1
|
Wang D, Weng H, Zhao Y, Zhou H, Guo H, Cheng H, Shen J, Yin M, Yan S, Su X. Preparation of a Fluxapyroxad Nanoformulation with Strong Plant Uptake for Efficient Control of Verticillium Wilt in Potato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7121-7130. [PMID: 40066939 DOI: 10.1021/acs.jafc.4c12450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Potato (Solanum tuberosum L.) is ranked as the fourth largest staple crop in China. However, potato production is increasingly threatened by Verticillium wilt (VW) caused by the fungus Verticillium dahliae in various provinces. In the present study, we explored the application of star polycation (SPc) nanocarrier to improve the effectiveness of the fungicide fluxapyroxad (Flu) in combating VW. The SPc self-assembled with Flu through hydrogen bonds and van der Waals forces to form the Flu/SPc complex spontaneously, which exhibited strong intermolecular interactions, as indicated by a high affinity constant and favorable thermodynamic parameters. Complexation with SPc decreased the particle size of Flu. The Flu/SPc complex had a greater effect on V. dahliae than Flu alone, reducing the colony diameter and spore numbers more effectively. Expression levels of multiple key genes involved in nitrogen, polysaccharide, and sugar metabolism were downregulated in V. dahliae upon Flu/SPc complex treatment compared to Flu treatment, which might contribute to the greater growth inhibition in Flu/SPc-treated samples. Uptake studies in potato plants demonstrated that SPc significantly enhanced the absorption of Flu compared with Flu alone. Slighter disease symptoms and lower fungal biomass in greenhouse and field trials confirmed the enhanced protective effects of the Flu/SPc complex on potato seedlings. This is the first report that a self-assembled nanofungicide limits V. dahliae growth and protects potatoes from destructive VW.
Collapse
Affiliation(s)
- Dong Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Huiting Weng
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Yuanzheng Zhao
- Institute of Plant Protection, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
| | - Hongyou Zhou
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Huiming Guo
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Hongmei Cheng
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Jie Shen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Meizhen Yin
- Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuo Yan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Xiaofeng Su
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
2
|
Liu H, Shangguan W, Zhao P, Cao C, Yu M, Huang Q, Cao L. Size Effects of Nanoenabled Agrochemicals in Sustainable Crop Production: Advances, Challenges, and Perspectives. ACS NANO 2025; 19:54-72. [PMID: 39725553 DOI: 10.1021/acsnano.4c09803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Nanoenabled agrochemicals mainly including nanopesticides and nanofertilizers based on nanotechnology play a crucial role in plant protection and food security. These agrochemicals exhibit high dose delivery efficiency and biological activity due to their unique nanoscale properties. However, nanoscale properties can also be a double-edged sword, posing potential risks to both humans and the environment. As nanoenabled agrochemicals become more widely used, it is essential to have an objective and comprehensive discussion of the size effects of these agrochemicals. In this paper, we reviewed the research progress on the size effects of nanoenabled agrochemicals in terms of dose delivery, biological activity, and nontarget safety. We investigated the complex factors affecting size effects and sought to draw insights from research in biomedicine, engineering, food, and other relevant fields. Based on the literatures review, it could be concluded that "the smaller the better" is not always the case. We further outlooked the development prospects of studying the size effects of nanoenabled agrochemicals, emphasizing the necessity for thorough and in-depth research while critically identifying key issues that need to be addressed. In conclusion, a proper comprehension of the size effects of nanoenabled agrochemicals bridges the gap between the scientific community and industry, bolstering the role in advancing sustainable agriculture.
