1
|
Ali MA, Khalifa AA, Elblehi SS, Elsokkary NH, El-Mas MM. Effects of remote ischemic preconditioning and/or erythropoietin on lung injury induced by skeletal ischemia reperfusion: role of the NLRP3 inflammasome. Inflamm Res 2025; 74:67. [PMID: 40272513 DOI: 10.1007/s00011-025-02033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/20/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Remote ischemic preconditioning (RIPC) diminishes multi-organ failure induced by skeletal muscle ischemia and reperfusion (S-I/R). The current study investigated whether skeletal RIPC protection against S-I/R-induced acute lung injury (ALI) could be facilitated following simultaneous exposure to the glycoprotein hormone erythropoietin (EPO) in rats and whether this interaction is modulated by the NLRP3 inflammasome. METHODS S-I/R challenge was performed by 3-h ischemia followed by 3-h reperfusion of the right hindlimb, whereas RIPC involved three 20-min brief consecutive I/R cycles of the contralateral hindlimb. RESULTS The lung injurious response to S-I/R was verified by: (i) decreases in minute respiratory volume (MRV), forced expiratory volume 1 (FEV1) and functional vital capacity (FVC), (ii) increases in respiratory rate (RR), (iii) falls in lung surfactant protein-D (SP-D) and rises in of lung plasminogen activator inhibitor-1 (PAI-1) and intercellular adhesion molecule-1 (ICAM-1), and (iv) disruption of alveolar architecture. These lung defects were partially amended by RIPC or EPO (500 or 5000 IU/kg). Further, the prior exposure to RIPC plus EPO-500 was more effective than separate interventions in rectifying ALI damages. Molecularly, the dual RIPC/EPO-500 regimen was also more effective in reversing the S-I/R-associated increments in pulmonary expressions of NLRP3 and related inflammatory (TLR4, MyD88, TRAF, NF-κB, TNF-α, IL-1β, and IL-18), apoptotic (ASC, procaspse-1, caspase-1), and microRNA signals (increases in miR-21 and decreases miR-495). CONCLUSION These findings suggest a pivotal role for the suppression of NLRP3 inflammasome and interconnected cellular offenses in the augmented therapeutic potential of the RIPC/EPO-500 regimen against S-I/R-induced ALI.
Collapse
Affiliation(s)
- Mennatallah A Ali
- PharmD Program, Department of Pharmacology and Toxicology, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| | - Asmaa A Khalifa
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nahed H Elsokkary
- Department of Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Al-Jabriyah Block 4, Hawally, Kuwait.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
2
|
Xiong Y, Wang L, Li B, Fu B, Sha Z, Liu J, Tian R, Yao R, Lin F, Cong Z, Du Y, Lin X, Wu H. Extracellular vesicles from adipose-derived mesenchymal stem cells alleviate acute lung injury via the CBL/AMPK signaling pathway. BMC Biol 2025; 23:90. [PMID: 40165177 PMCID: PMC11959995 DOI: 10.1186/s12915-025-02178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Acute lung injury (ALI) which is caused by Staphylococcus aureus (SA), is a serious lung disease that threatens human health. Although some current treatments are effective in alleviating ALI, they still have a significant mortality rate. At present, adipose-derived mesenchymal stem cells (ADSCs)-derived extracellular vesicles (EVs) have been investigated for the treatment of various diseases. Here, we examined the role of ADSCs-derived EVs in regulating apoptosis and inflammation during ALI. RESULTS We showed that ADSCs and ADSCs-derived EVs supplementation could improve lung injury, restore mitochondrial function, and inhibit inflammation and apoptosis in ALI mice. Furthermore, miR-320a was present in EVs derived from ADSCs, and it can be transferred into lung tissue. In vitro, Casitas B-lineage lymphoma (CBL) expression was inhibited by miR-320a mimics. Finally, we found that miR-320a alleviated mitochondrial damage, inflammation, and apoptosis via the CBL/AMPK/JNK pathway. CONCLUSIONS In conclusion, EVs from ADSCs could alleviate ALI via the CBL/AMPK signaling pathway. Therefore, the purpose of our study was to investigate the application of ADSC-derived EVs in mitigating ALI by modulating metabolic processes.
Collapse
Affiliation(s)
- Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Lulu Wang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Bohao Li
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Jin Liu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Rong Tian
- Department of Pathology, Chongqing Hygeia Hospital, Chongqing, 401331, China
| | - Rui Yao
- Department of Pathology, Chongqing Hygeia Hospital, Chongqing, 401331, China
| | - Feng Lin
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Zixuan Cong
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Yongliang Du
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaoyuan Lin
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
3
|
Alatawi FS, Omran AME, Rashad E, Abdel-Rahman ON, Soliman AF. Rutin attenuates bleomycin-induced acute lung injury via miR-9-5p mediated NF-κB signaling inhibition: network pharmacology analysis and experimental evidence. Front Pharmacol 2025; 16:1522690. [PMID: 40110126 PMCID: PMC11920148 DOI: 10.3389/fphar.2025.1522690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Although successfully used as a chemotherapeutic agent in various malignant diseases, acute lung injury (ALI) is one of the major limitations of bleomycin (BLM). Seeking reliable natural remedies, this study aimed to explore the potential effect of rutin on BLM-induced ALI. Methods Targets of rutin and ALI were collected using various databases. Enrichment analyses of common targets were conducted, a protein-protein interaction (PPI) network was constructed, the hub genes were identified, and the upstream miRNA interacting with the top hub gene was later predicted. A BLM-induced ALI rat model was established to verify rutin potential effects, and the selected hub gene expression with its upstream regulatory miRNA and a downstream set of targets were examined to elucidate the action mechanism. Results A total of 147 genes have been identified as potential therapeutic targets of rutin to treat BLM-induced ALI. Data from the enrichment and PPI analyses and the prediction of the upstream miRNAs indicated that the most worthwhile pair to study was miR-9a-5p/Nfkb1. In vivo findings showed that rutin administration significantly ameliorated pulmonary vascular permeability, inflammatory cells alveolar infiltration, induction of proinflammatory cytokines in the bronchoalveolar lavage fluid, and lung histology. Mechanistically, rutin downregulated the gene expression level of Nfkb1, Ptgs2, Il18, and Ifng, alongside their protein products, NF-κB p50, COX-2, IL-18, and IFN-γ, accompanied by an upregulation of rno-miR-9a-5p, Il10, and IL-10 expression in lung tissues. Conclusion Combining network pharmacology and an in vivo study revealed that miR-9-5p/Nfkb1 axis could mediate the meliorative effect of rutin against BLM-induced ALI.
Collapse
Affiliation(s)
- Fatema S Alatawi
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Awatif M E Omran
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Omnia N Abdel-Rahman
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Ahmed F Soliman
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Zaki A, Mohsin M, Khan S, Khan A, Ahmad S, Verma A, Ali S, Fatma T, Syed MA. Vitexin mitigates oxidative stress, mitochondrial damage, pyroptosis and regulates small nucleolar RNA host gene 1/DNA methyltransferase 1/microRNA-495 axis in sepsis-associated acute lung injury. Inflammopharmacology 2025; 33:1435-1454. [PMID: 39641834 DOI: 10.1007/s10787-024-01609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
AIM OF THE STUDY This study examined vitexin's effect on sepsis-induced acute lung injury. We used network pharmacology and in vivo and in vitro experiments were performed to elucidate vitexin's role in preventing pyroptosis and regulating small nucleolar RNA host gene 1 (SNHG1)/DNA methyltransferase 1 (DNMT1)/microRNA-495 (miR-495 axis. MATERIALS AND METHODS We developed an acute lung injury model using C57BL/6 mice and MLE-12 cells. Through a combination of network pharmacology and in vitro screening, vitexin was identified as the most promising anti-inflammatory compound. Multiple techniques such as western blotting, real-time PCR, Hematoxylin and eosin staining, immunohistochemistry, and TUNEL assay were used. Additionally, immunofluorescence, DCFDA and TMRE staining, flow cytometry, methylation-specific PCR, and gene transfection techniques were performed to elucidate vitexin's potential targets and underlying mechanisms. RESULTS Vitexin treatment significantly reduced lung damage, neutrophil infiltration, and inflammation while improving tight junction integrity. In LPS-treated RAW264.7 macrophages and a septic mouse BALF-induced MLE-12 cell injury model, vitexin demonstrated anti-inflammatory effects, promoted M2 macrophage polarization, and enhanced regenerative markers. It also decreased oxidative stress, mitigated apoptosis and pyroptosis, and improved mitochondrial function. Our research uncovered a novel epigenetic regulatory mechanism involving lncRNA SNHG1, DNMT1, and miR-495. CONCLUSION Vitexin's ability to reduce inflammation, counteract oxidative stress, and modulate epigenetic processes. These findings underscore the promising role of vitexin as a treatment for ALI generated by sepsis. The SNHG1/miR-495 axis, which has been identified, represents a new target for future therapies in acute lung injury.
