1
|
Borrello MT, Ruzic D, Paish H, Graham E, Collins AL, Scott R, Higginbotham S, Radovic B, Nelson G, Bulmer D, Borthwick LA, Robinson SM, French J, Moir J, White SA, Wilson C, Pandanaboyana S, Hammond J, Thakkar R, Alrawashdeh W, Figueiredo R, Petkovic M, Nikolic K, Oakley F, Mann DA, Mann J. Pharmacological manipulation of liver fibrosis progression using novel HDAC6 inhibitors. FEBS J 2025. [PMID: 40084612 DOI: 10.1111/febs.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/15/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
Chronic liver injury characterized by unresolved hepatitis leads to fibrosis, potentially progressing to cirrhosis and hepatocellular carcinoma. Effective treatments for halting or reversing liver fibrosis are currently lacking. This study investigates the potential of HDAC6 as a therapeutic target in liver fibrosis. We synthesized two selective HDAC6 inhibitors, DR-3 and FDR2, and assessed their effects on hepatic stellate cell (HSC) activation and liver fibrosis using human precision cut liver slices (hPCLS). Molecular docking, deacetylation inhibition assays, and various cellular assays were employed to evaluate the specificity and anti-fibrotic efficacy of these inhibitors. DR-3 and FDR2 demonstrated high selectivity for HDAC6 over HDAC1, significantly inhibiting HSC activation markers and fibrogenic gene expression. Both inhibitors increased acetylation of α-tubulin and suppressed TGF-β1-induced SMAD signaling in HSCs. In human precision cut liver slices (hPCLS), DR-3 and FDR2 reduced fibrogenic protein levels and collagen deposition. The selective inhibition of HDAC6 by DR-3 and FDR2 effectively reduces HSC activation and fibrogenesis in liver models, supporting further investigation of HDAC6 inhibitors as potential anti-fibrotic therapies.
Collapse
Affiliation(s)
- Maria Teresa Borrello
- Newcastle Fibrosis Research Group, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, UK
- School of Pharmacy and Pharmaceutics, Faculty of Health Sciences and Wellbeing, University of Sunderland, UK
| | - Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Serbia
| | - Hannah Paish
- Newcastle Fibrosis Research Group, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Eleanor Graham
- Newcastle Fibrosis Research Group, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Amy L Collins
- Newcastle Fibrosis Research Group, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Rebecca Scott
- Newcastle Fibrosis Research Group, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Sam Higginbotham
- Newcastle Fibrosis Research Group, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Branko Radovic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Serbia
| | - Glyn Nelson
- Bioimaging Unit, Faculty of Medical Sciences, Newcastle University, UK
| | - David Bulmer
- Bioimaging Unit, Faculty of Medical Sciences, Newcastle University, UK
| | - Lee A Borthwick
- Newcastle Fibrosis Research Group, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, UK
- FibroFind, Newcastle upon Tyne, UK
| | - Stuart M Robinson
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | - Jeremy French
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | - John Moir
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | - Steve A White
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | - Colin Wilson
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | - Sanjay Pandanaboyana
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | - John Hammond
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | - Rohan Thakkar
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | - Wasfi Alrawashdeh
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | - Rodrigo Figueiredo
- Department of Hepatobiliary Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, UK
| | - Milos Petkovic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Serbia
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Serbia
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, UK
- Newcastle University Centre for Cancer, Newcastle University, UK
| | - Jelena Mann
- Newcastle Fibrosis Research Group, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, UK
- FibroFind, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Tian ZF, Hu RY, Wang Z, Wang YJ, Li W. Molecular mechanisms behind the inhibitory effects of ginsenoside Rg3 on hepatic fibrosis: a review. Arch Toxicol 2025; 99:541-561. [PMID: 39729114 DOI: 10.1007/s00204-024-03941-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Hepatitis is a chronic inflammatory liver disease and an important cause of liver fibrosis, which can progress to cirrhosis and even hepatocellular carcinoma if left untreated. However, liver fibrosis is a reversible disease, so finding new intervention targets and molecular markers is the key to preventing and treating liver fibrosis. Ginseng, the roots of Panax ginseng C. A. Meyer, is a precious Traditional Chinese Medicines with high medicinal value and is known as the "king of all herbs", and its active ingredient, ginsenoside Rg3 is a rare saponin and a new class of drug, one of the most thoroughly and extensively studied in a large number of studies. Ginsenoside Rg3 is an active ingredient extracted from ginseng that possesses a variety of biological activities, including anti-inflammatory, antioxidant, and anti-fibrotic effects. Several studies have suggested that ginsenoside Rg3 may help reduce hepatic inflammation and oxidative stress, thereby slowing the progression of liver fibrosis. Ginsenoside Rg3 may have some therapeutic effects on liver fibrosis, and the underlying molecular mechanisms behind these effects are attributed to cellular autophagy, apoptosis, and anti-inflammation, as well as the modulation of antioxidant activity and multiple signaling pathways. The molecular mechanisms behind the inhibitory effect of ginsenoside Rg3 on hepatic fibrosis are reviewed, with a view to providing reference for related studies.