Collapse
Affiliation(s)
- Hongyi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Wenjie Shangguan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Pengyue Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Chong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Manli Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Qiliang Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Lidong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| |
Collapse
|
3
|
Deng W, Zhang Y, He L, Xu L, Ye X, Xu H, Zhu L, Jia J. Optimized nanopesticide delivery of thiamethoxam to cowpeas (Vigna unguiculata) controls thrips (Megalurothrips usitatus) and reduces toxicity to non-target worker bees (Apis mellifera). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176327. [PMID: 39299328 DOI: 10.1016/j.scitotenv.2024.176327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/14/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Thrips [Megalurothrips usitatus (Bagnall)] (Thysanoptera: Thripidae) is a pest that poses a serious challenge to global crop production and food supply, especially to the cowpea industry. Nano-delivery systems have broad application prospects in the prevention and control of pests in agriculture. Herein, three types of amino acid (AA) modified polysuccinimide nano-delivery carriers (PSI-GABA, PSI-ASP and PSI-GLU) were constructed with a diameter of approximately 150 nm to load thiamethoxam (THX), which enhanced THX effective distribution and use with cowpea plants. Significantly, the PSI-GLU nanocarrier effectively delivered THX to cowpea plant tissues following 6 h of soil application. Compared with commercial THX suspension (SC), the THX content in the leaves of cowpea plants was increased by 2.3 times. Confocal laser scanning microscopy revealed that the FITC-labeled PSI-GLU nanocarrier reached the leaves through the vascular system after being absorbed by the roots of cowpea plants. The PSI-GLU nanocarrier decreased the LC50 of THX from 11.45 to 7.79 mg/L and significantly enhanced the insecticidal effect. The PSI-GLU nanocarrier also improved the safety of THX to worker bees at 48 h, and moreover showed a growth-promoting effect on cowpea seedlings. These results demonstrated that the PSI-GLU nano-delivery carrier has promising uses on improving the effective utilization of THX for the sustainable control of thrips and reducing the risk to non-target pollutions.
Collapse
Affiliation(s)
- Wenjie Deng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yanheng Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Liangheng He
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Li Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xulang Ye
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Li Zhu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Jinliang Jia
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Wang Z, Jiang Q, Zhu Q, Ji C, Li J, Yin M, Shen J, Yan S. Nanoenabled Antiviral Pesticide for Tobacco Mosaic Virus: Excellent Adhesion Performance and Strong Inhibitory Effect to Alleviate the Damage on Photosynthetic System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39356630 DOI: 10.1021/acs.jafc.4c06885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Tobacco mosaic virus (TMV) is a major agricultural threat. Here, a cationic star polymer (SPc) was designed to construct an efficient nanodelivery system for moroxydine hydrochloride (ABOB). ABOB could self-assemble with SPc via a hydrogen bond and van der Waals force, and this complexation reduced the particle size of ABOB from 2406 to 45 nm. With the aid of SPc, the contact angle of ABOB decreased from 100.8 to 79.0°, and its retention increased from 6.3 to 13.8 mg/cm2. Furthermore, the complexation with SPc could attenuate the degradation of ABOB in plants, and the bioactivity of SPc-loaded ABOB significantly improved with a reduction in relative viral expression from 0.57 to 0.17. The RNA-seq analysis revealed that the ABOB/SPc complex could up-regulate the expression of growth- and photosynthesis-related genes in tobacco seedlings, and the chlorophyll content increased by 2.5 times. The current study introduced an efficient nanodelivery system to improve the bioactivity of traditional antiviral agents.
Collapse
Affiliation(s)
- Zeng Wang
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qinhong Jiang
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qian Zhu
- China Association of Pesticide Development and Application, Beijing 100125, People's Republic of China
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jie Shen
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Shuo Yan
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
5
|
Jiang Q, Xie Y, Zhou B, Wang Z, Ning D, Li H, Zhang J, Yin M, Shen J, Yan S. Nanomaterial inactivates environmental virus and enhances plant immunity for controlling tobacco mosaic virus disease. Nat Commun 2024; 15:8509. [PMID: 39353964 PMCID: PMC11445512 DOI: 10.1038/s41467-024-52851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Tobacco mosaic virus (TMV) is extremely pathogenic and resistant to stress There are great needs to develop methods to reduce the virus in the environment and induce plant immunity simultaneously. Here, we report a multifunctional nano-protectant to reduce the virus in the environment and induce plant immunity simultaneously. The star polycation (SPc) nanocarrier can act as an active ingredient to interact with virus coat protein via electrostatic interaction, which reduces the proportion of TMV particles to 2.9% and leads to a reduction of the amount of virus in the environment by half. SPc can act as an adjuvant to spontaneously assemble with an immune inducer lentinan (LNT) through hydrogen bonding into nanoscale (142 nm diameter) LNT/SPc complex, which improves the physicochemical property of LNT for better wetting performance on leaves and cellular uptake, and further activates plant immune responses. Finally, the LNT/SPc complex displays preventive and curative effects on TMV disease, reducing TMV-GFP relative expression by 26% in the laboratory and achieving 82% control efficacy in the field We hope the strategy reported here would be useful for control of crop virus disease.
