1
|
Gonçalves M, Costa M, Paiva-Martins F, Silva P. Olive Oil Industry By-Products as a Novel Source of Biophenols with a Promising Role in Alzheimer Disease Prevention. Molecules 2024; 29:4841. [PMID: 39459209 PMCID: PMC11510978 DOI: 10.3390/molecules29204841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This review explores the potential health benefits and applications of phenolic secoiridoids derived from olive oil by-products in the prevention of Alzheimer's disease (AD). As reviewed herein, polyphenols, such as epigallocatechin-3-gallate, epicatechin, and resveratrol, show in vitro and in vivo antioxidant, anti-inflammatory, and neuroprotective properties, and are particularly relevant in the context of AD, a leading cause of dementia globally. The olive oil industry, particularly in the Mediterranean region, produces significant amounts of waste, including leaves, pomace, and wastewater, which pose environmental challenges but also offer an untapped source of bioactive compounds. Despite promising in vitro and in vivo studies indicating that olive-derived polyphenols, such as oleuropein and hydroxytyrosol, may mitigate AD pathology, human clinical trials remain limited. The variability in extraction methods and the complex nature of AD further complicate research. Future studies should focus on standardizing the protocols and conducting robust clinical trials to fully assess the therapeutic potential of these compounds. This approach not only supports the development of new treatments for AD but also promotes environmental sustainability by valorizing olive oil industry waste.
Collapse
Affiliation(s)
- Marta Gonçalves
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Marlene Costa
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Fátima Paiva-Martins
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (M.C.); (F.P.-M.)
| | - Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| |
Collapse
|
2
|
Duraisamy P, Angusamy A, Ravi S, Krishnan M, Martin LC, Manikandan B, Sundaram J, Ramar M. Phytol from Scoparia dulcis prevents NF-κB-mediated inflammatory responses during macrophage polarization. 3 Biotech 2024; 14:80. [PMID: 38375513 PMCID: PMC10874368 DOI: 10.1007/s13205-024-03924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/07/2024] [Indexed: 02/21/2024] Open
Abstract
Macrophages are primary immune cells that mediate a wide range of inflammatory diseases through their polarization potential. In this study, phytol isolated from Scoparia dulcis has been explored against 7-ketocholesterol and bacterial lipopolysaccharide-induced macrophage polarization in IC-21 cells. Isolated phytol has been characterized using GC-MS, TLC, HPTLC, FTIR, 1H-NMR, and HPLC analyses. The immunomodulatory effects of viable concentrations of phytol were tested on oxidative stress, arginase activity, nuclear and mitochondrial membrane potentials in IC-21 cells in addition to the modulation of calcium and lipids. Further, gene and protein expression of atherogenic markers were studied. Results showed that the isolated phytol at a viable concentration of 400 µg/ml effectively reduced the production of nitric oxide, superoxide anion (ROS generation), calcium and lipid accumulation, stabilized nuclear and mitochondrial membranes, and increased arginase activity. The atherogenic markers including iNOS, COX-2, IL-6, IL-1β, MMP-9, CD36, and NF-κB were significantly downregulated at the levels of gene and protein expression, while macrophage surface and nuclear receptor markers (CD206, CD163, and PPAR-γ) were significantly upregulated by phytol pre-treatment in macrophages. Therefore, the present pharmacognostic study supports the role of phytol isolated from Scoparia dulcis in preventing M2-M1 macrophage polarization under inflammatory conditions, making it a promising compound. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03924-9.
Collapse
Affiliation(s)
| | - Annapoorani Angusamy
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni’s College for Women, Chennai, 600015 India
| | - Janarthanan Sundaram
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| |
Collapse
|
3
|
García-González A, Espinosa-Cabello JM, Cerrillo I, Montero-Romero E, Rivas-Melo JJ, Romero-Báez A, Jiménez-Andreu MD, Ruíz-Trillo CA, Rodríguez-Rodríguez A, Martínez-Ortega AJ, Del Carmen Roque-Cuellar M, García-Rey S, Jiménez-Sánchez A, Mangas-Cruz MÁ, Pereira-Cunill JL, Perona JS, García-Luna PP, Castellano JM. Bioavailability and systemic transport of oleanolic acid in humans, formulated as a functional olive oil. Food Funct 2023; 14:9681-9694. [PMID: 37812020 DOI: 10.1039/d3fo02725b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Evidence of the pharmacological activity of oleanolic acid (OA) suggests its potential therapeutic application. However, its use in functional foods, dietary supplements, or nutraceuticals is hindered by limited human bioavailability studies. The BIO-OLTRAD trial is a double-blind, randomized controlled study with 22 participants that received a single dose of 30 mg OA formulated as a functional olive oil. The study revealed that the maximum serum concentration of OA ranged from 500 to 600 ng mL-1, with an AUC0-∞ value of 2862.50 ± 174.50 ng h mL-1. Furthermore, we discovered a physiological association of OA with serum albumin and triglyceride-rich lipoproteins (TRL). UV absorption spectra showed conformational changes in serum albumin due to the formation of an adduct with OA. Additionally, we demonstrated that TRL incorporate OA, reaching a maximum concentration of 140 ng mL-1 after 2-4 hours. We conjecture that both are efficient carriers to reach target tissues and to yield high bioavailability.