Collapse
Affiliation(s)
- Zhao-Feng Tian
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Rui-Yi Hu
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| | - Ya-Jun Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
3
|
Yang W, Yan X, Chen R, Xin X, Ge S, Zhao Y, Yan X, Zhang J. Smad4 deficiency in hepatocytes attenuates NAFLD progression via inhibition of lipogenesis and macrophage polarization. Cell Death Dis 2025; 16:58. [PMID: 39890803 PMCID: PMC11785999 DOI: 10.1038/s41419-025-07376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/22/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a major cause of chronic liver disorders, has become a serious public health issue. Although the Smad4 signaling pathway has been implicated in the progression of NAFLD, the specific role of Smad4 in hepatocytes in NAFLD pathogenesis remains unclear. Hepatocyte-specific knockout Smad4 mice (AlbSmad4-/-) were first constructed using the Cre-Loxp recombinant system to establish a high-fat diet induced NAFLD model. The role of Smad4 in the occurrence and development of NAFLD was determined by monitoring the body weight of mice, detecting triglycerides and free fatty acids in serum and liver tissue homogenates, staining the tissue sections to observe the accumulation of liver fat, and RT-qPCR detecting the expression of genes related to lipogenesis, fatty acid intake, and fatty acid β oxidation. The molecular mechanism of Smad4 in hepatocytes affecting NAFLD was therefore investigated through combining in vitro and in vivo experiments. Smad4 deficiency in hepatocytes mitigated NAFLD progression and decreased inflammatory cell infiltration. Moreover, Smad4 deficiency inhibited CXCL1 secretion by suppressing the activation of the ASK1/P38/JNK signaling pathway. Furthermore, targeting CXCL1 using CXCR2 inhibitors diminished hepatocyte lipogenesis and inhibited the polarization of M1-type macrophages. Collectively, these results suggested that Smad4 plays a vital role in exacerbating NAFLD and may be a promising candidate for anti-NAFLD therapy.
Collapse
Affiliation(s)
- Wei Yang
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targetubg Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Xuanxuan Yan
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Rui Chen
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xin Xin
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Shuang Ge
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targetubg Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targetubg Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Xinlong Yan
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China.
| | - Jinhua Zhang
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China.
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targetubg Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, China.
| |
Collapse
|
4
|
Chen F, Cai X, Yu Y. PHB2 alleviates retinal pigment epithelium cell fibrosis by suppressing the AGE-RAGE pathway. Open Life Sci 2024; 19:20220985. [PMID: 39507806 PMCID: PMC11538926 DOI: 10.1515/biol-2022-0985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024] Open
Abstract
Fibrosis is the primary cause of retinal detachment and visual decline. Here, we investigated the role of Prohibitin 2 (PHB2) in modulating fibrosis in ARPE-19 cells stimulated by transforming growth factor (TGF)-β2. The proliferation, migration, and apoptosis of ARPE-19 cells were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound healing, and flow cytometry assays, and levels of fibrosis-associated and pathway-related proteins were determined by performing western blotting. To examine the mechanisms underlying ARPE-19 cell fibrosis, we performed RNA sequencing, protein-protein interaction network, and enrichment analyses. We detected increases in the expression of the fibrosis-related proteins fibronectin and collagen I in response to TGF-β2 treatment, whereas the expression of PHB2 was downregulated. PHB2 overexpression suppressed the proliferation and migration of TGF-β2-stimulated ARPE-19 cells, promoted apoptosis, and inhibited fibrosis and Smad and non-Smad pathways. PHB2 overexpression inhibited the advanced glycation end-product (AGE)-receptor of advanced glycation end-product (RAGE) pathway activated by TGF-β2 treatment, which contributed to enhancing the effects of PHB2 on cellular processes, fibrosis, and Smad and non-Smad pathways. Conversely, exogenous application of AGE counteracted the effects of PHB2 overexpression. We conclude that by suppressing the AGE-RAGE pathway, PHB2 exerts an inhibitory effect on TGF-β2-induced fibrosis in ARPE-19 cells.
