j.plaphy.2023.107665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 05/07/2023]
Abstract
Drought stress is a severe threat to plants. Genes that respond to drought stress are essential for plant growth and development. General control nonderepressible 2 (GCN2) encodes a protein kinase that responds to various biotic and abiotic stresses. However, the mechanism of GCN2 in plant drought tolerance remains unclear. In the present study, the promoters of NtGCN2 from Nicotiana tabacum K326, which contained a drought-responsive Cis-acting element MYB that can be activated by drought stress, were cloned. Furthermore, the drought tolerance function of NtGCN2 was investigated using NtGCN2-overexpressed transgenic tobacco plants. NtGCN2-overexpressed transgenic plants were more tolerant to drought stress than wild-type (WT) plants. The transgenic tobacco plants exhibited higher proline and abscisic acid (ABA) contents, antioxidant enzyme activities, leaf relative water content, and expression levels of genes encoding key antioxidant enzymes and proline synthase, but lower levels of malondialdehyde and reactive oxygen species, and reduced stomatal apertures, stomatal densities, and stomatal opening rates compared to WT plants under drought stress. These results indicated that overexpression of NtGCN2 conferred drought tolerance in transgenic tobacco plants. RNA-seq analysis showed that overexpression of NtGCN2 responded to drought stress by regulating the expression of genes related to proline synthesis and catabolism, abscisic acid synthesis and catabolism, antioxidant enzymes, and ion channels in guard cells. These results showed that NtGCN2 might regulate drought tolerance by regulating proline accumulation, reactive oxygen species (ROS) scavenging, and stomatal closure in tobacco and may have the potential for application in the genetic modification of crop drought tolerance.
Collapse
Affiliation(s)
- Hao Wang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Ning Li
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Hang Li
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Songjie Zhang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xiaoquan Zhang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xiaoxiao Yan
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Zhaojun Wang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yongxia Yang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Songtao Zhang
- National Tobacco Cultivation & Physiology & Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
16
|
SiMYBS3, Encoding a Setaria italica Heterosis-Related MYB Transcription Factor, Confers Drought Tolerance in Arabidopsis. Int J Mol Sci 2023; 24:ijms24065418. [PMID: 36982494 PMCID: PMC10049516 DOI: 10.3390/ijms24065418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Drought is a major limiting factor affecting grain production. Drought-tolerant crop varieties are required to ensure future grain production. Here, 5597 DEGs were identified using transcriptome data before and after drought stress in foxtail millet (Setaria italica) hybrid Zhangza 19 and its parents. A total of 607 drought-tolerant genes were screened through WGCNA, and 286 heterotic genes were screened according to the expression level. Among them, 18 genes overlapped. One gene, Seita.9G321800, encoded MYBS3 transcription factor and showed upregulated expression after drought stress. It is highly homologous with MYBS3 in maize, rice, and sorghum and was named SiMYBS3. Subcellular localization analysis showed that the SiMYBS3 protein was located in the nucleus and cytoplasm, and transactivation assay showed SiMYBS3 had transcriptional activation activity in yeast cells. Overexpression of SiMYBS3 in Arabidopsis thaliana conferred drought tolerance, insensitivity to ABA, and earlier flowering. Our results demonstrate that SiMYBS3 is a drought-related heterotic gene and it can be used for enhancing drought resistance in agricultural crop breeding.
Collapse
|
17
|
Overexpression of a Fragaria vesca 1R-MYB Transcription Factor Gene (FvMYB114) Increases Salt and Cold Tolerance in Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24065261. [PMID: 36982335 PMCID: PMC10048884 DOI: 10.3390/ijms24065261] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The MYB (v-MYB avian myeloblastosis viral oncogene homolog) transcription factor (TF) family has numerous members with complex and diverse functions, which play an indispensable role in regulating the response of plants to stress. In this study, a new 1R-MYB TF gene was obtained from Fragaria vesca (a diploid strawberry) by cloning technology and given a new name, FvMYB114. According to the subcellular localization results, FvMYB114 protein was a nuclear localization protein. Overexpression of FvMYB114 greatly enhanced the adaptability and tolerance of Arabidopsis thaliana to salt and low temperature. Under salt and cold stress, the transgenic plants had greater proline and chlorophyll contents and higher activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) than the wild-type (WT) and unloaded-line (UL) A. thaliana. However, malondialdehyde (MDA) was higher in the WT and UL lines. These results suggested that FvMYB114 may be involved in regulating the response of A. thaliana to salt stress and cold stress. FvMYB114 can also promote the expression of genes, such as the genes AtSOS1/3, AtNHX1 and AtLEA3 related to salt stress and the genes AtCCA1, AtCOR4 and AtCBF1/3 related to cold stress, further improving the tolerance of transgenic plants to salt and cold stress.