Collapse
Affiliation(s)
- Almaz Zaki
- Translational Research Lab, Srinivas Ramanujan Block, Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biosciences, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd Mohsin
- Translational Research Lab, Srinivas Ramanujan Block, Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Salman Khan
- Translational Research Lab, Srinivas Ramanujan Block, Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Aman Khan
- Translational Research Lab, Srinivas Ramanujan Block, Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shaniya Ahmad
- Translational Research Lab, Srinivas Ramanujan Block, Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Amit Verma
- Division of Diagnostic Innovation, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Tasneem Fatma
- Department of Biosciences, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mansoor Ali Syed
- Translational Research Lab, Srinivas Ramanujan Block, Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
5
|
Di Pietro P, Abate AC, Izzo C, Toni AL, Rusciano MR, Folliero V, Dell’Annunziata F, Granata G, Visco V, Motta BM, Campanile A, Vitale C, Prete V, Gatto C, Scarpati G, Poggio P, Galasso G, Pagliano P, Piazza O, Santulli G, Franci G, Carrizzo A, Vecchione C, Ciccarelli M. Plasma miR-1-3p levels predict severity in hospitalized COVID-19 patients. Br J Pharmacol 2025; 182:451-467. [PMID: 39572402 PMCID: PMC11791538 DOI: 10.1111/bph.17392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/09/2024] [Indexed: 12/13/2024] Open
Abstract
Background and Purpose: Accumulating evidence suggests circulating microRNAs (miRNAs) are important regulators of biological processes involved in COVID-19 complications. We sought to assess whether circulating miRNAs are associated with COVID-19 clinical phenotype and outcome. Experimental Approach: To discover signatures of circulating miRNAs associated with COVID-19 disease severity and mortality, miRNA quantification was performed on plasma samples collected at hospital admission from a cohort of 106 patients with mild or severe COVID-19. Variable importance projection scoring with partial least squared discriminant analysis and Random Forest Classifier were employed to identify key miRNAs associated with COVID-19 severity. ROC analysis was performed to detect promising miRNA able to discriminate between mild and severe COVID status. Key Results: Hsa-miR-1-3p was the most promising miRNA in differentiating COVID-19 patients who developed severe, rather than mild, disease. Hsa-miR-1-3p levels rose with increasing disease severity, and the highest levels were associated with prolonged hospital length of stay and worse survival. Longitudinal miRNA profiling demonstrated that plasma hsa-miR-1-3p expression levels were significantly increased in patients during acute infection compared with those observed 6 months after the disease onset. Specific blockade of miR-1-3p in SARS-CoV-2–infected endothelial cells decreased up-regulation of genes involved in endothelialto-mesenchymal transition, inflammation and thrombosis. Furthermore, miR-1-3p inhibition reversed the impaired angiogenic capacity induced by plasma from patients with severe COVID-19. Conclusion and Implications: Our data establish a novel role for miR-1-3p in the pathogenesis of COVID-19 infection and provide a strong rationale for its usefulness as early prognostic biomarkers of severity status and survival.
Collapse
Affiliation(s)
- Paola Di Pietro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Angela Carmelita Abate
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Carmine Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Anna Laura Toni
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Maria Rosaria Rusciano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Federica Dell’Annunziata
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanni Granata
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Valeria Visco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Benedetta Maria Motta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Alfonso Campanile
- San Giovanni di Dio e Ruggi D’Aragona University Hospital, Salerno, Italy
| | - Carolina Vitale
- San Giovanni di Dio e Ruggi D’Aragona University Hospital, Salerno, Italy
| | - Valeria Prete
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Cristina Gatto
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Giuliana Scarpati
- San Giovanni di Dio e Ruggi D’Aragona University Hospital, Salerno, Italy
| | | | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
- Department of Advanced Biomedical Science, “Federico II” University, Naples, Italy
- International Translational Research and Medical Education (ITME) Consortium, Naples, Italy
- Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York, USA
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| |
Collapse
|
6
|
Timofeeva AV, Fedorov IS, Nikonets AD, Tarasova AM, Balashova EN, Degtyarev DN, Sukhikh GT. Increased Levels of hsa-miR-199a-3p and hsa-miR-382-5p in Maternal and Neonatal Blood Plasma in the Case of Placenta Accreta Spectrum. Int J Mol Sci 2024; 25:13309. [PMID: 39769074 PMCID: PMC11678653 DOI: 10.3390/ijms252413309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Despite the increasing number of placenta accreta spectrum (PAS) cases in recent years, its impact on neonatal outcomes and respiratory morbidity, as well as the underlying pathogenetic mechanism, has not yet been extensively studied. Moreover, no study has yet demonstrated the effectiveness of antenatal corticosteroid therapy (CT) for the prevention of respiratory distress syndrome (RDS) in newborns of mothers with PAS at the molecular level. In this regard, microRNA (miRNA) profiling by small RNA deep sequencing and quantitative real-time PCR was performed on 160 blood plasma samples from preterm infants (gestational age: 33-36 weeks) and their mothers who had been diagnosed with or without PAS depending on the timing of the antenatal RDS prophylaxis. A significant increase in hsa-miR-199a-3p and hsa-miR-382-5p levels was observed in the blood plasma of the newborns from mothers with PAS compared to the control group. A clear trend toward the normalization of hsa-miR-199a-3p and hsa-miR-382-5p levels in the neonatal blood plasma of the PAS groups was observed when CT was administered within 14 days before delivery, but not beyond 14 days. Direct correlations were found among the hsa-miR-382-5p level in neonatal blood plasma and the hsa-miR-199a-3p level in the same sample (r = 0.49; p < 0.001), the oxygen requirements in the NICU (r = 0.41; p = 0.001), the duration of the NICU stay (r = 0.31; p = 0.019), and the severity of the newborn's condition based on the NEOMOD scale (r = 0.36; p = 0.005). Logistic regression models based on the maternal plasma levels of hsa-miR-199a-3p and hsa-miR-382-5p predicted the need for cardiotonic therapy, invasive mechanical ventilation, or high-frequency oscillatory ventilation in newborns during the early neonatal period, with a sensitivity of 95-100%. According to the literary data, these miRNAs regulate fetal organogenesis via IGF-1, the formation of proper lung tissue architecture, surfactant synthesis in alveolar cells, and vascular tone.
Collapse
Affiliation(s)
- Angelika V. Timofeeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician Kulakov V.I., 117997 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
7
|
Fan W, Gui B, Zhou X, Li L, Chen H. A narrative review on lung injury: mechanisms, biomarkers, and monitoring. Crit Care 2024; 28:352. [PMID: 39482752 PMCID: PMC11526606 DOI: 10.1186/s13054-024-05149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024] Open
Abstract
Lung injury is closely associated with the heterogeneity, severity, mortality, and prognosis of various respiratory diseases. Effective monitoring of lung injury is crucial for the optimal management and improved outcomes of patients with lung diseases. This review describes acute and chronic respiratory diseases characterized by significant lung injury and current clinical tools for assessing lung health. Furthermore, we summarized the mechanisms of lung cell death observed in these diseases and highlighted recently identified biomarkers in the plasma indicative of injury to specific cell types and scaffold structure in the lung. Last, we propose an artificial intelligence-driven lung injury monitoring model to assess disease severity, and predict mortality and prognosis, aiming to achieve precision and personalized medicine.