Collapse
Affiliation(s)
- Feng Chen
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 9, Jinsui Road, Tianhe District, Guangzhou, Guangdong, 510623, China
| | - Xiaoxiao Cai
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - Ying Yu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| |
Collapse
|
5
|
Xin X, Li Z, Yan X, Liu T, Li Z, Chen Z, Yan X, Zeng F, Hou L, Zhang J. Hepatocyte-specific Smad4 deficiency inhibits hepatocarcinogenesis by promoting CXCL10/CXCR3-dependent CD8 +- T cell-mediated anti-tumor immunity. Theranostics 2024; 14:5853-5868. [PMID: 39346534 PMCID: PMC11426237 DOI: 10.7150/thno.97276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/18/2024] [Indexed: 10/01/2024] Open
Abstract
Rationale: Sma mothers against decapentaplegic homologue 4 (Smad4) is a key mediator of the transforming growth factor β (TGF-β) pathway and plays complex and contradictory roles in hepatocellular carcinoma (HCC). However, the specific role of Smad4 in hepatocytes in regulating hepatocarcinogenesis remains poorly elucidated. Methods: A diethylnitrosamine/carbon tetrachloride-induced HCC model was established in mice with hepatocyte-specific Smad4 deletion (AlbSmad4-/-) and liver tumorigenesis was monitored. Immune cell infiltration was examined by immunofluorescence and fluorescence activated cell sorting (FACS). Cytokine secretion, glycolysis, signal pathway, and single-cell RNA sequencing were analysed for mechanism. Results: AlbSmad4-/- mice exhibited significantly fewer and smaller liver tumor nodules, less fibrosis, reduced myeloid-derived suppressor cell infiltration and increased CD8+ T cell infiltration. Smad4 deletion in hepatocytes enhanced C-X-C motif ligand 10 (CXCL10) secretion, promoting tumor necrosis factor-α (TNF-α) production in CD8+ T cells. The loss of Smad4 activated the CXCL10/mammalian target of rapamycin (mTOR)/lactate dehydrogenase A (LDHA) pathway, which increased glycolytic activity in CD8+ T cells. HCC patients with high Smad4 expression exhibited decreased CD8+ T cell infiltration and altered glycolysis. Conclusion: Our results demonstrate that Smad4 in hepatocytes promotes hepatocarcinogenesis and is a potential and candidate target for the prevention and therapy of HCC.
Collapse
Affiliation(s)
- Xin Xin
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Xuanxuan Yan
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Ting Liu
- School of Life Science and Technology, Jinan University, Guangzhou, Guangdong province, China
| | - Zuyin Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Zhuomiaoyu Chen
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Xinlong Yan
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan province, China
| | - Lingling Hou
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Jinhua Zhang
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
6
|
Zhang R, Zhan Y, Lang Z, Li Y, Zhang W, Zheng J. LncRNA-SNHG5 mediates activation of hepatic stellate cells by regulating NF2 and Hippo pathway. Commun Biol 2024; 7:266. [PMID: 38438584 PMCID: PMC10912598 DOI: 10.1038/s42003-024-05971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
Long noncoding RNA small nucleolar RNA host gene 5 (SNHG5) is an oncogene found in various human cancers. However, it is unclear what role SNHG5 plays in activating hepatic stellate cells (HSCs) and liver fibrosis. In this study, SNHG5 was found to be upregulated in activated HSCs in vitro and in primary HSCs isolated from fibrotic liver in vivo, and inhibition of SNHG5 suppressed HSC activation. Notably, Neurofibromin 2 (NF2), the main activator for Hippo signalling, was involved in the effects of SNHG5 on HSC activation. The interaction between SNHG5 and NF2 protein was further confirmed, and preventing the combination of the two could effectively block the effects of SNHG5 inhibition on EMT process and Hippo signaling. Additionally, higher SNHG5 was found in chronic hepatitis B patients and associated with the fibrosis stage. Altogether, we demonstrate that SNHG5 could serve as an activated HSCs regulator via regulating NF2 and Hippo pathway.
Collapse
Affiliation(s)
- Rongrong Zhang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yating Zhan
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhichao Lang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yifei Li
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weizhi Zhang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianjian Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|