Collapse
|
18
|
Tang M, Liu L, Hu X, Zheng H, Wang Z, Liu Y, Zhu Q, Cui L, Xie S. Genome-wide characterization of R2R3-MYB gene family in Santalum album and their expression analysis under cold stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1142562. [PMID: 36938022 PMCID: PMC10017448 DOI: 10.3389/fpls.2023.1142562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Sandalwood (Santalum album) is a high-value multifunctional tree species that is rich in aromatic substances and is used in medicine and global cosmetics. Due to the scarcity of land resources in tropical and subtropical regions, land in temperate regions is a potential resource for the development of S. album plantations in order to meet the needs of S. album production and medicine. The R2R3-MYB transcription factor family is one of the largest in plants and plays an important role in the response to various abiotic stresses. However, the R2R3-MYB gene family of S. album has not been studied. In this study, 144 R2R3-MYB genes were successfully identified in the assembly genome sequence, and their characteristics and expression patterns were investigated under various durations of low temperature stress. According to the findings, 31 of the 114 R2R3-MYB genes showed significant differences in expression after cold treatment. Combining transcriptome and weighted gene co-expression network analysis (WGCNA) revealed three key candidate genes (SaMYB098, SaMYB015, and SaMYB068) to be significantly involved in the regulation of cold resistance in S. album. The structural characteristics, evolution, and expression pattern of the R2R3-MYB gene in S. album were systematically examined at the whole genome level for the first time in this study. It will provide important information for future research into the function of the R2R3-MYB genes and the mechanism of cold stress response in S. album.
Collapse
Affiliation(s)
- Minqiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Le Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Xu Hu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Haoyue Zheng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Zukai Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Yi Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Qing Zhu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Shangqian Xie
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), School of Forestry, Hainan University, Haikou, China
| |
Collapse
|
19
|
Han J, Li X, Li W, Yang Q, Li Z, Cheng Z, Lv L, Zhang L, Han D. Isolation and preliminary functional analysis of FvICE1, involved in cold and drought tolerance in Fragaria vesca through overexpression and CRISPR/Cas9 technologies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:270-280. [PMID: 36736009 DOI: 10.1016/j.plaphy.2023.01.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Cold and drought stresses are serious problems of strawberry cultivation in temperate and subtropical regions. In the molecular regulation system of cold and drought stresses, ICE transcription factors (TFs) are crucial. In this research, the FvICE1 was isolated from Fragaria vesca 'Hawaii 4', a bioinformatics analysis was conducted, overexpression vector and CRISPR/cas9 vector were constructed. The results showed that FvICE1 was a member of the bHLH TF family, with a length of 1608 bp, encoding 535 amino acids, and its molecular formula was C2504H3987N745O811S22. By observing the fusion protein 35S-FvICE1-GFP, it was found that FvICE1 was a nuclear protein. The qRT-PCR results demonstrated that FvICE1 was significantly upregulated in different tissues of Fragaria vesca after cold, drought, salt and heat treatments. The wild type (WT) strawberry was selected as the control group, FvICE1-overexpression strawberries showed high tolerance to cold and drought treatments at the phenotypic and physiological levels. On the contrary, fvice1 mutant strawberries obtained by CRISPR/cas9 editing technology had lower tolerance to cold and drought treatments. Moreover, the expression of FvCBF1, FvCBF2, FvCBF3, FvCOR413, FvRD22 and FvKIN1 was positively regulated in the FvICE1-overexpression strawberries and inhibited in fvice1 mutant strawberries. Overall, the current results suggested that FvICE1 functioned as a positively regulator of cold and drought resistances.