Collapse
Affiliation(s)
- Wenping Fan
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China
| | - Biyu Gui
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China
| | - Xiaolei Zhou
- Department of Pulmonary Medicine, Chest Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Li Li
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China.
| | - Huaiyong Chen
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China.
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China.
- Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China.
| |
Collapse
|
8
|
Zhang L, Zhu W, Zhang Z. Combined analysis of cecal microbiota and metabolomics reveals the intervention mechanism of Dayuan Yin in acute lung injury. Front Pharmacol 2024; 15:1436017. [PMID: 39318776 PMCID: PMC11420052 DOI: 10.3389/fphar.2024.1436017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/10/2024] [Indexed: 09/26/2024] Open
Abstract
The ancient Chinese medicinal formula, Dayuan Yin (DYY), has a long history of use in treating respiratory ailments and is shown to be effective in treating acute infectious diseases. This study aims to explore how DYY may impact intestinal flora and metabolites induced by acute lung injury (ALI). ALI rats were induced with lipopolysaccharide (LPS) to serve as models for assessing the anti-ALI efficacy of DYY through multiple lung injury indices. Changes in intestinal microflora were assessed via 16SrRNA gene sequencing, while cecum contents were analyzed using non-targeted metabonomics. Differential metabolites were identified through data analysis, and correlations between metabolites, microbiota, and inflammatory markers were examined using Pearson's correlation analysis. DYY demonstrated a significant improvement in LPS-induced lung injury and altered the composition of intestinal microorganisms, and especially reduced the potential harmful bacteria and enriched the beneficial bacteria. At the gate level, DYY exhibited a significant impact on the abundance of Bacteroidota and Firmicutes in ALI rats, as well as on the regulation of genera such as Ruminococcus, Lactobacillus, and Romboutsia. Additionally, cecal metabonomics analysis revealed that DYY effectively modulated the abnormal expression of 12 key metabolic biomarkers in ALI rats, thereby promoting intestinal homeostasis through pathways such as purine metabolism. Furthermore, Pearson's analysis indicated a strong correlation between the dysregulation of intestinal microbiota, differential metabolites, and inflammation. These findings preliminarily confirm that ALI is closely related to cecal microbial and metabolic disorders, and DYY can play a protective role by regulating this imbalance, which provides a new understanding of the multi-system linkage mechanism of DYY improving ALI.
Collapse
Affiliation(s)
- Lei Zhang
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Wei Zhu
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Zepeng Zhang
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| |
Collapse
|
9
|
Tao W, Min S, Chen G, He X, Meng Y, Li L, Chen J, Li Y. Tetramethylpyrazine ameliorates LPS-induced acute lung injury via the miR-369-3p/DSTN axis. Sci Rep 2024; 14:20006. [PMID: 39198493 PMCID: PMC11358269 DOI: 10.1038/s41598-024-70131-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Acute lung injury (ALI) is a severe clinical respiratory condition characterized by high rates of mortality and morbidity, for which effective treatments are currently lacking. In this study, lipopolysaccharide (LPS) was used to induce ALI mice, demonstrating the efficacy of tetramethylpyrazine (TMP) in ameliorating ALI. Subsequent we perfored high-throughput sequencing analysis and used Targetscan 8.0 and miRWalk 3.0 databases to predict the interaction between microRNAs and destrin (DSTN), ultimately identifying miR-369-3p as the focus of the investigation. The adenovirus carrying miR-369-3p was administered one week prior to LPS-induced in order to assess its potential efficacy in ameliorating ALI in mice. The findings indicated that the overexpression of miR-369-3p resulted in enhanced lung function, reduced pulmonary edema, inflammation, and permeability in LPS-induced ALI mice, while the suppression of miR-369-3p exacerbated the damage in these mice. Furthermore, the beneficial effects of TMP on LPS-induced ALI were negated by the downregulation of miR-369-3p. The results of our study demonstrate that TMP mitigates LPS-induced ALI through upregulation of miR-369-3p. Consequently, the findings of this study advocate for the clinical utilization of TMP in ALI treatment, with miR-369-3p emerging as a promising target for future ALI interventions.
Collapse
Affiliation(s)
- Weiting Tao
- Department of Pathophysiology, Bengbu Medical University, Bengbu, Anhui, China
| | - Simin Min
- Suzhou Hospital Affiliated to Anhui Medical University, Suzhou, Anhui, China
| | - Guofeng Chen
- School of Medicine and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| | - Xu He
- School of Medicine and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| | - Yuhang Meng
- School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Li Li
- Department of Pathophysiology, Bengbu Medical University, Bengbu, Anhui, China
| | - Jie Chen
- Department of Pathophysiology, Bengbu Medical University, Bengbu, Anhui, China
| | - Yan Li
- School of Medicine and Health Engineering, Changzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|
10
|
Ma H, Zhang C, Cheng F, An H. Plasma MiR-190 is a potential clinical biomarker for acute respiratory distress syndrome in children and its regulatory role in ARDS cell models by targeting KLF15. Pediatr Neonatol 2024:S1875-9572(24)00129-3. [PMID: 39127594 DOI: 10.1016/j.pedneo.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The present research aimed to investigate the clinical value of plasma miR-190 in children with acute respiratory distress syndrome (ARDS) and the impact of miR-190 on LPS-induced ARDS cell models. METHODS The plasma miR-190 levels were measured using real-time quantitative reverse transcription PCR (RT-qPCR). LPS-treated human pulmonary microvascular endothelial cells (HPMECs) were established and then transfected with miR-190 mimic, inhibitor, or miR-negative controls. The levels of inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). The effects of miR-190 on HPMEC proliferation and apoptosis were evaluated by CCK-8 assay and flow cytometry. The regulation of KLF15 by miR-190 was detected by luciferase report assay. RESULTS The plasma miR-190 expression was increased in ARDS children and it was positively related to the severity and 28 day-survival. Plasma miR-190 could distinguish ARDS children from healthy children. Inhibition of miR-190 increased LPS-induced HPMEC cell proliferation and decreased cell apoptosis and inflammatory cytokines IL-6, IL-1β, and TNF-α. KLF15 was a direct target of miR-190. CONCLUSION Increased plasma miR-190 may be a clinical diagnostic and prognostic predictor for ARDS children. Inhibition of miR-190 may improve LPS-induced ARDS by increasing cell proliferation, inhibiting cell apoptosis and inflammatory response by targeting KLF15.
Collapse
Affiliation(s)
- Hongfen Ma
- Department of Pediatrics, Xingtai People's Hospital, Xingtai, Hebei, 054000, China
| | - Cuicui Zhang
- Department of Pediatrics, Xingtai People's Hospital, Xingtai, Hebei, 054000, China
| | - Fang Cheng
- Department of Pediatrics, Xingtai People's Hospital, Xingtai, Hebei, 054000, China
| | - Hong An
- Department of Pediatrics, Xingtai People's Hospital, Xingtai, Hebei, 054000, China.
| |
Collapse
|
11
|
Fang F, Wang B, Lu X, Wang L, Chen X, Wang G, Yang Y. miR-126a-5p inhibits H1N1-induced inflammation and matrix protease secretion in lung fibroblasts by targeting ADAMTS-4. Arch Virol 2024; 169:164. [PMID: 38990242 DOI: 10.1007/s00705-024-06086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/26/2024] [Indexed: 07/12/2024]
Abstract
Upregulation of ADAMTS-4 has been reported to have an important role in lung injury, and ADAMTS-4 expression is regulated by miR-126a-5p in abdominal aortic aneurysms. The aim of this study was to investigate whether miR-126a-5p/ADAMTS-4 plays a role in influenza-virus-induced lung injury. Lung fibroblasts were infected with H1N1 influenza virus to detect changes in miR-126a-5p and ADAMTS-4 expression, and cell viability was measured by CCK-8 assay. Inflammatory factors and matrix protease levels were examined using ELISA kits, and cell apoptosis was assessed by measuring the levels of apoptosis-related proteins. A dual luciferase assay was used to verify the regulatory relationship between miR-126a-5p and ADAMTS-4. H1N1 influenza virus reduced fibroblast viability, inhibited miR-126a-5p expression, and promoted ADAMTS-4 expression. Overexpression of miR-126a-5p attenuated the cellular inflammatory response, apoptosis, matrix protease secretion, and virus replication. Luciferase reporter assays revealed that miR-126a-5p inhibited ADAMTS-4 expression by targeting ADAMTS-4 mRNA. Further experiments showed that overexpression of ADAMTS-4 significantly reversed the inhibitory effects of miR-126a-5p on fibroblast inflammation, apoptosis, matrix protease secretion, and virus replication. Upregulation of miR-126a-5p inhibits H1N1-induced apoptosis, inflammatory factors, and matrix protease secretion, as well as virus replication in lung fibroblasts.