Collapse
Affiliation(s)
- Aída García-González
- University Pablo de Olavide, Department of Molecular Biology and Biochemical Engineering, 41013-Seville, Spain
| | | | - Isabel Cerrillo
- University Pablo de Olavide, Department of Molecular Biology and Biochemical Engineering, 41013-Seville, Spain
| | - Emilio Montero-Romero
- Regional Andalusian Health Service, Service of Endocrinology and Nutrition, University Hospitals Virgen del Rocío, 41013-Seville, Spain.
| | | | - Andrea Romero-Báez
- Spanish Scientific Research Council, Instituto de la Grasa-CSIC, 41013-Seville, Spain.
| | - María Dolores Jiménez-Andreu
- Regional Andalusian Health Service, Service of Endocrinology and Nutrition, University Hospitals Virgen del Rocío, 41013-Seville, Spain.
| | - Carmen Amelia Ruíz-Trillo
- Regional Andalusian Health Service, Service of Endocrinology and Nutrition, University Hospitals Virgen del Rocío, 41013-Seville, Spain.
| | - Ana Rodríguez-Rodríguez
- Regional Andalusian Health Service, Service of Endocrinology and Nutrition, University Hospitals Virgen del Rocío, 41013-Seville, Spain.
| | - Antonio Jesús Martínez-Ortega
- Regional Andalusian Health Service, Service of Endocrinology and Nutrition, University Hospitals Virgen del Rocío, 41013-Seville, Spain.
| | - María Del Carmen Roque-Cuellar
- Regional Andalusian Health Service, Service of Endocrinology and Nutrition, University Hospitals Virgen del Rocío, 41013-Seville, Spain.
| | - Silvia García-Rey
- Regional Andalusian Health Service, Service of Endocrinology and Nutrition, University Hospitals Virgen del Rocío, 41013-Seville, Spain.
| | - Andrés Jiménez-Sánchez
- Regional Andalusian Health Service, Service of Endocrinology and Nutrition, University Hospitals Virgen del Rocío, 41013-Seville, Spain.
| | - Miguel Ángel Mangas-Cruz
- Regional Andalusian Health Service, Service of Endocrinology and Nutrition, University Hospitals Virgen del Rocío, 41013-Seville, Spain.
| | - José Luis Pereira-Cunill
- Regional Andalusian Health Service, Service of Endocrinology and Nutrition, University Hospitals Virgen del Rocío, 41013-Seville, Spain.
| | - Javier S Perona
- Spanish Scientific Research Council, Instituto de la Grasa-CSIC, 41013-Seville, Spain.
| | - Pedro Pablo García-Luna
- Regional Andalusian Health Service, Service of Endocrinology and Nutrition, University Hospitals Virgen del Rocío, 41013-Seville, Spain.
| | - José María Castellano
- Spanish Scientific Research Council, Instituto de la Grasa-CSIC, 41013-Seville, Spain.
