1
|
Chen Y, Li T. Unveiling the Mechanisms of Pain in Endometriosis: Comprehensive Analysis of Inflammatory Sensitization and Therapeutic Potential. Int J Mol Sci 2025; 26:1770. [PMID: 40004233 PMCID: PMC11855056 DOI: 10.3390/ijms26041770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Endometriosis is a complicated, estrogen-dependent gynecological condition with a high morbidity rate. Pain, as the most common clinical symptom of endometriosis, severely affects women's physical and mental health and exacerbates socioeconomic burden. However, the specific mechanisms behind the occurrence of endometriosis-related pain remain unclear. It is currently believed that the occurrence of endometriosis pain is related to various factors, such as immune abnormalities, endocrine disorders, the brain-gut axis, angiogenesis, and mechanical stimulation. These factors induce systemic chronic inflammation, which stimulates the nerves and subsequently alters neural plasticity, leading to nociceptive sensitization and thereby causing chronic pain. In this paper, we compile and review the articles published on the study of nociceptive sensitization and endometriosis pain mechanisms. Starting from the factors influencing the chronic pain associated with endometriosis, we explain the relationship between these factors and chronic inflammation and further elaborate on the potential mechanisms by which chronic inflammation induces nociceptive sensitization. We aim to reveal the possible mechanisms of endometriosis pain, as well as nociceptive sensitization, and offer potential new targets for the treatment of endometriosis pain.
Collapse
Affiliation(s)
| | - Tian Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China;
| |
Collapse
|
2
|
Tassou A, Richebe P, Rivat C. Mechanisms of chronic postsurgical pain. Reg Anesth Pain Med 2025; 50:77-85. [PMID: 39909543 DOI: 10.1136/rapm-2024-105964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/25/2024] [Indexed: 02/07/2025]
Abstract
Chronic pain after surgery, also known as chronic postsurgical pain (CPSP), is recognized as a significant public health issue with serious medical and economic consequences. Current research on CPSP underscores the significant roles of both peripheral and central sensitization in pain development and maintenance. Peripheral sensitization occurs at the site of injury, through the hyperexcitability of nerve fibers due to surgical damage and the release of inflammatory mediators. This leads to increased expression of pronociceptive ion channels and receptors, such as transient receptor potential and acid-sensing ion channels (ASIC), enhancing pain signal transmission. Central sensitization involves long-term changes in the central nervous system, particularly in the spinal cord. In this context, sensitized spinal neurons become more responsive to pain signals, driven by continuous nociceptive input from the periphery, which results in an enhanced pain response characterized by hyperalgesia and/or allodynia. Key players in this process include N-methyl-D-aspartate receptor and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, along with proinflammatory cytokines and chemokines released by activated glia. These glial cells release substances that further increase neuronal excitability, maintaining the sensitized state and contributing to persistent pain. The activation of antinociceptive systems is required for the resolution of pain after surgery, and default in these systems may also be considered as an important component of CPSP. In this review, we will examine the clinical factors underlying CPSP in patients and the mechanisms previously established in preclinical models of CPSP that may explain how acute postoperative pain may transform into chronic pain in patients.