Collapse
Affiliation(s)
- Fang Fang
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, Hangtian Avenue East Section, Chang'an District, Xi'an, Shaanxi, 710100, China
| | - Borong Wang
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, Hangtian Avenue East Section, Chang'an District, Xi'an, Shaanxi, 710100, China
| | - Xiang Lu
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, Hangtian Avenue East Section, Chang'an District, Xi'an, Shaanxi, 710100, China
| | - Li Wang
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, Hangtian Avenue East Section, Chang'an District, Xi'an, Shaanxi, 710100, China
| | - Xiangjun Chen
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, Hangtian Avenue East Section, Chang'an District, Xi'an, Shaanxi, 710100, China
| | - Guanghui Wang
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, Hangtian Avenue East Section, Chang'an District, Xi'an, Shaanxi, 710100, China
| | - Yifan Yang
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, Hangtian Avenue East Section, Chang'an District, Xi'an, Shaanxi, 710100, China.
| |
Collapse
|
12
|
Gu W, Zeng Q, Wang X, Jasem H, Ma L. Acute Lung Injury and the NLRP3 Inflammasome. J Inflamm Res 2024; 17:3801-3813. [PMID: 38887753 PMCID: PMC11182363 DOI: 10.2147/jir.s464838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Acute lung injury (ALI) manifests through harm to the capillary endothelium and alveolar epithelial cells, arising from a multitude of factors, leading to scattered interstitial alterations, pulmonary edema, and subsequent acute hypoxic respiratory insufficiency. Acute lung injury (ALI), along with its more serious counterpart, acute respiratory distress syndrome (ARDS), carry a fatality rate that hovers around 30-40%. Its principal pathological characteristic lies in the unchecked inflammatory reaction. Currently, the main strategies for treating ALI are alleviation of inflammation and prevention of respiratory failure. Concerning the etiology of ALI, NLRP3 Inflammasome is essential to the body's innate immune response. The composition of this inflammasome complex includes NLRP3, the pyroptosis mediator ASC, and pro-caspase-1. Recent research has reported that the inflammatory response centered on NLRP3 inflammasomes plays a key part in inflammation in ALI, and may hence be a prospective candidate for therapeutic intervention. In the review, we present an overview of the ailment characteristics of acute lung injury along with the constitution and operation of the NLRP3 inflammasome within this framework. We also explore therapeutic strategies targeting the NLRP3 inflammasome to combat acute lung injury.
Collapse
Affiliation(s)
- Wanjun Gu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Qi Zeng
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Xin Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Huthaifa Jasem
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Ling Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
13
|
Zheng J, Li Y, Kong X, Guo J. Exploring immune-related pathogenesis in lung injury: Providing new insights Into ALI/ARDS. Biomed Pharmacother 2024; 175:116773. [PMID: 38776679 DOI: 10.1016/j.biopha.2024.116773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) represent a significant global burden of morbidity and mortality, with lung injury being the primary cause of death in affected patients. The pathogenesis of lung injury, however, remains a complex issue. In recent years, the role of the immune system in lung injury has attracted extensive attention worldwide. Despite advancements in our understanding of various lung injury subtypes, significant limitations persist in both prevention and treatment. This review investigates the immunopathogenesis of ALI/ARDS, aiming to elucidate the pathological processes of lung injury mediated by dendritic cells (DCs), natural killer (NK) cells, phagocytes, and neutrophils. Furthermore, the article expounds on the critical contributions of gut microbiota, inflammatory pathways, and cytokine storms in the development of ALI/ARDS.
Collapse
Affiliation(s)
- Jiajing Zheng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Li
- Pharmacy Department of the First Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China
| | - Xianbin Kong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jinhe Guo
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
14
|
Chen M, Zhang J, Huang H, Wang Z, Gao Y, Liu J. miRNA-206-3p alleviates LPS-induced acute lung injury via inhibiting inflammation and pyroptosis through modulating TLR4/NF-κB/NLRP3 pathway. Sci Rep 2024; 14:11860. [PMID: 38789583 PMCID: PMC11126654 DOI: 10.1038/s41598-024-62733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
Acute lung injury (ALI) is life-threatening. MicroRNAs (miRNAs) are often abnormally expressed in inflammatory diseases and are closely associated with ALI. This study investigates whether miRNA-206-3p attenuates pyroptosis in ALI and elucidates the underlying molecular mechanisms. ALI mouse and cell models were established through lipopolysaccharide (LPS) treatment for 24 h. Subsequently, the models were evaluated based on ultrasonography, the lung tissue wet/dry (W/D) ratio, pathological section assessment, electron microscopy, and western blotting. Pyroptosis in RAW264.7 cells was then assessed via electron microscopy, immunofluorescence, and western blotting. Additionally, the regulatory relationship between miRNA-206-3p and the Toll-like receptor (TLR)4/nuclear factor (NF)-κB/Nod-like receptor protein-3 (NLRP3) pathway was verified. Finally, luciferase reporter gene and RNA pull-down assays were used to verify the targeting relationship between miRNA-206-3p and TLR4. miRNA206-3p levels are significantly decreased in the LPS-induced ALI model. Overexpression of miRNA-206-3p improves ALI, manifested as improved lung ultrasound, improved pathological changes of lung tissue, reduced W/D ratio of lung tissue, release of inflammatory factors in lung tissue, and reduced pyroptosis. Furthermore, overexpression of miRNA-206-3p contributed to reversing the ALI-promoting effect of LPS by hindering TLR4, myeloid differentiation primary response 88 (MyD88), NF-κB, and NLRP3 expression. In fact, miRNA-206-3p binds directly to TLR4. In conclusion, miRNA-206-3p alleviates LPS-induced ALI by inhibiting inflammation and pyroptosis via TLR4/NF-κB/NLRP3 pathway modulation.
Collapse
Affiliation(s)
- Mengchi Chen
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Jingfeng Zhang
- Health Management Center of The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, Guangdong, China
| | - Hongyuan Huang
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Zichen Wang
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Yong Gao
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Jianghua Liu
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China.
