1
|
Zhai Q, Chen Q, Zhang N, Li H, Yu Q, Pan Y. Exploring vestibulocerebellum-vestibular nuclei-spinal trigeminal nucleus causals communication and TRPV2 ion channel in a mouse model of vestibular migraine. J Headache Pain 2025; 26:47. [PMID: 40045241 PMCID: PMC11881311 DOI: 10.1186/s10194-025-01986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Vestibular migraine (VM) is a disorder characterized by recurrent episodes of dizziness or vertigo and is often accompanied by headache. The mechanisms underlying vestibular dysfunction and pain in VM remain unclear. METHODS Chronic migraine (CM) and VM models were induced by NTG and kainic acid, respectively. Behavioral assessments were conducted to evaluate vestibular dysfunction and pain in the VM and CM models. Transmission electron microscopy (TEM) was used to examine peripheral receptor impairment. Immunofluorescence, including staining for Cellular Proto-oncogene (c-Fos), Neuronal Nuclei (NeuN), and calcitonin gene-related peptide (CGRP), identified activated brain regions such as the cortex, midbrain, and cerebellum. Multiplex immunohistochemistry and cholera toxin subunit B (CTB) tracing were performed to analyze nuclear heterogeneity and neural communication. Additionally, RNA sequencing (RNA-Seq) and Ionized calcium-binding adapter molecule 1 (IBA1) immunostaining were used to investigate ion channel expression in the spinal trigeminal nucleus caudalis (Sp5c). RESULTS CM and VM-related behaviors, such as allodynia and balance disturbance, were successfully reproduced in mouse model. TEM revealed significant damage to peripheral sensory receptors, particularly in the trigeminal ganglion and cochlear cells. Distinct activation patterns of c-Fos and CGRP were observed in VMs and CMs. CTB tracing confirmed that signals are transmitted from the vestibulocerebellum (VbC) to the Sp5c via the vestibular nuclei (VN). Furthermore, RNA-Seq combined with coimmunostaining revealed an increased expression of transient receptor potential vanilloid 2 (TRPV2) ion channels in microglia within Sp5c, indicating their potential role in VM pathology. CONCLUSIONS This study preliminarily explored VbC-VN-Sp5c communication and identified TRPV2 ion channels in microglia as key players in neuron-glia crosstalk in VM. These findings provide new insights into the mechanisms underlying vestibular migraine and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Qingling Zhai
- Harbin Medical University, Harbin, Heilongjiang, 150088, China
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150088, China
| | - Qihui Chen
- Harbin Medical University, Harbin, Heilongjiang, 150088, China
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150088, China
| | - Ning Zhang
- Harbin Medical University, Harbin, Heilongjiang, 150088, China
- Department of Neurology, Shanxi Bethune Hospital, Taiyuan, Shanxi, 030001, China
| | - Hongyan Li
- Harbin Medical University, Harbin, Heilongjiang, 150088, China
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150088, China
| | - Qijun Yu
- Harbin Medical University, Harbin, Heilongjiang, 150088, China
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150088, China
| | - Yonghui Pan
- Harbin Medical University, Harbin, Heilongjiang, 150088, China.
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150088, China.
| |
Collapse
|
2
|
Ding M, Han R, Xie Y, Wei Z, Xue S, Zhang F, Cao Z. Plumbagin, a novel TRPV2 inhibitor, ameliorates microglia activation and brain injury in a middle cerebral artery occlusion/reperfusion mouse model. Br J Pharmacol 2024. [PMID: 39363399 DOI: 10.1111/bph.17343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential vanilloid 2 (TRPV2) is a Ca2+-permeable non-selective cation channel. Despite the significant roles of TRPV2 in immunological response, cancer progression and cardiac development, pharmacological probes of TRPV2 remain to be identified. We aimed to discover TRPV2 inhibitors and to elucidate their molecular mechanism of action. EXPERIMENTAL APPROACH Fluorescence-based Ca2+ assay in HEK-293 cells expressing murine TRPV2 was used to identify plumbagin as a novel TRPV2 inhibitor. Patch-clamp, in silico docking and site-directed mutagenesis were applied to investigate the molecular mechanisms critical for plumbagin interaction. ELISA and qPCR were used to assess nitric oxide release and mRNA levels of inflammatory mediators, respectively. si-RNA interference was used to knock down TRPV2 expression, which was validated by western blotting. Neurological and histological analyses were used to examine brain injury of mice following middle cerebral artery occlusion/reperfusion (MCAO/R). KEY RESULTS Plumbagin is a potent TRPV2 negative allosteric modulator with an IC50 value of 0.85 μM, exhibiting >14-fold selectivity over TRPV1, TRPV3 and TRPV4. Plumbagin suppresses TRPV2 activity by decreasing the channel open probability without affecting the unitary conductance. Moreover, plumbagin binds to an extracellular pocket formed by the pore helix and flexible loop between transmembrane helices S5 and S6 of TRPV2. Plumbagin effectively suppresses LPS-induced inflammation of BV-2 microglia and ameliorates brain injury of MCAO/R mice. CONCLUSION AND IMPLICATIONS Plumbagin is a novel pharmacological probe to study TRPV2 pathophysiology. TRPV2 is a novel molecular target for the treatment of neuroinflammation and ischemic stroke.