Collapse
Affiliation(s)
- Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Philippe Richebe
- Department of Anesthesiology and Pain Medicine, Polyclinique Bordeaux Nord Aquitaine (PBNA), Bordeaux, France
- Anesthesiology and Pain Medicine, Maisonneuve Rosemont Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Cyril Rivat
- University of Montpellier, Montpellier, France
- Institut des Neurosciences de Montpellier INSERM U1298, Montpellier, France
| |
Collapse
|
3
|
Wang Y, Zhou W, Zhang F, Wei J, Wang S, Min K, Chen Y, Yang H, Lv X. Exploring the bidirectional causal associations between pain and circulating inflammatory proteins: A Mendelian randomization study. Clin Exp Pharmacol Physiol 2024; 51:e13905. [PMID: 38965671 DOI: 10.1111/1440-1681.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
Multisite chronic pain (MCP) and site-specific chronic pain (SSCP) may be influenced by circulating inflammatory proteins, but the causal relationship remains unknown. To overcome this limitation, two-sample bidirectional Mendelian randomization (MR) analysis was used to analyse data for 91 circulating inflammatory proteins, MCP and SSCP encompassing headache, back pain, shoulder pain, hip pain, knee pain, stomach abdominal pain and facial pain. The primary MR method used was inverse variance weighting, sensitivity analyses included weighted median, MR pleiotropy residual sum and outlier and the Egger intercept method. Heterogeneity was also detected using Cochrane's Q test and leave-one-out analyses. Finally, a causal relationship between 29 circulating inflammatory proteins and chronic pain was identified. Among these proteins, 14 exhibited a protective effect, including MCP (T-cell surface glycoprotein cluster of differentiation 5), headache (4E-binding protein 1 [4EBP1], cluster of differentiation 40, cluster of differentiation 6 and C-X-C motif chemokine [CXCL] 11), back pain (leukaemia inhibitory factor), shoulder pain (fibroblast growth factor [FGF]-5 and interleukin [IL]-18R1), stomach abdominal pain (tumour necrosis factor [TNF]-α), hip pain (CXCL1, IL-20 and signalling lymphocytic activation molecule 1) and knee pain (IL-7 and TNF-β). Additionally, 15 proteins were identified as risk factors for MCP and SSCP: MCP (colony-stimulating factor 1, human glial cell line-derived neurotrophic factor and IL-17C), headache (fms-related tyrosine kinase 3 ligand, IL-20 receptor subunit α [IL-20RA], neurotrophin-3 and tumour necrosis factor receptor superfamily member 9), facial pain (CXCL1), back pain (TNF), shoulder pain (IL-17C and matrix metalloproteinase-10), stomach abdominal pain (IL-20RA), hip pain (C-C motif chemokine 11/eotaxin-1 and tumour necrosis factor ligand superfamily member 12) and knee pain (4EBP1). Importantly, in the opposite direction, MCP and SSCP did not exhibit a significant causal impact on circulating inflammatory proteins. Our study identified potential causal influences of various circulating inflammatory proteins on MCP and SSCP and provided promising treatments for the clinical management of MCP and SSCP.
Collapse
Affiliation(s)
- Yu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenyu Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Faqiang Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sheng Wang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Keting Min
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanli Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
5
|
Jin Y, Zhou J, Fang Y, Song H, Lin S, Pan B, Liu L, Xiong B. Electroacupuncture prevents the development or establishment of chronic pain via IL-33/ST2 signaling in hyperalgesic priming model rats. Neurosci Lett 2024; 820:137611. [PMID: 38142925 DOI: 10.1016/j.neulet.2023.137611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Chronic pain is acomplexhealth issue. Compared to acute pain, which has a protective value, chronic pain is defined as persistent pain after tissue injury. Few clinical advances have been made to prevent the transition from acute to chronic pain. Electroacupuncture (EA), the most common form of acupuncture, is widely used in clinical practice to relieve pain. METHODS The hyperalgesic priming model, established via a carrageenan injection followed by a prostaglandin E2 injection, was used to investigate the development or establishment of chronic pain. We observed the hyperalgesic effect of EA on rats and investigated the expression p38 mitogen-activated protein kinase, interleukin-33 (IL-33), and its receptor ST2 in astrocytes in the L4-L6 spinal cord dorsal horns (SDHs) after EA. The IL-33/ST2 signaling pathway in SDH is associated with the development of chronic pain. RESULTS EA can reverse the pain threshold in hyperalgesic priming model rats and regulates the expression of phosphorylated p38, IL-33, and ST2 in astrocytes in the L4-L6 SDHs. We discovered that EA raises the pain threshold. This suggests that EA can prevent the development or establishment of chronic pain by inhibiting IL-33/ST2 signaling in the lower central nervous system. CONCLUSIONS EA can alleviate the development or establishment of chronic pain by modulating IL-33/ST2 signaling in SDHs. Our findings will help clinicians understand the mechanisms of EA analgesia.