- School of Nursing, Guangxi Medical University, Nanning, 530000, Guangxi, China.
| |
Collapse
|
15
|
Zeng H, Zhou Y, Liu Z, Liu W. MiR-21-5p modulates LPS-induced acute injury in alveolar epithelial cells by targeting SLC16A10. Sci Rep 2024; 14:11160. [PMID: 38750066 PMCID: PMC11096310 DOI: 10.1038/s41598-024-61777-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Sepsis is a systemic inflammatory response syndrome resulting from the invasion of the human body by bacteria and other pathogenic microorganisms. One of its most prevalent complications is acute lung injury, which places a significant medical burden on numerous countries and regions due to its high morbidity and mortality rates. MicroRNA (miRNA) plays a critical role in the body's inflammatory response and immune regulation. Recent studies have focused on miR-21-5p in the context of acute lung injury, but its role appears to vary in different models of this condition. In the LPS-induced acute injury model of A549 cells, there is differential expression, but the specific mechanism remains unclear. Therefore, our aim is to investigate the changes in the expression of miR-21-5p and SLC16A10 in a type II alveolar epithelial cell injury model induced by LPS and explore the therapeutic effects of their targeted regulation. A549 cells were directly stimulated with 10 µg/ml of LPS to construct a model of LPS-induced cell injury. Cells were collected at different time points and the expression of interleukin 1 beta (IL-1β), tumor necrosis factor-α (TNF-α) and miR-21-5p were measured by RT-qPCR and western blot. Then miR-21-5p mimic transfection was used to up-regulate the expression of miR-21-5p in A549 cells and the expression of IL-1β and TNF-α in each group of cells was measured by RT-qPCR and western blot. The miRDB, TargetScan, miRWalk, Starbase, Tarbase and miR Tarbase databases were used to predict the miR-21-5p target genes and simultaneously, the DisGeNet database was used to search the sepsis-related gene groups. The intersection of the two groups was taken as the core gene. Luciferase reporter assay further verified SLC16A10 as the core gene with miR-21-5p. The expression of miR-21-5p and SLC16A10 were regulated by transfection or inhibitors in A549 cells with or without LPS stimulation. And then the expression of IL-1β and TNF-α in A549 cells was tested by RT-qPCR and western blot in different groups, clarifying the role of miR-21-5p-SLC16A10 axis in LPS-induced inflammatory injury in A549 cells. (1) IL-1β and TNF-α mRNA and protein expression significantly increased at 6, 12, and 24 h after LPS stimulation as well as the miR-21-5p expression compared with the control group (P < 0.05). (2) After overexpression of miR-21-5p in A549 cells, the expression of IL-1β and TNF-α was significantly reduced after LPS stimulation, suggesting that miR-21-5p has a protection against LPS-induced injury. (3) The core gene set, comprising 51 target genes of miR-21-5p intersecting with the 1448 sepsis-related genes, was identified. This set includes SLC16A10, TNPO1, STAT3, PIK3R1, and FASLG. Following a literature review, SLC16A10 was selected as the ultimate target gene. Dual luciferase assay results confirmed that SLC16A10 is indeed a target gene of miR-21-5p. (4) Knocking down SLC16A10 expression by siRNA significantly reduced the expression of IL-1β and TNF-α in A549 cells after LPS treatment (P < 0.05). (5) miR-21-5p inhibitor increased the expression levels of IL-1β and TNF-α in A549 cells after LPS stimulation (P < 0.05). In comparison to cells solely transfected with miR-21-5p inhibitor, co-transfection of miR-21-5p inhibitor and si-SLC6A10 significantly reduced the expression of IL-1β and TNF-α (P < 0.05). MiR-21-5p plays a protective role in LPS-induced acute inflammatory injury of A549 cells. By targeting SLC16A10, it effectively mitigates the inflammatory response in A549 cells induced by LPS. Furthermore, SLC16A10 holds promise as a potential target for the treatment of acute lung injury.
Collapse
Affiliation(s)
- Huanan Zeng
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang, 110001, Liaoning, China
| | - Yuqing Zhou
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang, 110001, Liaoning, China
| | - Zhi Liu
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang, 110001, Liaoning, China.
| | - Wei Liu
- Emergency Department, The First Hospital of China Medical University, No.155 of North Street Nanjing, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
16
|
Gu Z, Sun M, Liu J, Huang Q, Wang Y, Liao J, Shu T, Tao M, Mao G, Pei Z, Meng W, Zhang X, Wei Y, Zhang S, Li S, Xiao K, Lu Y, Xu Q. Endothelium-Derived Engineered Extracellular Vesicles Protect the Pulmonary Endothelial Barrier in Acute Lung Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306156. [PMID: 38062916 PMCID: PMC10853733 DOI: 10.1002/advs.202306156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Indexed: 02/10/2024]
Abstract
Acute lung injury (ALI) is a severe respiratory disease with a high mortality rate. The integrity of the pulmonary endothelial barrier influences the development and prognosis of ALI. Therefore, it has become an important target for ALI treatment. Extracellular vesicles (EVs) are promising nanotherapeutic agents against ALI. Herein, endothelium-derived engineered extracellular vesicles (eEVs) that deliver microRNA-125b-5p (miRNA-125b) to lung tissues exerting a protective effect on endothelial barrier integrity are reported. eEVs that are modified with lung microvascular endothelial cell-targeting peptides (LET) exhibit a prolonged retention time in lung tissues and targeted lung microvascular endothelial cells in vivo and in vitro. To improve the efficacy of the EVs, miRNA-125b is loaded into EVs. Finally, LET-EVs-miRNA-125b is constructed. The results show that compared to the EVs, miRNA-125b, and EVs-miRNA-125b, LET-EVs-miRNA-125b exhibit the most significant treatment efficacy in ALI. Moreover, LET-EVs-miRNA-125b is found to have an important protective effect on endothelial barrier integrity by inhibiting cell apoptosis, promoting angiogenesis, and protecting intercellular junctions. Sequencing analysis reveals that LET-EVs-miRNA-125b downregulates early growth response-1 (EGR1) levels, which may be a potential mechanism of action. Taken together, these findings suggest that LET-EVs-miRNA-125b can treat ALI by protecting the endothelial barrier integrity.
Collapse
Affiliation(s)
- Zhengyan Gu
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
- Department of Pharmaceutical SciencesSchool of PharmacyNaval Medical UniversityShanghai200433P. R. China
| | - Mingxue Sun
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Jihao Liu
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Qi Huang
- School of Traditional Chinese Materia MedicaShenyang Pharmaceutical UniversityShenyang110006P. R. China
| | - Yunqin Wang
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Jun Liao
- Department of Pharmaceutical SciencesSchool of PharmacyNaval Medical UniversityShanghai200433P. R. China
- School of MedicineShanghai UniversityShanghai200444P. R. China
| | - Tingbin Shu
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Min Tao
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Guanchao Mao
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Zhipeng Pei
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Wenqi Meng
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Xinkang Zhang
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Youheng Wei
- State Key Laboratory of Genetic EngineeringInstitute of GeneticsFudan UniversityShanghai200433P. R. China
| | - Shanshan Zhang
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Songling Li
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Kai Xiao
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
- Marine Biomedical Science and Technology Innovation Platform of Lingang Special AreaShanghai200433P. R. China
| | - Ying Lu
- Department of Pharmaceutical SciencesSchool of PharmacyNaval Medical UniversityShanghai200433P. R. China
| | - Qingqiang Xu
- Lab of Toxicology and PharmacologyFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
- Basic Medical Center for Pulmonary DiseaseFaculty of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| |
Collapse
|
17
|
Huang Q, Le Y, Li S, Bian Y. Signaling pathways and potential therapeutic targets in acute respiratory distress syndrome (ARDS). Respir Res 2024; 25:30. [PMID: 38218783 PMCID: PMC10788036 DOI: 10.1186/s12931-024-02678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common condition associated with critically ill patients, characterized by bilateral chest radiographical opacities with refractory hypoxemia due to noncardiogenic pulmonary edema. Despite significant advances, the mortality of ARDS remains unacceptably high, and there are still no effective targeted pharmacotherapeutic agents. With the outbreak of coronavirus disease 19 worldwide, the mortality of ARDS has increased correspondingly. Comprehending the pathophysiology and the underlying molecular mechanisms of ARDS may thus be essential to developing effective therapeutic strategies and reducing mortality. To facilitate further understanding of its pathogenesis and exploring novel therapeutics, this review provides comprehensive information of ARDS from pathophysiology to molecular mechanisms and presents targeted therapeutics. We first describe the pathogenesis and pathophysiology of ARDS that involve dysregulated inflammation, alveolar-capillary barrier dysfunction, impaired alveolar fluid clearance and oxidative stress. Next, we summarize the molecular mechanisms and signaling pathways related to the above four aspects of ARDS pathophysiology, along with the latest research progress. Finally, we discuss the emerging therapeutic strategies that show exciting promise in ARDS, including several pharmacologic therapies, microRNA-based therapies and mesenchymal stromal cell therapies, highlighting the pathophysiological basis and the influences on signal transduction pathways for their use.