Collapse
Affiliation(s)
- Qinhong Jiang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Yonghui Xie
- Kunming Branch of Yunnan Provincial Tobacco Company, 650051, Kunming, China
| | - Bingcheng Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zhijiang Wang
- Kunming Branch of Yunnan Provincial Tobacco Company, 650051, Kunming, China
| | - Dekai Ning
- Kunming Branch of Yunnan Provincial Tobacco Company, 650051, Kunming, China
| | - Hongming Li
- Kunming Branch of Yunnan Provincial Tobacco Company, 650051, Kunming, China
| | - Junzheng Zhang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, 100193, Beijing, China.
| | - Shuo Yan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
6
|
Cui L, Deng G, Wu J, Ding F, Wang W, Yu H, Song Z, Rui C, Han H, Yuan H. Fabrication of nanogels to improve the toxicity and persistence of cycloxaprid against Diaphorina citri, the vector of citrus huanglongbing. J Adv Res 2024:S2090-1232(24)00379-5. [PMID: 39245339 DOI: 10.1016/j.jare.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/01/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
INTRODUCTION Diaphorina citri is the most serious pest of citrus worldwide because it is the natural insect vector of huanglongbing. Cycloxaprid (Cyc) was highly toxic to D. citri. However, the poor solubility and stability had limited its development. OBJECTIVES In order to improve the insecticidal effect and stability to harsh climatic conditions of Cyc. METHODS Cyc was chosen as the representative pesticide, 4,4'-methylenebis (phenyl isocyanate), PEG-600 and n-butanol were used to prepare sustained-release nano-gelation particles (Cyc@NGs). RESULTS Cyc@NGs enhance the toxicity of Cyc more than 3 folds. Furthermore, Cyc@NGs showed excellent anti-rain and anti-UV capacity. After being exposed to ultraviolet light for 12 h, Cyc decreased by 100 %, while the insecticide content of Cyc@NGs only decreased by 25 %. Additionally, Cyc@NGs possessed better wettability on citrus leaves, mainly benefitting from its lower contact angle on citrus leaves. Moreover, FITC-labeled nano-gelation particles (FITC-NGs) exhibited high capability to penetrate and enrich in citrus leaf tissue and D. citri midgut. Consequently, NGs promoted the translocation and durability of insecticides, thereby, increasing the insecticidal activity. The results suggested that nano-gelation particle is a promising platform to deliver insecticides and Cyc@NGs would be the suitable candidate for the effective management of D. citri.