Collapse
Affiliation(s)
- Meihuizi Ding
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rui Han
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yiming Xie
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ziyi Wei
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuwen Xue
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fan Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Yang S, Du Y, Li Y, Tang Q, Zhang Y, Zhao X. Tyrosine phosphorylation and palmitoylation of TRPV2 ion channel tune microglial beta-amyloid peptide phagocytosis. J Neuroinflammation 2024; 21:218. [PMID: 39227967 PMCID: PMC11370263 DOI: 10.1186/s12974-024-03204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Alzheimer's disease (AD) is the leading form of dementia, characterized by the accumulation and aggregation of amyloid in brain. Transient receptor potential vanilloid 2 (TRPV2) is an ion channel involved in diverse physiopathological processes, including microglial phagocytosis. Previous studies suggested that cannabidiol (CBD), an activator of TRPV2, improves microglial amyloid-β (Aβ) phagocytosis by TRPV2 modulation. However, the molecular mechanism of TRPV2 in microglial Aβ phagocytosis remains unknown. In this study, we aimed to investigate the involvement of TRPV2 channel in microglial Aβ phagocytosis and the underlying mechanisms. Utilizing human datasets, mouse primary neuron and microglia cultures, and AD model mice, to evaluate TRPV2 expression and microglial Aβ phagocytosis in both in vivo and in vitro. TRPV2 was expressed in cortex, hippocampus, and microglia.Cannabidiol (CBD) could activate and sensitize TRPV2 channel. Short-term CBD (1 week) injection intraperitoneally (i.p.) reduced the expression of neuroinflammation and microglial phagocytic receptors, but long-term CBD (3 week) administration (i.p.) induced neuroinflammation and suppressed the expression of microglial phagocytic receptors in APP/PS1 mice. Furthermore, the hyper-sensitivity of TRPV2 channel was mediated by tyrosine phosphorylation at the molecular sites Tyr(338), Tyr(466), and Tyr(520) by protein tyrosine kinase JAK1, and these sites mutation reduced the microglial Aβ phagocytosis partially dependence on its localization. While TRPV2 was palmitoylated at Cys 277 site and blocking TRPV2 palmitoylation improved microglial Aβ phagocytosis. Moreover, it was demonstrated that TRPV2 palmitoylation was dynamically regulated by ZDHHC21. Overall, our findings elucidated the intricate interplay between TRPV2 channel regulated by tyrosine phosphorylation/dephosphorylation and cysteine palmitoylation/depalmitoylation, which had divergent effects on microglial Aβ phagocytosis. These findings provide valuable insights into the underlying mechanisms linking microglial phagocytosis and TRPV2 sensitivity, and offer potential therapeutic strategies for managing AD.