Collapse
Affiliation(s)
- Qianrui Huang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China
| | - Yue Le
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Shusheng Li
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| | - Yi Bian
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| |
Collapse
|
18
|
Elsayed NA, Marzouk MA, Moawed FSM, Ahmed ESA, Abo-Zaid OAR. Flavone attenuates nicotine-induced lung injury in rats exposed to gamma radiation via modulating PI3K/Nrf2 and FoxO1/NLRP3 inflammasome. Int J Immunopathol Pharmacol 2024; 38:3946320241272642. [PMID: 39096175 PMCID: PMC11298058 DOI: 10.1177/03946320241272642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024] Open
Abstract
Prolonged exposure to different occupational or environmental toxicants triggered oxidative stress and inflammatory reactions mediated lung damage. This study was designed to explore the influence and protective impact of flavone on lung injury in rats intoxicated with nicotine (NIC) and exposed to radiation (IR). Forty rats were divided into four groups; group I control, group II flavone; rats were administered with flavone (25 mg/kg/day), group III NIC + IR; rats were injected intraperitoneally with NIC (1 mg/kg/day) and exposed to γ-IR (3.5 Gy once/week for 2 weeks) while group IV NIC + IR + flavone; rats were injected with NIC, exposed to IR and administered with flavone. Redox status parameters and histopathological changes in lung tissue were evaluated. Nuclear factor-kappa B (NF-κB), forkhead box O-class1 (FoxO1) and nucleotide-binding domain- (NOD-) like receptor pyrin domain-containing-3 (NLRP3) gene expression were measured in lung tissues. Moreover, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and phosphatidylinositol three kinase (PI3K) were measured using ELISA kits. Our data demonstrates, for the first time, that flavone protects the lung from NIC/IR-associated cytotoxicity, by attenuating the disrupted redox status and aggravating the antioxidant defence mechanism via activation of the PI3K/Nrf2. Moreover, flavone alleviates pulmonary inflammation by inhibiting the inflammatory signaling pathway FOXO1/NF-κB/NLRP3- Inflammasome. Collectively, the obtained results exhibited a notable efficiency of flavone in alleviating lung injury induced by NIC and IR via modulating PI3K/Nrf2 and FoxO1/NLRP3 Inflammasome.
Collapse
Affiliation(s)
- Nora A Elsayed
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Mohammed A Marzouk
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Benha University, Egypt
| | - Fatma SM Moawed
- Health Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Esraa SA Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Omayma AR Abo-Zaid
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Benha University, Egypt
| |
Collapse
|
19
|
Chen J, Ma S, Luo B, Hao H, Li Y, Yang H, Zhu F, Zhang P, Niu R, Pan P. Human umbilical cord mesenchymal stromal cell small extracellular vesicle transfer of microRNA-223-3p to lung epithelial cells attenuates inflammation in acute lung injury in mice. J Nanobiotechnology 2023; 21:295. [PMID: 37626408 PMCID: PMC10464265 DOI: 10.1186/s12951-023-02038-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI), manifested as strong pulmonary inflammation and alveolar epithelial damage, is a life-threatening disease with high morbidity and mortality. Small extracellular vesicles (sEVs), secreted by multiple types of cells, are critical cellular communication mediators and can inhibit inflammation by transferring bioactive molecules, such as microRNAs (miRNAs). Thus, we hypothesized that sEVs derived from mesenchymal stromal cells (MSC sEVs) could transfer miRNAs to attenuate inflammation of lung epithelial cells during ALI. METHODS C57BL/6 male mice were intratracheally administered LPS (10 mg/kg). Six hours later, the mice were randomly administered with MSC sEVs (40 µg per mouse in 150 µl of saline), which were collected by ultracentrifugation. Control group received saline administration. After 48 h, the mice were sacrificed to evaluate pulmonary microvascular permeability and inflammatory responses. In vitro, A549 cells and primary human small airway epithelial cells (SAECs) were stimulated with LPS with or without MSC sEVs treatment. RESULTS In vitro, MSC sEVs could also inhibit the inflammation induced by LPS in A549 cells and SAECs (reducing TNF-α, IL-1β, IL-6 and MCP-1). Moreover, MSC sEV treatment improved the survival rate, alleviated pulmonary microvascular permeability, and inhibited proinflammatory responses (reducing TNF-α, IL-1β, IL-6 and JE-1) in ALI mice. Notably, miR-223-3p was found to be served as a critical mediator in MSC sEV-induced regulatory effects through inhibition of poly (adenosine diphosphate-ribose) polymerase-1 (PARP-1) in lung epithelial cells. CONCLUSIONS Overall, these findings suggest that MSC sEVs may offer a novel promising strategy for ALI.
Collapse
Affiliation(s)
- Jie Chen
- Department of Respiratory Medicine, Clinical Research Center for Respiratory Disease, Xiangya Hospital, National Key Clinical Specialty, Branch of National, Central South University, No.28 Xiangya Road, Kai-Fu District, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Chang-sha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China
| | - Shiyang Ma
- Department of Respiratory Medicine, Clinical Research Center for Respiratory Disease, Xiangya Hospital, National Key Clinical Specialty, Branch of National, Central South University, No.28 Xiangya Road, Kai-Fu District, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Chang-sha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China
| | - Baihua Luo
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Haojie Hao
- Institute of Basic Medicine Science, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Yanqin Li
- Center of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical College, Beijing, China
| | - Hang Yang
- Department of Respiratory Medicine, Clinical Research Center for Respiratory Disease, Xiangya Hospital, National Key Clinical Specialty, Branch of National, Central South University, No.28 Xiangya Road, Kai-Fu District, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Chang-sha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China
| | - Fei Zhu
- Department of Respiratory Medicine, Clinical Research Center for Respiratory Disease, Xiangya Hospital, National Key Clinical Specialty, Branch of National, Central South University, No.28 Xiangya Road, Kai-Fu District, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Chang-sha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China
| | - Peipei Zhang
- Department of Respiratory Medicine, Clinical Research Center for Respiratory Disease, Xiangya Hospital, National Key Clinical Specialty, Branch of National, Central South University, No.28 Xiangya Road, Kai-Fu District, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Chang-sha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China
| | - Ruichao Niu
- Department of Respiratory Medicine, Clinical Research Center for Respiratory Disease, Xiangya Hospital, National Key Clinical Specialty, Branch of National, Central South University, No.28 Xiangya Road, Kai-Fu District, Changsha, 410008, Hunan, China.
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Chang-sha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China.
- Department of Respiratory Medicine, The Second Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, China.
| | - Pinhua Pan
- Department of Respiratory Medicine, Clinical Research Center for Respiratory Disease, Xiangya Hospital, National Key Clinical Specialty, Branch of National, Central South University, No.28 Xiangya Road, Kai-Fu District, Changsha, 410008, Hunan, China.