Collapse
Affiliation(s)
- Jiaxin Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Xingguo Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wenhui Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Qian Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Zhenghao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Zhi Cheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Long Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Lihua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
20
|
Liu W, Wang T, Wang Y, Liang X, Han J, Han D. MbMYBC1, a M. baccata MYB transcription factor, contribute to cold and drought stress tolerance in transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1141446. [PMID: 36875587 PMCID: PMC9978498 DOI: 10.3389/fpls.2023.1141446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Cold and drought stress considerably suppress the development of plants. In this study, a new MYB (v-myb avian myeloblastosis viral)TF gene, MbMYBC1, was isolated from the M. baccata and located in nucleus. MbMYBC1 has a positive response to low temperature and drought stress. After being introduced into Arabidopsis thaliana, the physiological indicators of transgenic Arabidopsis had corresponding changes under these two stresses, the activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) increased, electrolyte leakage rate (EL) and the content of proline increased, but the content of chlorophyll decreased. In addition, its overexpression can also activate the downstream expression of AtDREB1A, AtCOR15a, AtERD10B and AtCOR47 related to cold stress and AtSnRK2.4, AtRD29A, AtSOD1and AtP5CS1 related to drought stress. Based on these results, we speculate that MbMYBC1 can respond to cold and hydropenia signals, and can be used in transgenic technology to improve plant tolerance to low temperature and drought stress.
Collapse
Affiliation(s)
- Wanda Liu
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Tianhe Wang
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yu Wang
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xiaoqi Liang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Jilong Han
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
21
|
Duan Y, Han J, Guo B, Zhao W, Zhou S, Zhou C, Zhang L, Li X, Han D. MbICE1 Confers Drought and Cold Tolerance through Up-Regulating Antioxidant Capacity and Stress-Resistant Genes in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms232416072. [PMID: 36555710 PMCID: PMC9783906 DOI: 10.3390/ijms232416072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Malus baccata (L.) Borkh is an apple rootstock with good drought and cold resistance. The ICE gene is a key factor in the molecular mechanisms of plant drought and cold resistance. In the present research, the function of drought- and cold-induced MbICE1 of Malus baccata was investigated in Arabidopsis. According to GFP fluorescence images, MbICE1 was determined to be a nuclear protein. The MbICE1 was transferred to Arabidopsis, showing enhanced tolerance to drought and cold stresses. Under drought and cold treatments, the transgenic Arabidopsis had higher chlorophyll content and free proline content than WT plants, but the Malondialdehyde (MDA) content and electrolyte leakage (EL) were lower than those of WT plants. In addition, drought and cold led to a large accumulation of ROS (H2O2 and O2-) content in Arabidopsis, while overexpression of MbICE1 enhanced the antioxidant enzyme activity in Arabidopsis and improved the plant's resistance to stresses. Moreover, the accumulation of MbICE1 promoted the expression of AtCBF1, AtCBF2, AtCBF3, AtCOR15a, AtCOR47 and AtKIN1 genes in Arabidopsis. These data indicate that MbICE1 is a key regulator of drought and cold and can be used as a backup gene for breeding Malus rootstocks.
Collapse
Affiliation(s)
- Yadong Duan
- Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- Huma Cold Temperate Zone Experimental Station of Conservation and Utilization of Wild Plant Germplasm Resources, Daxing’anling 165000, China
| | - Jiaxin Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Baitao Guo
- Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Wenbo Zhao
- Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Shuang Zhou
- Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Chunwei Zhou
- Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Lei Zhang
- Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Xingguo Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (X.L.); (D.H.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (X.L.); (D.H.)
| |
Collapse
|
22
|
Liang X, Luo G, Li W, Yao A, Liu W, Xie L, Han M, Li X, Han D. Overexpression of a Malus baccata CBF transcription factor gene, MbCBF1, Increases cold and salinity tolerance in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:230-242. [PMID: 36272190 DOI: 10.1016/j.plaphy.2022.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/09/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
CBFs play a crucial role when plants are in adverse environmental conditions for growth. However, there are few reports on the role of CBF gene in stress responses of Malus plant. In this experiment, a new CBF TF was separated from M. baccata which was named MbCBF1. MbCBF1 protein was found to be localized in the nucleus after subcellular localization. Furthermore, the expression of MbCBF1 was highly accumulated in new leaves and roots due to the high influence of cold and high salt in M. baccata seedlings. After introducing MbCBF1 into A. thaliana, transgenic A. thaliana can better adapt to the living conditions of cold and high salt. The increased expression of MbCBF1 in A. thaliana also increased the contents of proline, remarkablely improved the activities of SOD, POD and CAT, but the content of MDA was decreased. Although the chlorophyll content also decreased, it decreased less in transgenic plants. In short, above date showed that MbCBF1 has a positive effect on improving A. thaliana cold and high salt tolerance. MbCBF1 can regulate the expression of its downstream gene in transgenic lines, up-regulate the expression of key genes COR15a, RD29a/bandCOR6.6/47 related to low temperature under cold conditions and NCED3, CAT1, P5CS1, RD22, DREB2A,PIF1/4, SOS1 and SnRK2.4 related to salt stress under high salt conditions, so as to further improve the adaptability and tolerance of the transgenic plants to low temperature and high salt environment.