Collapse
Affiliation(s)
- Shaobin Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China.
| | - Yaqin Du
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yanhong Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Qi Tang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yimeng Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Xiaoqian Zhao
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China
| |
Collapse
|
4
|
Freire NF, Cordani M, Aparicio-Blanco J, Fraguas Sanchez AI, Dutra L, Pinto MC, Zarrabi A, Pinto JC, Velasco G, Fialho R. Preparation and characterization of PBS (Polybutylene Succinate) nanoparticles containing cannabidiol (CBD) for anticancer application. J Drug Deliv Sci Technol 2024; 97:105833. [DOI: 10.1016/j.jddst.2024.105833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
de Oliveira RMW, Kohara NA, Milani H. Cannabidiol in experimental cerebral ischemia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:95-120. [PMID: 39029992 DOI: 10.1016/bs.irn.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The absence of blood flow in cerebral ischemic conditions triggers a multitude of intricate pathophysiological mechanisms, including excitotoxicity, oxidative stress, neuroinflammation, disruption of the blood-brain barrier and white matter disarrangement. Despite numerous experimental studies conducted in preclinical settings, existing treatments for cerebral ischemia (CI), such as mechanical and pharmacological therapies, remain constrained and often entail significant side effects. Therefore, there is an imperative to explore innovative strategies for addressing CI outcomes. Cannabidiol (CBD), the most abundant non-psychotomimetic compound derived from Cannabis sativa, is a pleiotropic substance that interacts with diverse molecular targets and has the potential to influence various pathophysiological processes, thereby contributing to enhanced outcomes in CI. This chapter provides a comprehensive overview of the primary effects of CBD in in vitro and diverse animal models of CI and delves into some of its plausible mechanisms of neuroprotection.
Collapse
Affiliation(s)
| | - Nathalia Akemi Kohara
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
6
|
Raïch I, Lillo J, Rivas-Santisteban R, Rebassa JB, Capó T, Santandreu M, Cubeles-Juberias E, Reyes-Resina I, Navarro G. Potential of CBD Acting on Cannabinoid Receptors CB 1 and CB 2 in Ischemic Stroke. Int J Mol Sci 2024; 25:6708. [PMID: 38928415 PMCID: PMC11204117 DOI: 10.3390/ijms25126708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is one of the leading causes of death. It not only affects adult people but also many children. It is estimated that, every year, 15 million people suffer a stroke worldwide. Among them, 5 million people die, while 5 million people are left permanently disabled. In this sense, the research to find new treatments should be accompanied with new therapies to combat neuronal death and to avoid developing cognitive impairment and dementia. Phytocannabinoids are among the compounds that have been used by mankind for the longest period of history. Their beneficial effects such as pain regulation or neuroprotection are widely known and make them possible therapeutic agents with high potential. These compounds bind cannabinoid receptors CB1 and CB2. Unfortunately, the psychoactive side effect has displaced them in the vast majority of areas. Thus, progress in the research and development of new compounds that show efficiency as neuroprotectors without this psychoactive effect is essential. On the one hand, these compounds could selectively bind the CB2 receptor that does not show psychoactive effects and, in glia, has opened new avenues in this field of research, shedding new light on the use of cannabinoid receptors as therapeutic targets to combat neurodegenerative diseases such as Alzheimer's, Parkinson's disease, or stroke. On the other hand, a new possibility lies in the formation of heteromers containing cannabinoid receptors. Heteromers are new functional units that show new properties compared to the individual protomers. Thus, they represent a new possibility that may offer the beneficial effects of cannabinoids devoid of the unwanted psychoactive effect. Nowadays, the approval of a mixture of CBD (cannabidiol) and Δ9-THC (tetrahydrocannabinol) to treat the neuropathic pain and spasticity in multiple sclerosis or purified cannabidiol to combat pediatric epilepsy have opened new therapeutic possibilities in the field of cannabinoids and returned these compounds to the front line of research to treat pathologies as relevant as stroke.