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Chang-sha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China.
| |
Collapse
|
20
|
He D, Yu Q, Zeng X, Feng J, Yang R, Wan H, Zhong Y, Yang Y, Zhao R, Lu J, Zhang J. Single-Cell RNA Sequencing and Transcriptome Analysis Revealed the Immune Microenvironment and Gene Markers of Acute Respiratory Distress Syndrome. J Inflamm Res 2023; 16:3205-3217. [PMID: 37547124 PMCID: PMC10404049 DOI: 10.2147/jir.s419576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is caused by severe pulmonary inflammation and the leading cause of death in the intensive care unit. Methods We used single-cell RNA sequencing to compare peripheral blood mononuclear cells from sepsis-induced ARDS (SEP-ARDS) and pneumonic ARDS (PNE-ARDS) patient. Then, we used the GSE152978 and GSE152979 datasets to identify molecular dysregulation mechanisms at the transcriptional level in ARDS. Results Markedly increased CD14 cells were the predominant immune cell type observed in SEP-ARDS and PNE-ARDS patients. Cytotoxic cells and natural killer (NK) T cells were exclusively identified in patients with PNE-ARDS. An enrichment analysis of differentially expressed genes (DEGs) suggested that Th1 cell differentiation and Th2 cell differentiation were enriched in cytotoxic cells, and that the IL-17 signaling pathway, NOD receptor signaling pathway, and complement and coagulation cascades were enriched in CD14 cells. Furthermore, according to GSE152978 and GSE152979, 1939 DEGs were identified in patients with ARDS and controls; they were mainly enriched in the Kyoto Encyclopedia of Genes and Genomes pathways. RBP7 had the highest area under the curve values among the 12 hub genes and was mainly expressed in CD14 cells. Additionally, hub genes were negatively correlated with NK cells and positively correlated with neutrophils, cytotoxic cells, B cells, and macrophages. Conclusion A severe imbalance in the proportion of immune cells and immune dysfunction were observed in SEP-ARDS and PNE-ARDS patients. RBP7 may be immunologically associated with CD14 cells and serve as a potential marker of ARDS.
Collapse
Affiliation(s)
- Dan He
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Qiao Yu
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Xiaona Zeng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Jihua Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Ruiqi Yang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Huan Wan
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Ying Zhong
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Yanli Yang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Ruzhi Zhao
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Junyu Lu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
- Guangxi Health Commission Key Laboratory of Emergency and Critical Medicine, Nanning, 530007, People’s Republic of China
| | - Jianfeng Zhang
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
- Guangxi Health Commission Key Laboratory of Emergency and Critical Medicine, Nanning, 530007, People’s Republic of China
| |
Collapse
|
21
|
Li N, Liu B, He R, Li G, Xiong R, Fu T, Li D, Xu C, Wang B, Geng Q. HDAC3 promotes macrophage pyroptosis via regulating histone deacetylation in acute lung injury. iScience 2023; 26:107158. [PMID: 37404376 PMCID: PMC10316655 DOI: 10.1016/j.isci.2023.107158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Activated inflammation and pyroptosis in macrophage are closely associated with acute lung injury (ALI). Histone deacetylase 3 (HDAC3) serves as an important enzyme that could repress gene expression by mediating chromatin remodeling. In this study, we found that HDAC3 was highly expressed in lung tissues of lipopolysaccharide (LPS)-treated mice. Lung tissues from macrophage HDAC3-deficient mice stimulated with LPS showed alleviative lung pathological injury and inflammatory response. HDAC3 silencing significantly blocked the activation of cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway in LPS-induced macrophage. LPS could recruit HDAC3 and H3K9Ac to the miR-4767 gene promoter, which repressed the expression of miR-4767 to promote the expression of cGAS. Taken together, our findings demonstrated that HDAC3 played a pivotal role in mediating pyroptosis in macrophage and ALI by activating cGAS/STING pathway through its histone deacetylation function. Targeting HDAC3 in macrophage may provide a new therapeutic target for the prevention of LPS-induced ALI.
Collapse
Affiliation(s)
- Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Donghang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chenzhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bo Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
22
|
Shi M, Lu Q, Zhao Y, Ding Z, Yu S, Li J, Ji M, Fan H, Hou S. miR-223: a key regulator of pulmonary inflammation. Front Med (Lausanne) 2023; 10:1187557. [PMID: 37465640 PMCID: PMC10350674 DOI: 10.3389/fmed.2023.1187557] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Small noncoding RNAs, known as microRNAs (miRNAs), are vital for the regulation of diverse biological processes. miR-223, an evolutionarily conserved anti-inflammatory miRNA expressed in cells of the myeloid lineage, has been implicated in the regulation of monocyte-macrophage differentiation, proinflammatory responses, and the recruitment of neutrophils. The biological functions of this gene are regulated by its expression levels in cells or tissues. In this review, we first outline the regulatory role of miR-223 in granulocytes, macrophages, endothelial cells, epithelial cells and dendritic cells (DCs). Then, we summarize the possible role of miR-223 in chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), coronavirus disease 2019 (COVID-19) and other pulmonary inflammatory diseases to better understand the molecular regulatory networks in pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Mingyu Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Ziling Ding
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sifan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Junfeng Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Mengjun Ji
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| |
Collapse
|
23
|
Wu X, Xuan W, Yang X, Liu W, Zhang H, Jiang G, Cao B, Jiang Y. Ficolin A knockout alleviates sepsis-induced severe lung injury in mice by restoring gut Akkermansia to inhibit S100A4/STAT3 pathway. Int Immunopharmacol 2023; 121:110548. [PMID: 37356123 DOI: 10.1016/j.intimp.2023.110548] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Acute lung injury (ALI) is a life-threatening disease with high morbidity and mortality. Our previous results demonstrated that Ficolin A (FcnA) protected against lipopolysaccharide (LPS)-induced mild ALI via activating complement, however the mechanism of severe lung damage caused by sepsis remains unclear. This study aimed to investigate whether FcnA modulated gut microbiota to affect the progression of sepsis-induced severe ALI. Fcna-/- and Fcnb-/- C57BL/6 mice were applied to establish the ALI model by injection of LPS intraperitoneally. Mice were treated with antibiotics, fecal microbiota transplantation (FMT), and intratracheal administration of recombinant protein S100A4. Changes in body weight of mice were recorded, and lung injury were assessed. Then lung tissue wet/dry weight was calculated. We found knockout of FcnA, but not FcnB, alleviated sepsis-induced severe ALI evidenced by increased body weight change, decreased wet/dry weight of lung tissue, reduced inflammatory infiltration, decreased lung damage score, decreased Muc-2, TNF-α, IL-1β, IL-6, and Cr levels, and increased sIgA levels. Furthermore, knockout of FcnA restored gut microbiota homeostasis in mice. Correlation analysis showed that Akkermansia was significantly negatively associated with TNF-α, IL-1β, and IL-6 levels in serum and bronchoalveolar lavage fluid (BALF). Moreover, knockout of FcnA regulated gut microbiota to protect ALI through S100A4. Finally, we found knockout of FcnA alleviated ALI by inhibiting S100A4 via gut Akkermansia in mice, which may provide further insights and new targets into treating sepsis-induced severe lung injury.
Collapse
Affiliation(s)
- Xu Wu
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Weixia Xuan
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship hospital, Capital Medical University, Beijing, China; Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Drugs of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Wei Liu
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Hui Zhang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Gang Jiang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship hospital, Capital Medical University, Beijing, China; Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China.
| | - Yongliang Jiang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China.
| |
Collapse
|
24
|
Pei Z, Cen J, Zhang X, Gong C, Sun M, Meng W, Mao G, Wan J, Hu B, He X, Xu Q, Han H, Xiao K. MiR-146a-5p delivered by hucMSC extracellular vesicles modulates the inflammatory response to sulfur mustard-induced acute lung injury. Stem Cell Res Ther 2023; 14:149. [PMID: 37254188 DOI: 10.1186/s13287-023-03375-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Sulfur mustard (SM) is a highly toxic chemical warfare agent that has caused numerous casualties during wars and conflicts in the past century. Specific antidotes or therapeutic strategies are rare due to the complicated mechanism of toxicity, which still awaits elucidation. Clinical data show that acute lung injury (ALI) is responsible for most mortality and morbidity after SM exposure. Extracellular vesicles are natural materials that participate in intercellular communication by delivering various substances and can be modified. In this study, we aim to show that extracellular vesicles derived from human umbilical cord mesenchymal stromal cells (hucMSC-EVs) could exert therapeutic effects on SM-induced ALI, and to explain the underlying mechanism of effects. METHODS MiR-146a-5p contained in hucMSC-EVs may be involved in the process of hucMSC-EVs modulating the inflammatory response to SM-induced ALI. We utilized miR-146a-5p delivered by extracellular vesicles and further modified hucMSCs with a miR-146a-5p mimic or inhibitor to collect miR-146a-5p-overexpressing extracellular vesicles (miR-146a-5p+-EVs) or miR-146a-5p-underexpressing extracellular vesicles (miR-146a-5p--EVs), respectively. Through in vivo and in vitro experiments, we investigated the mechanism. RESULTS The effect of miR-146a-5p+-EVs on improving the inflammatory reaction tied to SM injury was better than that of hucMSC-EVs. We demonstrated that miR-146a-5p delivered by hucMSC-EVs targeted TRAF6 to negatively regulate inflammation in SM-induced ALI models in vitro and in vivo. CONCLUSION In summary, miR-146a-5p delivered by hucMSC-EVs targeted TRAF6, causing hucMSC-EVs to exert anti-inflammatory effects in SM-induced ALI; thus, hucMSC-EVs treatment may be a promising clinical therapeutic after SM exposure.