Collapse
Affiliation(s)
- Xiaoqi Liang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs / National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions / College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Guijie Luo
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian, 223800, China
| | - Wenhui Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs / National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions / College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Anqi Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs / National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions / College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wanda Liu
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, 150040, China
| | - Liping Xie
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs / National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions / College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Meina Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs / National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions / College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Xingguo Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs / National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions / College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs / National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions / College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
23
|
Liu W, Liang X, Cai W, Wang H, Liu X, Cheng L, Song P, Luo G, Han D. Isolation and Functional Analysis of VvWRKY28, a Vitis vinifera WRKY Transcription Factor Gene, with Functions in Tolerance to Cold and Salt Stress in Transgenic Arabidopsis thaliana. Int J Mol Sci 2022; 23:13418. [PMID: 36362205 PMCID: PMC9658438 DOI: 10.3390/ijms232113418] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 08/06/2023] Open
Abstract
The grape (Vitis vinifera L.) not only has a long history of cultivation, but also has rich nutritional value and high economic value. However, grapes often face many threats in the growth process. For example, low temperature and salt stress restrict the growth status, yield, and geographical distribution of grapes. WRKY, as one of the largest transcription factor (TF) families in plants, participates in the response of plants to stress. VvWRKY28, a new zinc finger type transcriptional regulator gene, was isolated from Beichun (V. vinifera × V.amurensis) in this study. From the subcellular localization results, it can be concluded that VvWRKY28 was localized in the nucleus. The expression of VvWRKY28 was enriched in leaves (young and mature leaves), and cold and high salt conditions can induce high expression of VvWRKY28. After being transferred into Arabidopsis, VvWRKY28 greatly improved the tolerance of Arabidopsis to low temperature and high salt and also changed many physiological and biochemical indicators of transgenic Arabidopsis to cope with cold and high salt stimulation. The content of malondialdehyde (MDA) was decreased, but for chlorophyll and proline, their content increased, and the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were improved. In addition, under cold stress, binding with cis-acting elements promotes the expression of downstream genes related to cold stress (RAB18, COR15A, ERD10, PIF4, COR47, and ICS1). Moreover, it also plays an active role in regulating the expression of genes related to salt stress (NCED3, SnRK2.4, CAT2, SOD1, SOS2, and P5CS1) under salt stress. Therefore, these results provide evidence that VvWRKY28 may play a role in the process of plant cold and salt stress tolerance.
Collapse
Affiliation(s)
- Wei Liu
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Xiaoqi Liang
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Weijia Cai
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Hao Wang
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Xu Liu
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Longfei Cheng
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Penghui Song
- Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin 150028, China
| | - Guijie Luo
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Deguo Han
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
24
|
Guo H, Sun X, Wang B, Wu D, Sun H, Wang Y. The upstream regulatory mechanism of BplMYB46 and the function of upstream regulatory factors that mediate resistance to stress in Betula platyphylla. FRONTIERS IN PLANT SCIENCE 2022; 13:1030459. [PMID: 36388548 PMCID: PMC9640943 DOI: 10.3389/fpls.2022.1030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Previously, we have shown that the transcription factor BplMYB46 in Betula platyphylla can enhance tolerance to salt and osmotic stress and promote secondary cell wall deposition, and we characterized its downstream regulatory mechanism. However, its upstream regulatory mechanism remains unclear. Here, the promoter activity and upstream regulatory factors of BplMYB46 were studied. Analyses of β-glucuronidase (GUS) staining and activity indicated that BplMYB46 promoter was specific temporal and spatial expression, and its expression can be induced by salt and osmotic stress. We identified three upstream regulatory factors of BplMYB46: BpDof1, BpWRKY3, and BpbZIP3. Yeast-one hybrid assays, GUS activity, chromatin immunoprecipitation, and quantitative real-time polymerase chain reaction revealed that BpDof1, BpWRKY3, and BpbZIP3 can directly regulate the expression of BplMYB46 by specifically binding to Dof, W-box, and ABRE elements in the BplMYB46 promoter, respectively. BpDof1, BpWRKY3, and BpbZIP3 were all localized to the nucleus, and their expressions can be induced by stress. Overexpression of BpDof1, BpWRKY3, and BpbZIP3 conferred the resistance of transgenic birch plants to salt and osmotic stress. Our findings provide new insights into the upstream regulatory mechanism of BplMYB46 and reveal new upstream regulatory genes that mediate resistance to adverse environments. The genes identified in our study provide novel targets for the breeding of forest tree species.