Collapse
Affiliation(s)
- Li Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Guiyun Deng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghong Wu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Ding
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjie Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Haiyang Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhiyong Song
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changhui Rui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Heyou Han
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huizhu Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
7
|
Ding Y, Tao M, Xu L, Wang C, Wang J, Zhao C, Xiao Z, Wang Z. Impacts of nano-acetamiprid pesticide on faba bean root metabolic response and soil health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171976. [PMID: 38547984 DOI: 10.1016/j.scitotenv.2024.171976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024]
Abstract
The associated benefits and potential environmental risks of nanopesticides on plant and soil health, particularly in comparison with traditional pesticides, have not been systematically elucidated. Herein, we investigated the impacts of the as-synthesized nano-acetamiprid (Nano-Ace, 20 nm) at low (10 mg/L), medium (50 mg/L), high (100 mg/L) doses and the corresponding high commercial acetamiprid (Ace, 100 mg/L) on the physiological and metabolic response of faba bean (Vicia faba L.) plants, as well as on rhizosphere bacterial communities and functions over short-, medium- and long-term exposures. Overall, Nano-Ace exposure contributed to basic metabolic pathways (e.g., flavonoids, amino acids, TCA cycle intermediate, etc.) in faba bean roots across the whole exposure period. Moreover, Nano-Ace exposure enriched rhizosphere beneficial bacteria (e.g., Streptomyces (420.7%), Pseudomonas (33.8%), Flavobacterium (23.3%)) and suppressed pathogenic bacteria (e.g., Acidovorax (44.5%)). Additionally, Nano-Ace exposure showed a trend of low promotion and high inhibition of soil enzyme activities (e.g., invertase, urease, arylsulfatase, alkaline phosphatase) involved in soil C, N, S, and P cycling, while the inhibition was generally weaker than that of conventional Ace. Altogether, this study indicated that the redox-responsive nano-acetamiprid pesticide possessed high safety for host plants and soil health.
Collapse
Affiliation(s)
- Ying Ding
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Mengna Tao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Lanqing Xu
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Jinghong Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Chunjie Zhao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
8
|
Wu S, Jiang Q, Xia Z, Sun Z, Mu Q, Huang C, Song F, Yin M, Shen J, Li H, Yan S. Perfect cooperative pest control via nano-pesticide and natural predator: High predation selectivity and negligible toxicity toward predatory stinkbug. CHEMOSPHERE 2024; 355:141784. [PMID: 38537714 DOI: 10.1016/j.chemosphere.2024.141784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
The improper use of synthetic pesticides has caused adverse effects on global ecosystems and human health. As a part of sustainable pest management strategy, natural predators, along with nano-pesticides, have made significant contributions to ecological agriculture. The cooperative application of both approaches may overcome their limitations, substantially reducing pesticide application while controlling insect pests efficiently. Herein, the current study introduced a cationic star polymer (SPc) to prepare two types of nano-pesticides, which were co-applied with predatory stinkbugs Picromerus lewisi to achieve perfect cooperative pest control. The SPc exhibited nearly no toxicity against predatory stinkbugs at the working concentration, but it led to the death of predatory stinkbugs at extremely high concentration with the lethal concentration 50 (LC50) value of 13.57 mg/mL through oral feeding method. RNA-seq analysis revealed that the oral feeding of SPc could induce obvious stress responses, leading to stronger phagocytosis, exocytosis, and energy synthesis to ultimately result in the death of predatory stinkbugs. Then, the broflanilide and chlorobenzuron were employed to prepare the self-assembled nano-pesticides via hydrogen bond and Van der Waals force, and the complexation with SPc broke the self-aggregated structures of pesticides and reduced their particle sizes down to nanoscale. The bioactivities of prepared nano-pesticides were significantly improved toward common cutworm Spodoptera litura with the corrected mortality increase by approximately 30%. Importantly, predatory stinkbugs exhibited a strong predation selectivity for alive common cutworms to reduce the exposure risk of nano-pesticides, and the nano-pesticides showed negligible toxicity against predators. Thus, the nano-pesticides and predatory stinkbugs could be applied simultaneously for efficient and sustainable pest management. The current study provides an excellent precedent for perfect cooperative pest control via nano-pesticide and natural predator.
Collapse
Affiliation(s)
- Shangyuan Wu
- College of Plant Protection, China Agricultural University, Beijing, 100193, PR China
| | - Qinhong Jiang
- College of Plant Protection, China Agricultural University, Beijing, 100193, PR China
| | - Zhilin Xia
- Guizhou Provincial Tobacco Company, Qianxinan Branch, Xingyi, 562400, PR China
| | - Zhirong Sun
- Guizhou Provincial Tobacco Company, Qianxinan Branch, Xingyi, 562400, PR China
| | - Qing Mu
- Guizhou Provincial Tobacco Company, Qianxinan Branch, Xingyi, 562400, PR China
| | - Chunyang Huang
- Guizhou Provincial Tobacco Company, Zunyi Branch, Zunyi, 563000, PR China
| | - Fan Song
- College of Plant Protection, China Agricultural University, Beijing, 100193, PR China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Jie Shen
- College of Plant Protection, China Agricultural University, Beijing, 100193, PR China
| | - Hu Li
- College of Plant Protection, China Agricultural University, Beijing, 100193, PR China.