Collapse
Affiliation(s)
- Zhipeng Pei
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jinfeng Cen
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xinkang Zhang
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Chuchu Gong
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Mingxue Sun
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Wenqi Meng
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Guanchao Mao
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jingjing Wan
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Bingyue Hu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaowen He
- Origincell Technology Group Co., Ltd., Shanghai, 201203, China
| | - Qingqiang Xu
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Hua Han
- School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Kai Xiao
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
25
|
Yu Y, Lian Z. Update on transfusion-related acute lung injury: an overview of its pathogenesis and management. Front Immunol 2023; 14:1175387. [PMID: 37251400 PMCID: PMC10213666 DOI: 10.3389/fimmu.2023.1175387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Transfusion-related acute lung injury (TRALI) is a severe adverse event and a leading cause of transfusion-associated death. Its poor associated prognosis is due, in large part, to the current dearth of effective therapeutic strategies. Hence, an urgent need exists for effective management strategies for the prevention and treatment of associated lung edema. Recently, various preclinical and clinical studies have advanced the current knowledge regarding TRALI pathogenesis. In fact, the application of this knowledge to patient management has successfully decreased TRALI-associated morbidity. This article reviews the most relevant data and recent progress related to TRALI pathogenesis. Based on the existing two-hit theory, a novel three-step pathogenesis model composed of a priming step, pulmonary reaction, and effector phase is postulated to explain the process of TRALI. TRALI pathogenesis stage-specific management strategies based on clinical studies and preclinical models are summarized with an explication of their models of prevention and experimental drugs. The primary aim of this review is to provide useful insights regarding the underlying pathogenesis of TRALI to inform the development of preventive or therapeutic alternatives.
Collapse
Affiliation(s)
| | - Zhengqiu Lian
- Department of Blood Transfusion, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
26
|
Bovari-Biri J, Garai K, Banfai K, Csongei V, Pongracz JE. miRNAs as Predictors of Barrier Integrity. BIOSENSORS 2023; 13:bios13040422. [PMID: 37185497 PMCID: PMC10136429 DOI: 10.3390/bios13040422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
The human body has several barriers that protect its integrity and shield it from mechanical, chemical, and microbial harm. The various barriers include the skin, intestinal and respiratory epithelia, blood-brain barrier (BBB), and immune system. In the present review, the focus is on the physical barriers that are formed by cell layers. The barrier function is influenced by the molecular microenvironment of the cells forming the barriers. The integrity of the barrier cell layers is maintained by the intricate balance of protein expression that is partly regulated by microRNAs (miRNAs) both in the intracellular space and the extracellular microenvironment. The detection of changes in miRNA patterns has become a major focus of diagnostic, prognostic, and disease progression, as well as therapy-response, markers using a great variety of detection systems in recent years. In the present review, we highlight the importance of liquid biopsies in assessing barrier integrity and challenges in differential miRNA detection.
Collapse
Affiliation(s)
- Judit Bovari-Biri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Kitti Garai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Krisztina Banfai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Veronika Csongei
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| | - Judit E Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2 Rokus Str, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, 20 Ifjusag Str, H-7624 Pecs, Hungary
| |
Collapse
|
27
|
Hsieh PC, Wu YK, Yang MC, Su WL, Kuo CY, Lan CC. Deciphering the role of damage-associated molecular patterns and inflammatory responses in acute lung injury. Life Sci 2022; 305:120782. [PMID: 35809663 DOI: 10.1016/j.lfs.2022.120782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
Acute lung injury (ALI) is characterized by diffuse pulmonary infiltrates and causes great mortality. ALI presents with overproduction of proinflammatory cytokines, cell death, destruction of alveoli-endothelial barriers, and neutrophil infiltration in lung tissues. Damage-associated molecular patterns (DAMPs) are molecules released from damaged cells due to infection, trauma, etc. DAMPs activate innate and adaptive immunity, trigger inflammatory responses, and are important in the initiation and development of ALI. We reviewed the literatures on DAMPs in ALI. Alveolar macrophages (AMs), neutrophils, and epithelial cells (AECs) are important in the pathogenesis of ALI. We comprehensively analyzed the interaction between DAMPs and AMs, alveolar neutrophils, and AECs. During the initial stage of ALI, ruptured cell membranes or destroyed mitochondria release DAMPs. DAMPs activate the inflammasome in nearby sentinel immune cells, such as AMs. AMs produce IL-1β and other cytokines. These mediators upregulate adhesion molecules of the capillary endothelium that facilitate neutrophil recruitment. The recruited neutrophils detect DAMPs using formyl peptide receptors on the membrane, guiding their migration to the injured site. The accumulation of immune cells, cytokines, chemokines, proteases, etc., results in diffuse alveolar damage and pulmonary hyperpermeability with protein-rich fluid retention. Some clinical studies have shown that patients with ALI with higher circulating DAMPs have higher mortality rates. In conclusion, DAMPs are important in the initiation and progression of ALI. The interactions between DAMPs and AMs, neutrophils, and AECs are important in ALI. This review comprehensively addresses the mechanisms of DAMPs and their interactions in ALI.
Collapse
Affiliation(s)
- Po-Chun Hsieh
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yao-Kuang Wu
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Mei-Chen Yang
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Lin Su
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chou-Chin Lan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
28
|
Inhibition of miR-29b-1-5p Attenuates Inflammatory Response and Pulmonary Fibrosis in LPS-Induced Acute Lung Injury by Regulating RTN4 Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7523591. [PMID: 36118085 PMCID: PMC9481378 DOI: 10.1155/2022/7523591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
Objective Acute lung injury (ALI) is a severe respiratory disorder causing alveolar-capillary barrier, leading to a high rate of morbidity and death in critically ill individuals. microRNAs (miRNAs)-mediated mechanism in the pathogenesis of ALI has attracted much interest. Herein, we attempt to characterize a candidate miRNA and its downstream target that is linked to the pathogenesis of ALI. Methods LPS-conditioned MH-S cells were treated with miR-29a-1-5p mimic, inhibitor, and RNT4 expression vector, and the ALI animal model was injected with agomir and antagomir of miR-29b-1-5p and RNT4 expression vector, in which the pro-inflammatory cytokine production, cell viability and apoptosis, myeloperoxidase (MPO) activity, wet/dry (W/D) ratio, and expression of TGF-β1, α-smooth muscle actin (α-SMA), E-cadherin, and vimentin were examined. miR-29a-1-5p inhibition of RTN4 translation was confirmed by luciferase activity assays. Results An elevated miR-29a-1-5p expression was demonstrated in LPS-conditioned MH-S cells. miR-29a-1-5p inhibitor transfection attenuated the production of pro-inflammatory cytokines and MH-S cell viability but enhanced the apoptosis. miR-29a-1-5p inhibition of RTN4 translation was demonstrated in the setting of LPS-induced ALI. LPS-induced murine models demonstrated upregulated miR-29a-1-5p. Intravenous injection of miR-29b-1-5p agomir attenuated mouse lung injury and pulmonary fibrosis. RTN4 overexpression resisting to miR-29a-1-5p overexpression was demonstrated in LPS-induced murine models. Conclusion The findings obtained from the study that disturbing the action of miR-29a-1-5p may be a novel therapeutic strategy for preventing ALI.
Collapse
|