Collapse
Affiliation(s)
- Ying Jin
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou City, Zhejiang Province 310009, China; Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, 155 Hanzhong Road, Nanjing City, Jiangsu 210029, China
| | - Jie Zhou
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, 219 Moganshan Road, Xihu District, Hangzhou City, Zhejiang Province 310005, China
| | - Yinfeng Fang
- The School of Communication Engineering, Hangzhou Dianzi University, Hangzhou City, Zhejiang Province 310018, China
| | - Hongyun Song
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou City, Zhejiang Province 310009, China
| | - Shiming Lin
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou City, Zhejiang Province 310009, China
| | - Bowen Pan
- Department of Traumatology, Affiliated Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Lanying Liu
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, 155 Hanzhong Road, Nanjing City, Jiangsu 210029, China.
| | - Bing Xiong
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou City, Zhejiang Province 310009, China.
| |
Collapse
|
6
|
Guo R, Fang Y, Zhang Y, Liu L, Li N, Wu J, Yan M, Li Z, Yu J. SHED-derived exosomes attenuate trigeminal neuralgia after CCI of the infraorbital nerve in mice via the miR-24-3p/IL-1R1/p-p38 MAPK pathway. J Nanobiotechnology 2023; 21:458. [PMID: 38031158 PMCID: PMC10685568 DOI: 10.1186/s12951-023-02221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Microglial activation in the spinal trigeminal nucleus (STN) plays a crucial role in the development of trigeminal neuralgia (TN). The involvement of adenosine monophosphate-activated protein kinase (AMPK) and N-methyl-D-aspartate receptor 1 (NMDAR1, NR1) in TN has been established. Initial evidence suggests that stem cells from human exfoliated deciduous teeth (SHED) have a potential therapeutic effect in attenuating TN. In this study, we propose that SHED-derived exosomes (SHED-Exos) may alleviate TN by inhibiting microglial activation. This study sought to assess the curative effect of SHED-Exos administrated through the tail vein on a unilateral infraorbital nerve chronic constriction injury (CCI-ION) model in mice to reveal the role of SHED-Exos in TN and further clarify the potential mechanism. RESULTS Animals subjected to CCI-ION were administered SHED-Exos extracted by differential ultracentrifugation. SHED-Exos significantly alleviated TN in CCI mice (increasing the mechanical threshold and reducing p-NR1) and suppressed microglial activation (indicated by the levels of TNF-α, IL-1β and IBA-1, as well as p-AMPK) in vivo and in vitro. Notably, SHED-Exos worked in a concentration dependent manner. Mechanistically, miR-24-3p-upregulated SHED-Exos exerted a more significant effect, while miR-24-3p-inhibited SHED-Exos had a weakened effect. Bioinformatics analysis and luciferase reporter assays were utilized for target gene prediction and verification between miR-24-3p and IL1R1. Moreover, miR-24-3p targeted the IL1R1/p-p38 MAPK pathway in microglia was increased in CCI mice, and participated in microglial activation in the STN. CONCLUSIONS miR-24-3p-encapsulated SHED-Exos attenuated TN by suppressing microglial activation in the STN of CCI mice. Mechanistically, miR-24-3p blocked p-p38 MAPK signaling by targeting IL1R1. Theoretically, targeted delivery of miR-24-3p may offer a potential strategy for TN.
Collapse
Affiliation(s)
- Rong Guo
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Yuxin Fang
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Yuyao Zhang
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Liu Liu
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Na Li
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Jintao Wu
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Ming Yan
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Zehan Li
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road, Nanjing, 210029, Jiangsu, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.
| | - Jinhua Yu
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road, Nanjing, 210029, Jiangsu, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
7
|
Liu B, Wu W, Cui L, Zheng X, Li N, Zhang X, Duan G. A novel co-target of ACY1 governing plasma membrane translocation of SphK1 contributes to inflammatory and neuropathic pain. iScience 2023; 26:106989. [PMID: 37378314 PMCID: PMC10291574 DOI: 10.1016/j.isci.2023.106989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Previous studies validate that inhibiting sodium channel 1.8 (Nav1.8) effectively relieves inflammatory and neuropathic pain. However, Nav1.8 blockers have cardiac side effects in addition to analgesic effects. Here, we constructed a spinal differential protein expression profile using Nav1.8 knockout mice to screen common downstream proteins of Nav1.8 in inflammatory and neuropathic pain. We found that aminoacylase 1 (ACY1) expression was increased in wild-type mice compared to Nav1.8 knockout mice in both pain models. Moreover, spinal ACY1 overexpression induced mechanical allodynia in naive mice, while ACY1 suppression alleviated inflammatory and neuropathic pain. Further, ACY1 could interact with sphingosine kinase 1 and promote its membrane translocation, resulting in sphingosine-1-phosphate upregulation and the activation of glutamatergic neurons and astrocytes. In conclusion, ACY1 acts as a common downstream effector protein of Nav1.8 in inflammatory and neuropathic pain and could be a new and precise therapeutic target for chronic pain.