| | - Shuo Yan
- College of Plant Protection, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
9
|
Li B, Duan W, Lin G, Ma X, Wen R, Zhang Z. An Effective and Promising Strategy for Plant Protection: Synthesis of L-Carvone-Based Thiazolinone-Hydrazone/Nanochitosan Complexes with Antifungal Activity and Sustained Releasing Performance. Int J Mol Sci 2024; 25:4595. [PMID: 38731815 PMCID: PMC11083649 DOI: 10.3390/ijms25094595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
The development of novel natural product-derived nano-pesticide systems with loading capacity and sustained releasing performance of bioactive compounds is considered an effective and promising plant protection strategy. In this work, 25 L-carvone-based thiazolinone-hydrazone compounds 4a~4y were synthesized by the multi-step modification of L-carvone and structurally confirmed. Compound 4h was found to show favorable and broad-spectrum antifungal activity through the in vitro antifungal activity evaluation of compounds 4a~4y against eight phytopathogenic fungi. Thus, it could serve as a leading compound for new antifungal agents in agriculture. Moreover, the L-carvone-based nanochitosan carrier 7 bearing the 1,3,4-thiadiazole-amide group was rationally designed for the loading and sustained releasing applications of compound 4h, synthesized, and characterized. It was proven that carrier 7 had good thermal stability below 200 °C, dispersed well in the aqueous phase to form numerous nanoparticles with a size of~20 nm, and exhibited an unconsolidated and multi-aperture micro-structure. Finally, L-carvone-based thiazolinone-hydrazone/nanochitosan complexes were fabricated and investigated for their sustained releasing behaviors. Among them, complex 7/4h-2 with a well-distributed, compact, and columnar micro-structure displayed the highest encapsulation efficiency and desirable sustained releasing property for compound 4h and thus showed great potential as an antifungal nano-pesticide for further studies.
Collapse
Affiliation(s)
- Baoyu Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (B.L.); (X.M.); (R.W.); (Z.Z.)
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning 530004, China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (B.L.); (X.M.); (R.W.); (Z.Z.)
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning 530004, China
| | - Guishan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (B.L.); (X.M.); (R.W.); (Z.Z.)
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning 530004, China
| | - Xianli Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (B.L.); (X.M.); (R.W.); (Z.Z.)
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning 530004, China
| | - Rongzhu Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (B.L.); (X.M.); (R.W.); (Z.Z.)
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning 530004, China
| | - Zhaolei Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (B.L.); (X.M.); (R.W.); (Z.Z.)
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning 530004, China
| |
Collapse
|
10
|
Yang Y, Wei Y, Yin M, Liu E, Du X, Shen J, Dong M, Yan S. Efficient Polyamine-Based Nanodelivery System for Proline: Enhanced Uptake Improves the Drought Tolerance of Tobacco. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1550-1560. [PMID: 38207102 DOI: 10.1021/acs.jafc.3c05636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Drought stress is one of the most unfavorable factors affecting plant growth and productivity among various environmental stresses. Nanotechnology is expected to enhance the effectiveness of conventional biostimulants. Herein, the current study constructed an efficient proline (Pro) nanodelivery system based on a star polyamine (SPc). The hydroxyl groups of Pro could assemble with carbonyl groups of SPc, and the self-assembly of Pro with SPc formed the nanoscale particles of the Pro/SPc complex. Compared to Pro alone, the contact angle of SPc-loaded Pro decreased, and its retentivity and plant uptake increased. Importantly, the tobacco (Nicotiana benthamiana) seeds and seedlings treated with Pro/SPc complex exhibited stronger drought tolerance. RNA-Seq analysis indicated that the SPc-loaded Pro could further upregulate photosynthesis-related genes and endocytosis-related genes. The current study constructed an efficient nanodelivery system for improving the bioactivity of biostimulants, which has broad application prospects in the agricultural field.