| |
Collapse
|
4
|
Espinosa JM, Quintero-Flórez A, Carrasquilla N, Montero E, Rodríguez-Rodríguez A, Castellano JM, Perona JS. Bioactive compounds in pomace olive oil modulate the inflammatory response elicited by postprandial triglyceride-rich lipoproteins in BV-2 cells. Food Funct 2023; 14:8987-8999. [PMID: 37740318 DOI: 10.1039/d3fo02460a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Modulation of microglial response could be a target to reduce neuroinflammation associated with Alzheimer's disease. In this study, we propose that lipophilic bioactive molecules present in pomace olive oil (POO), transported in triglyceride-rich lipoproteins (TRLs), are able to modulate microglial high-oleic sunflower oil (HOSO, points) or pomace olive oil (POO, stripes). In order to prove this hypothesis, a randomized crossover postprandial trial was performed in 18 healthy young women. POO was assayed in opposition to high-oleic sunflower oil (HOSO), a common dietary oil which shares with POO an almost identical fatty acid composition but lacks certain biomolecules with recognized antioxidant and anti-inflammatory activities. TRLs were isolated from blood at the baseline and 2 and 4 hours postprandially and used to treat BV-2 cells to assess their ability to modulate the microglial function. We found that the intake of POO leads to the constitution of postprandial TRLs that are able to modulate the inflammatory response in microglia compared to HOSO. TRL-derived POO reduced the release of pro-inflammatory cytokines (tumor necrosis factor-α, and interleukins 1β and 6) and nitric oxide and downregulated genes codifying for these cytokines and inducible nitric oxide synthase (iNOS) in BV-2 cells. Moreover, the ingestion of POO by healthy women slightly improved glycemic control and TRL clearance throughout the postprandial phase compared to HOSO. In conclusion, we demonstrated that consuming POO results in postprandial TRLs containing lipophilic bioactive compounds capable of regulating the inflammatory response prompted by microglial activation.
Collapse
Affiliation(s)
- Juan Manuel Espinosa
- Instituto de la Grasa, Department of Food and Health, Spanish National Research Council (CSIC), Campus University Pablo de Olavide, 41013, Seville, Spain.
| | | | - Natalia Carrasquilla
- Instituto de la Grasa, Department of Food and Health, Spanish National Research Council (CSIC), Campus University Pablo de Olavide, 41013, Seville, Spain.
| | - Emilio Montero
- University Hospital Virgen del Rocío, Andalusian Regional Health Service, Seville, Spain
| | | | - José María Castellano
- Instituto de la Grasa, Department of Food and Health, Spanish National Research Council (CSIC), Campus University Pablo de Olavide, 41013, Seville, Spain.
| | - Javier S Perona
- Instituto de la Grasa, Department of Food and Health, Spanish National Research Council (CSIC), Campus University Pablo de Olavide, 41013, Seville, Spain.
| |
Collapse
|
5
|
Álvarez MD, Cofrades S, Pérez-Mateos M, Saiz A, Herranz B. Development and Physico-Chemical Characterization of Healthy Puff Pastry Margarines Made from Olive-Pomace Oil. Foods 2022; 11:foods11244054. [PMID: 36553795 PMCID: PMC9778141 DOI: 10.3390/foods11244054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Due to its characteristic aroma and flavor, puff pastry (PP) prepared with butter is more accepted than that made with margarine, yet a high saturated fat consumption is associated with cardiovascular disease. This work studies the potential of olive-pomace oil (OPO) as main ingredient of PP margarines together with different organogelator agents to imitate the technological properties of a commercial fatty preparation (CFP). Rheological and textural properties were measured in all formulated margarines (FM) and, additionally, thermal and microstructural properties, and fatty acid (FA) profiles were analyzed in some selected FM. The different FM had viscous modulus (G″) and loss factor (tan δ) values lower than those of CFP, thus reflecting a different viscoelasticity and plasticity. The crystallization and melting temperatures of FM were also different from those of CFP, indicating the presence of a dissimilar polymorphic fat-crystal structure. Nevertheless, the FM containing an oleogel prepared with 5% beeswax and OPO was more similar to CFP. The FA profile of CFP and FM, with 80% polyunsaturated fatty acids (PUFA) and 60% oleic acid, is healthier than that of a PP commercial butter (CB), evidencing that, although improvements in margarine plasticity are still necessary, OPO is technologically viable to produce healthier PP margarines.
Collapse
Affiliation(s)
- María Dolores Álvarez
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), c/José Antonio Novais, 6, 28040 Madrid, Spain
- Correspondence: (M.D.Á.); (B.H.); Tel.: +34-91-549-2300 (M.D.Á.)
| | - Susana Cofrades
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), c/José Antonio Novais, 6, 28040 Madrid, Spain
| | - Miriam Pérez-Mateos
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), c/José Antonio Novais, 6, 28040 Madrid, Spain
| | - Arancha Saiz
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), c/José Antonio Novais, 6, 28040 Madrid, Spain
| | - Beatriz Herranz
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), c/José Antonio Novais, 6, 28040 Madrid, Spain
- Department of Food Technology, Veterinary Faculty, Complutense University, Avda/Puerta de Hierro, s/n, 28040 Madrid, Spain
- Correspondence: (M.D.Á.); (B.H.); Tel.: +34-91-549-2300 (M.D.Á.)
| |
Collapse
|