Collapse
Affiliation(s)
- Huiyan Guo
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaomeng Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bo Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Di Wu
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hu Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yucheng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
25
|
Overexpression of a Fragaria vesca MYB Transcription Factor Gene ( FvMYB82) Increases Salt and Cold Tolerance in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms231810538. [PMID: 36142448 PMCID: PMC9503638 DOI: 10.3390/ijms231810538] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
The MYB transcription factor (TF) family is one of the largest transcription families in plants, which is widely involved in the responses to different abiotic stresses, such as salt, cold, and drought. In the present study, a new MYB TF gene was cloned from Fragaria vesca (a diploid strawberry) and named FvMYB82. The open reading frame (ORF) of FvMYB82 was found to be 960 bp, encoding 319 amino acids. Sequence alignment results and predictions of the protein structure indicated that the FvMYB82 contained the conserved R2R3-MYB domain. Subcellular localization analysis showed that FvMYB82 was localized onto the nucleus. Furthermore, the qPCR showed that the expression level of FvMYB82 was higher in new leaves and roots than in mature leaves and stems. When dealing with different stresses, the expression level of FvMYB82 in F. vesca seedlings changed markedly, especially for salt and cold stress. When FvMYB82 was introduced into Arabidopsis thaliana, the tolerances to salt and cold stress of FvMYB82-OE A. thaliana were greatly improved. When dealt with salt and cold treatments, compared with wild-type and unloaded line (UL) A. thaliana, the transgenic lines had higher contents of proline and chlorophyll, as well as higher activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). However, the transgenic A. thaliana had lower level of malondialdehyde (MDA) and electrolytic leakage (EL) than wild-type and UL A. thaliana under salt and cold stress. Meanwhile, FvMYB82 can also regulate the expression of downstream genes associated with salt stress (AtSnRK2.4, AtSnRK2.6, AtKUP6, and AtNCED3) and cold stress (AtCBF1, AtCBF2, AtCOR15a, and AtCOR78). Therefore, these results indicated that FvMYB82 probably plays an important role in the response to salt and cold stresses in A. thaliana by regulating downstream related genes.
Collapse
|
26
|
Li X, Liang X, Li W, Yao A, Liu W, Wang Y, Yang G, Han D. Isolation and Functional Analysis of MbCBF2, a Malus baccata (L.) Borkh CBF Transcription Factor Gene, with Functions in Tolerance to Cold and Salt Stress in Transgenic Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23179827. [PMID: 36077223 PMCID: PMC9456559 DOI: 10.3390/ijms23179827] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
CBF transcription factors (TFs) are key regulators of plant stress tolerance and play an integral role in plant tolerance to adverse growth environments. However, in the current research situation, there are few reports on the response of the CBF gene to Begonia stress. Therefore, this experiment investigated a novel CBF TF gene, named MbCBF2, which was isolated from M. baccata seedlings. According to the subcellular localization results, the MbCBF2 protein was located in the nucleus. In addition, the expression level of MbCBF2 was higher in new leaves and roots under low-temperature and high-salt induction. After the introduction of MbCBF2 into Arabidopsis thaliana, the adaptability of transgenic A. thaliana to cold and high-salt environments was significantly enhanced. In addition, the high expression of MbCBF2 can also change many physiological indicators in transgenic A. thaliana, such as increased chlorophyll and proline content, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activity, and reduced malondialdehyde (MDA) content. Therefore, it can be seen from the above results that MbCBF2 can positively regulate the response of A. thaliana to low-temperature and osmotic stress. In addition, MbCBF2 can also regulate the expression of its downstream genes in transgenic lines. It can not only positively regulate the expression of the downstream key genes AtCOR15a, AtERD10, AtRD29a/b and AtCOR6.6/47, related to cold stress at low temperatures, but can also positively regulate the expression of the downstream key genes AtNCED3, AtCAT1, AtP5CS, AtPIF1/4 and AtSnRK2.4, related to salt stress. That is, the overexpression of the MbCBF2 gene further improved the adaptability and tolerance of transgenic plants to low-temperature and high-salt environments.