Collapse
Affiliation(s)
- Yanxiao Yang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ying Wei
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Enliang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Xiangge Du
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Min Dong
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
11
|
Jiang QH, Li T, Liu Y, Zhou ZY, Yang Y, Wei Y, Yin MZ, Shen J, Yan S. A nano-delivery system expands the insecticidal target of thiamethoxam to include a devastating pest, the fall armyworm. INSECT SCIENCE 2023; 30:803-815. [PMID: 36317674 DOI: 10.1111/1744-7917.13136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/15/2023]
Abstract
Nano-delivery systems have been applied to deliver various synthetic/botanical pesticides to increase the efficiency of pesticide use and reduce the volumes of pesticides applied. Previous studies have supported the hypothesis that the nanocarriers can help expand the insecticidal target of pesticides to include non-target pests. However, the potential mechanism underlying this interesting phenomenon remains unclear. Herein, a widely applied star polycation (SPc) nanocarrier was synthesized to construct a thiamethoxam (TMX) nano-delivery system. The SPc-based delivery system could promote the translocation of exogenous substances across the membrane of Sf9 cells, increase the cytotoxicity of TMX against Sf9 cells by nearly 20%, and expand the insecticidal target of TMX to include Spodoptera frugiperda (the fall armyworm), with a 27.5% mortality increase at a concentration of 0.25 mg/mL. Moreover, the RNA-seq analysis demonstrated that the SPc could upregulate various transport-related genes, such as Rab, SORT1, CYTH, and PIKfyve, for the enhanced cellular uptake of TMX. Furthermore, enhanced cell death in larvae treated with the TMX-SPc complex was observed through changes in the expression levels of death-related genes, such as Casp7, BIRC5, MSK1, and PGAM5. The SPc-based nano-delivery system improved the cellular uptake of TMX and expanded its insecticidal target by adjusting the expression levels of death-related genes. The current study mainly identified the transport and cell death genes related to nanocarrier-based insecticidal target expansion, which is beneficial for understanding the bioactivity enhancement of the nano-delivery system.
Collapse
Affiliation(s)
- Qin-Hong Jiang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ting Li
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Liu
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zi-Yi Zhou
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yang Yang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ying Wei
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Mei-Zhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Su X, Yan S, Zhao W, Liu H, Jiang Q, Wei Y, Guo H, Yin M, Shen J, Cheng H. Self-assembled thiophanate-methyl/star polycation complex prevents plant cell-wall penetration and fungal carbon utilization during cotton infection by Verticillium dahliae. Int J Biol Macromol 2023; 239:124354. [PMID: 37028625 DOI: 10.1016/j.ijbiomac.2023.124354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
No effective fungicides are available for the management of Verticillium dahliae, which causes vascular wilt disease. In this study, a star polycation (SPc)-based nanodelivery system was used for the first time to develop a thiophanate-methyl (TM) nanoagent for the management of V. dahliae. SPc spontaneously assembled with TM through hydrogen bonding and Van der Waals forces to decrease the particle size of TM from 834 to 86 nm. Compared to TM alone, the SPc-loaded TM further reduced the colony diameter of V. dahliae to 1.12 and 0.64 cm, and the spore number to 1.13 × 108 and 0.72 × 108 cfu/mL at the concentrations of 3.77 and 4.71 mg/L, respectively. The TM nanoagents disturbed the expression of various crucial genes in V. dahliae, and contributed to preventing plant cell-wall degradation and carbon utilization by V. dahliae, which mainly impaired the infective interaction between pathogens and plants. TM nanoagents remarkably decreased the plant disease index and the fungal biomass in the root compared to TM alone, and its control efficacy was the best (61.20 %) among the various formulations tested in the field. Furthermore, SPc showed negligible acute toxicity toward cotton seeds. To the best of our knowledge, this study is the first to design a self-assembled nanofungicide that efficiently inhibits V. dahliae growth and protects cotton from the destructive Verticillium wilt.