Collapse
Affiliation(s)
- Baowen Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyao Wu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - LingLing Cui
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, Wuhan third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xuemei Zheng
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ningbo Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianwei Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Brackx W, de Cássia Collaço R, Theys M, Cruyssen JV, Bosmans F. Understanding the physiological role of Na V1.9: Challenges and opportunities for pain modulation. Pharmacol Ther 2023; 245:108416. [PMID: 37061202 DOI: 10.1016/j.pharmthera.2023.108416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Voltage-activated Na+ (NaV) channels are crucial contributors to rapid electrical signaling in the human body. As such, they are among the most targeted membrane proteins by clinical therapeutics and natural toxins. Several of the nine mammalian NaV channel subtypes play a documented role in pain or other sensory processes such as itch, touch, and smell. While causal relationships between these subtypes and biological function have been extensively described, the physiological role of NaV1.9 is less understood. Yet, mutations in NaV1.9 can cause striking disease phenotypes related to sensory perception such as loss or gain of pain and chronic itch. Here, we explore our current knowledge of the mechanisms by which NaV1.9 may contribute to pain and elaborate on the challenges associated with establishing links between experimental conditions and human disease. This review also discusses the lack of comprehensive insights into NaV1.9-specific pharmacology, an unfortunate situation since modulatory compounds may have tremendous potential in the clinic to treat pain or as precision tools to examine the extent of NaV1.9 participation in sensory perception processes.
Collapse
Affiliation(s)
- Wayra Brackx
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Rita de Cássia Collaço
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Margaux Theys
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Jolien Vander Cruyssen
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Frank Bosmans
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium.
| |
Collapse
|
9
|
Soma K, Hitomi S, Hayashi Y, Soma C, Otsuji J, Shibuta I, Furukawa A, Urata K, Kurisu R, Yonemoto M, Hojo Y, Shirakawa T, Iwata K, Shinoda M. Neonatal injury modulates incisional pain sensitivity in adulthood: An animal study. Neuroscience 2023; 519:60-72. [PMID: 36958596 DOI: 10.1016/j.neuroscience.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/02/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Neonatal pain experiences including traumatic injury influences negatively on development of nociceptive circuit developments, resulting in persistent pain hypersensitivity in adults. However, the detailed mechanism is not yet well understood. In the present study, to clarify the pathogenesis of orofacial pain hypersensitivity associated with neonatal injury, the involvement of the voltage-gated sodium channel (Nav) 1.8 and the C-C chemokine ligand 2 (CCL2)/C-C chemokine receptor 2 (CCR2) signaling in the trigeminal ganglion (TG) in facial skin incisional pain hypersensitivity was examined in 190 neonatal facial-injured and sham male rats. The whisker pad skin was incised on postnatal day 4 and week 7 (Incision-Incision group). Compared to the group without neonatal incision (Sham-Incision group), mechanical hypersensitivity in the whisker pad skin was enhanced in Incision-Incision group. The number of Nav1.8-immunoreactive TG neurons and the amount of CCL2 expressed in the macrophages and satellite glial cells in the TG were increased on day 14 after re-incision in the Incision-Incision group, compared with Sham-Incision group. Blockages of Nav1.8 in the incised region and CCR2 in the TG suppressed the enhancement of mechanical hypersensitivity in the Incision-Incision group. Administration of CCL2 into the TG enhanced mechanical hypersensitivity in the Sham-Sham, Incision-Sham and Sham-Incision group. Our results suggest that neonatal facial injury accelerates the TG neuronal hyperexcitability following orofacial skin injury in adult in association with Nav1.8 overexpression via CCL2 signaling, resulting in the enhancement of orofacial incisional pain hypersensitivity in the adulthood.
Collapse
Affiliation(s)
- Kumi Soma
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Chihiro Soma
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Jo Otsuji
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Ikuko Shibuta
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Akihiko Furukawa
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kentaro Urata
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Ryoko Kurisu
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Orofacial Pain Clinic, Tokyo Medical and Dental University Hospital, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Mamiko Yonemoto
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Yasushi Hojo
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Tetsuo Shirakawa
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|