Collapse
Affiliation(s)
- Xingguo Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoqi Liang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenhui Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Anqi Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wanda Liu
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Yu Wang
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Guohui Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (G.Y.); (D.H.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (G.Y.); (D.H.)
| |
Collapse
|
27
|
Yang F, Lv G. Characterization of the gene expression profile response to drought stress in Haloxylon using PacBio single-molecule real-time and Illumina sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:981029. [PMID: 36051288 PMCID: PMC9424927 DOI: 10.3389/fpls.2022.981029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Haloxylon ammodendron and Haloxylon persicum are important drought-tolerant plants in northwest China. The whole-genome sequencing of H. ammodendron and H. persicum grown in their natural environment is incomplete, and their transcriptional regulatory network in response to drought environment remains unclear. To reveal the transcriptional responses of H. ammodendron and H. persicum to an arid environment, we performed single-molecule real-time (SMRT) and Illumina RNA sequencing. In total, 20,246,576 and 908,053 subreads and 435,938 and 210,334 circular consensus sequencing (CCS) reads were identified by SMRT sequencing of H. ammodendron and H. persicum, and 15,238 and 10,135 unigenes, respectively, were successfully obtained. In addition, 9,794 and 7,330 simple sequence repeats (SSRs) and 838 and 71 long non-coding RNAs were identified. In an arid environment, the growth of H. ammodendron was restricted; plant height decreased significantly; basal and branch diameters became thinner and hydrogen peroxide (H2O2) content and peroxidase (POD) activity were increased. Under dry and wet conditions, 11,803 and 15,217 differentially expressed genes (DEGs) were identified in H. ammodendron and H. persicum, respectively. There were 319 and 415 DEGs in the signal transduction pathways related to drought stress signal perception and transmission, including the Ca2+ signal pathway, the ABA signal pathway, and the MAPK signal cascade. In addition, 217 transcription factors (TFs) and 398 TFs of H. ammodendron and H. persicum were differentially expressed, including FAR1, MYB, and AP2/ERF. Bioinformatic analysis showed that under drought stress, the expression patterns of genes related to active oxygen [reactive oxygen species (ROS)] scavenging, functional proteins, lignin biosynthesis, and glucose metabolism pathways were altered. Thisis the first full-length transcriptome report concerning the responses of H. ammodendron and H. persicum to drought stress. The results provide a foundation for further study of the adaptation to drought stress. The full-length transcriptome can be used in genetic engineering research.
Collapse
Affiliation(s)
- Fang Yang
- School of Ecology and Environment, Xinjiang University, Ürümqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Ürümqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Ürümqi, China
| | - Guanghui Lv
- School of Ecology and Environment, Xinjiang University, Ürümqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Ürümqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Ürümqi, China
| |
Collapse
|
28
|
Liang X, Li Y, Yao A, Liu W, Yang T, Zhao M, Zhang B, Han D. Overexpression of MxbHLH18 Increased Iron and High Salinity Stress Tolerance in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23148007. [PMID: 35887354 PMCID: PMC9319408 DOI: 10.3390/ijms23148007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 01/21/2023] Open
Abstract
In the life cycle of apple, it will suffer a variety of abiotic stresses, such as iron stress and salt stress. bHLH transcription factors (TFs) play an indispensable role in the response of plants to stress. In this study, a new bHLH gene named MxbHLH18 was separated from Malus xiaojinensis. According to the results of subcellular localization, MxbHLH18 was localized in the nucleus. Salt stress and iron stress affected the expression of MxbHLH18 in Malus xiaojinensis seedlings to a large extent. Due to the introduction of MxbHLH18, the resistance of Arabidopsis thaliana to salt, high iron and low iron was significantly enhanced. Under the environmental conditions of high iron and low iron, the overexpression of MxbHLH18 increased many physiological indexes of transgenic Arabidopsis compared to wild type (WT), such as root length, fresh weight and iron content. The high level expression of MxbHLH18 in transformed Arabidopsis thaliana can not only increased the content of chlorophyll and proline, as well as increasing the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT); it also reduced the content of malondialdehyde (MDA), which was more obvious under high salt conditions. In addition, the relative conductivity, H2O2 content and O2− content in transgenic Arabidopsis decreased under salt stress. Meanwhile, MxbHLH18 can also regulate the expression of downstream genes associated with salt stress (AtCBF1/2/3, AtKIN1 and AtCOR15a/b) and iron stress (AtIRT1, AtFRO2, AtNAS2, ATACT2, AtZIF1 and AtOPT3). Therefore, MxbHLH18 can actively promote the adaptability of plants to the growth environment of salt and low and/or iron.