Collapse
Affiliation(s)
- Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, PR China
| | - Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, PR China.
| | - Weisong Zhao
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Baoding 071000, PR China
| | - Haiyang Liu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, PR China
| | - Qinhong Jiang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, PR China
| | - Ying Wei
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, PR China
| | - Huiming Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, PR China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, PR China.
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, PR China.
| |
Collapse
|
13
|
Miranti M, Panatarani C, Joni IM, Putri MHO, Kasmara H, Melanie M, Malini DM, Hermawan W. Preparation and Evaluation of Zeolite Nanoparticles as a Delivery System for Helicoverpa armigera Nucleopolyhedrovirus (HaNPV) against the Spodoptera litura (Fabricius, 1775) Larvae. Microorganisms 2023; 11:microorganisms11040847. [PMID: 37110270 PMCID: PMC10145452 DOI: 10.3390/microorganisms11040847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Synthetic insecticides frequently cause pest resistance and destroy non-target organisms. Thus, virus formulation is an issue that deserves considerable attention in developing virus-based insecticides. The hindrance of using nucleopolyhedrovirus alone as a virus-based insecticide is due to slow lethal time, though its mortality remains high (100%). This paper reports the formulation of zeolite nanoparticles as a delivery system to accelerate lethal time in controlling Spodoptera litura (Fabr.). Zeolite nanoparticles were prepared using the beads-milling method. The statistical analysis was carried out by a description exploration method with six replications. The occlusion bodies’ concentration in the virus formulation was 4 × 107 OBs in 1 mL medium. Zeolite nanoparticles formulation sped up the lethal time significantly (7.67 days) compared to micro-size zeolite (12.70 days) and only nucleopolyhedrovirus (8.12 days) and received acceptable mortality (86.4%). The zeolite nanoparticles delivery system provides an alternative formulation for nucleopolyhedrovirus with a significantly improved speed of killing the virus while maintaining suitable efficacy of the virus preparation in terms of the prevalence of mortality.
Collapse
Affiliation(s)
- Mia Miranti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Camellia Panatarani
- Department of Physic, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
- Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - I Made Joni
- Department of Physic, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
- Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Maharani Herawan Ossa Putri
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Hikmat Kasmara
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Melanie Melanie
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Desak Made Malini
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Wawan Hermawan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
- Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
- Correspondence:
| |
Collapse
|
14
|
Ding Y, Xiao Z, Chen F, Yue L, Wang C, Fan N, Ji H, Wang Z. A mesoporous silica nanocarrier pesticide delivery system for loading acetamiprid: Effectively manage aphids and reduce plant pesticide residue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160900. [PMID: 36526192 DOI: 10.1016/j.scitotenv.2022.160900] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
A multifunctional nanomaterials-based agrochemical delivery system could supply a powerful tool for the efficient use of pesticides. Redox-responsive carriers as novel delivery systems of pesticide application in agriculture could promote the pest control and reduce plant pesticide residues due to the controllable release of agrochemicals. Herein, neonicotinoid insecticide acetamiprid (Ace) was encapsulated with decanethiol in a mesoporous silica nanocarrier pesticide delivery system for a nanopesticide Ace@MSN-SS-C10. The Ace@MSN-SS-C10 had redox-responsive sustained release behavior triggered by glutathione (GSH). Moreover, the Ace@MSN-SS-C10 possessed excellent wettability, adhesion performance, stability, and biosafety. Greenhouse experiments showed that foliar spraying 1.5 mg Ace@MSN-SS-C10 per plant reduced the populations of adult and juvenile aphids (Aphis craccivora Koch) on Vicia faba L. after 5 days of aphid infestation by 98.7 % and 99.3 %, respectively. Notably, the leaf final Ace residue (0.32 ± 0.004 mg/kg) of Ace@MSN-SS-C10 application at the dose of 1.5 mg/plant after 5 days of aphid infestation was lower than the international Codex Alimentarius Commission (CAC) maximum residue limits (0.4 mg·kg-1) or much lower (24.87-folds decrease) than those treated with conventional Ace (40 % acetamiprid water dispersible granule). Altogether, this GSH-dependent redox-responsive delivery system for loading acetamiprid can develop as an efficient and environmentally-friendly nanopesticide to control aphids in sustainable agriculture.