Collapse
Affiliation(s)
- Xiaoqi Liang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (Y.L.); (A.Y.); (T.Y.); (M.Z.)
| | - Yingmei Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (Y.L.); (A.Y.); (T.Y.); (M.Z.)
| | - Anqi Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (Y.L.); (A.Y.); (T.Y.); (M.Z.)
| | - Wanda Liu
- Horticulture Branch of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China;
| | - Tianyu Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (Y.L.); (A.Y.); (T.Y.); (M.Z.)
| | - Mengfei Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (Y.L.); (A.Y.); (T.Y.); (M.Z.)
| | - Bingxiu Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (Y.L.); (A.Y.); (T.Y.); (M.Z.)
- Correspondence: (B.Z.); (D.H.); Tel.: +86-451-55190781 (D.H.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions/College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.L.); (Y.L.); (A.Y.); (T.Y.); (M.Z.)
- Correspondence: (B.Z.); (D.H.); Tel.: +86-451-55190781 (D.H.)
| |
Collapse
|
29
|
Sun Y, Song K, Guo M, Wu H, Ji X, Hou L, Liu X, Lu S. A NAC Transcription Factor from 'Sea Rice 86' Enhances Salt Tolerance by Promoting Hydrogen Sulfide Production in Rice Seedlings. Int J Mol Sci 2022; 23:ijms23126435. [PMID: 35742880 PMCID: PMC9223411 DOI: 10.3390/ijms23126435] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Soil salinity severely threatens plant growth and crop performance. Hydrogen sulfide (H2S), a plant signal molecule, has been implicated in the regulation of plant responses to salinity stress. However, it is unclear how the transcriptional network regulates H2S biosynthesis during salt stress response. In this study, we identify a rice NAC (NAM, ATAF and CUC) transcription factor, OsNAC35-like (OsNACL35), from a salt-tolerant cultivar ‘Sea Rice 86′ (SR86) and further show that it may have improved salt tolerance via enhanced H2S production. The expression of OsNACL35 was significantly upregulated by high salinity and hydrogen peroxide (H2O2). The OsNACL35 protein was localized predominantly in the nucleus and was found to have transactivation activity in yeast. The overexpression of OsNACL35 (OsNACL35-OE) in japonica cultivar Nipponbare ramatically increased resistance to salinity stress, whereas its dominant-negative constructs (SUPERMAN repression domain, SRDX) conferred hypersensitivity to salt stress in the transgenic lines at the vegetative stage. Moreover, the quantitative real-time PCR analysis showed that many stress-associated genes were differentially expressed in the OsNACL35-OE and OsNACL35-SRDX lines. Interestingly, the ectopic expression of OsNACL35 triggered a sharp increase in H2S content by upregulating the expression of a H2S biosynthetic gene, OsDCD1, upon salinity stress. Furthermore, the dual luciferase and yeast one-hybrid assays indicated that OsNACL35 directly upregulated the expression of OsDCD1 by binding to the promoter sequence of OsDCD1. Taken together, our observations illustrate that OsNACL35 acts as a positive regulator that links H2S production to salt stress tolerance, which may hold promising utility in breeding salt-tolerant rice cultivar.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xin Liu
- Correspondence: (X.L.); (S.L.); Tel.: +86-0532-58957480 (S.L.)
| | - Songchong Lu
- Correspondence: (X.L.); (S.L.); Tel.: +86-0532-58957480 (S.L.)
| |
Collapse
|