Collapse
Affiliation(s)
- Ying Ding
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Ningke Fan
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Haihua Ji
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
15
|
Bezbaruah R, Chavda VP, Nongrang L, Alom S, Deka K, Kalita T, Ali F, Bhattacharjee B, Vora L. Nanoparticle-Based Delivery Systems for Vaccines. Vaccines (Basel) 2022; 10:1946. [PMID: 36423041 PMCID: PMC9694785 DOI: 10.3390/vaccines10111946] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Vaccination is still the most cost-effective way to combat infectious illnesses. Conventional vaccinations may have low immunogenicity and, in most situations, only provide partial protection. A new class of nanoparticle-based vaccinations has shown considerable promise in addressing the majority of the shortcomings of traditional and subunit vaccines. This is due to recent breakthroughs in chemical and biological engineering, which allow for the exact regulation of nanoparticle size, shape, functionality, and surface characteristics, resulting in improved antigen presentation and robust immunogenicity. A blend of physicochemical, immunological, and toxicological experiments can be used to accurately characterize nanovaccines. This narrative review will provide an overview of the current scenario of the nanovaccine.
Collapse
Affiliation(s)
- Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Lawandashisha Nongrang
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India
| | - Kangkan Deka
- Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, Mirza, Guwahati 781125, Assam, India
| | - Tutumoni Kalita
- Department of Pharmaceutical Chemistry, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Azara, Guwahati 781017, Assam, India
| | - Farak Ali
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
- Department of Pharmaceutical Chemistry, Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India
| | | |
Collapse
|
16
|
Yan S, Hu Q, Wei Y, Jiang Q, Yin M, Dong M, Shen J, Du X. Calcium nutrition nanoagent rescues tomatoes from mosaic virus disease by accelerating calcium transport and activating antiviral immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:1092774. [PMID: 36561462 PMCID: PMC9764000 DOI: 10.3389/fpls.2022.1092774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 05/04/2023]
Abstract
As an essential structural, metabolic and signaling element, calcium shows low remobilization from old to young tissues in plants, restricting the nutrient-use efficiency and control efficacy against mosaic virus disease. Nanotechnology has been applied to prevent/minimize nutrient losses and improve the accessibility of poorly-available nutrients. Herein, the current study applied a star polycation (SPc) to prepare a calcium nutrition nanoagent. The SPc could assemble with calcium glycinate through hydrogen bond and Van der Waals force, forming stable spherical particles with nanoscale size (17.72 nm). Transcriptomic results revealed that the calcium glycinate/SPc complex could activate the expression of many transport-related genes and disease resistance genes in tomatoes, suggesting the enhanced transport and antiviral immunity of SPc-loaded calcium glycinate. Reasonably, the calcium transport was accelerated by 3.17 times into tomato leaves with the help of SPc, and the protective effect of calcium glycinate was remarkably improved to 77.40% and 67.31% toward tomato mosaic virus with the help of SPc after the third and fifth applications. Furthermore, SPc-loaded calcium glycinate could be applied to increase the leaf photosynthetic rate and control the unusual fast growth of tomatoes. The current study is the first success to apply nano-delivery system for enhanced calcium transport and antiviral immunity, which is beneficial for increasing nutrient-use efficiency and shows good prospects for field application.
Collapse
Affiliation(s)
- Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qian Hu
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ying Wei
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qinhong Jiang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Min Dong
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
- *Correspondence: Xiangge Du, ; Jie Shen,
| | - Xiangge Du
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
- *Correspondence: Xiangge Du, ; Jie Shen,
| |
Collapse
|