Collapse
Affiliation(s)
- Iu Raïch
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Jaume Lillo
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Rafael Rivas-Santisteban
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Joan Biel Rebassa
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Toni Capó
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Montserrat Santandreu
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
| | - Erik Cubeles-Juberias
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
| | - Irene Reyes-Resina
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| |
Collapse
|
7
|
Jantas D, Leśkiewicz M, Regulska M, Procner M, Warszyński P, Lasoń W. Protective Effects of Cannabidiol (CBD) against Qxidative Stress, but Not Excitotoxic-Related Neuronal Cell Damage-An In Vitro Study. Biomolecules 2024; 14:564. [PMID: 38785971 PMCID: PMC11117811 DOI: 10.3390/biom14050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Cannabidiol (CBD) appears to possess some neuroprotective properties, but experimental data are still inconsistent. Therefore, this in vitro study aimed to compare the effects of CBD in a wide range of concentrations on oxidative stress and excitotoxic-related cell damage. Results showed that low concentrations of CBD ameliorated the H2O2-evoked cell damage of primary cortical neuronal cell culture. However, higher concentrations of CBD alone (5-25 μM) decreased the viability of cortical neurons in a concentration-dependent manner and aggravated the toxic effects of hydrogen peroxide (H2O2). Neuroprotection mediated by CBD in primary neurons against H2O2 was not associated with a direct influence on ROS production nor inhibition of caspase-3, but we found protective effects of CBD at the level of mitochondrial membrane potential and DNA fragmentation. However, CBD had no protective effect on the glutamate-induced cell damage of cortical neurons, and in higher concentrations, it enhanced the toxic effects of this cell-damaging factor. Likewise, CBD, depending on its concentration, at least did not affect or even enhance cortical cellular damage exposed to oxygen-glucose deprivation (OGD). Finally, we showed that CBD in submicromolar or low micromolar concentrations significantly protected human neuronal-like SH-SY5Y cells against H2O2- and 6-hydroxydopamine (6-OHDA)-induced cell damage. Our data indicate that CBD has a dual effect on oxidative stress-induced neuronal death-in low concentrations, it is neuroprotective, but in higher ones, it may display neurotoxic activity. On the other hand, in excitotoxic-related models, CBD was ineffective or enhanced cell damage. Our data support the notion that the neuroprotective effects of CBD strongly depend on its concentration and experimental model of neuronal death.
Collapse
Affiliation(s)
- Danuta Jantas
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, PL 31343 Krakow, Poland
| | - Monika Leśkiewicz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, PL 31343 Krakow, Poland
| | - Magdalena Regulska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, PL 31343 Krakow, Poland
| | - Magdalena Procner
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, PL 31343 Krakow, Poland
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL 30239 Krakow, Poland
| | - Władysław Lasoń
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, PL 31343 Krakow, Poland
| |
Collapse
|
8
|
Duncan RS, Riordan SM, Gernon MC, Koulen P. Cannabinoids and endocannabinoids as therapeutics for nervous system disorders: preclinical models and clinical studies. Neural Regen Res 2024; 19:788-799. [PMID: 37843213 PMCID: PMC10664133 DOI: 10.4103/1673-5374.382220] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/08/2023] [Accepted: 07/01/2023] [Indexed: 10/17/2023] Open
Abstract
Cannabinoids are lipophilic substances derived from Cannabis sativa that can exert a variety of effects in the human body. They have been studied in cellular and animal models as well as in human clinical trials for their therapeutic benefits in several human diseases. Some of these include central nervous system (CNS) diseases and dysfunctions such as forms of epilepsy, multiple sclerosis, Parkinson's disease, pain and neuropsychiatric disorders. In addition, the endogenously produced cannabinoid lipids, endocannabinoids, are critical for normal CNS function, and if controlled or modified, may represent an additional therapeutic avenue for CNS diseases. This review discusses in vitro cellular, ex vivo tissue and in vivo animal model studies on cannabinoids and their utility as therapeutics in multiple CNS pathologies. In addition, the review provides an overview on the use of cannabinoids in human clinical trials for a variety of CNS diseases. Cannabinoids and endocannabinoids hold promise for use as disease modifiers and therapeutic agents for the prevention or treatment of neurodegenerative diseases and neurological disorders.
Collapse
Affiliation(s)
- R. Scott Duncan
- Department of Ophthalmology, School of Medicine, University of Missouri, Kansas, MO, USA
| | - Sean M. Riordan
- Department of Ophthalmology, School of Medicine, University of Missouri, Kansas, MO, USA
| | - Matthew C. Gernon
- Department of Ophthalmology, School of Medicine, University of Missouri, Kansas, MO, USA
| | - Peter Koulen
- Department of Ophthalmology, School of Medicine, University of Missouri, Kansas, MO, USA
- Department of Biomedical Sciences, School of Medicine, University of Missouri, Kansas, MO, USA
| |
Collapse
|
9
|
Zanardi A, Nardini I, Raia S, Conti A, Ferrini B, D'Adamo P, Gilberti E, DePalma G, Belloli S, Monterisi C, Coliva A, Rainone P, Moresco RM, Mori F, Zurlo G, Scali C, Natali L, Pancanti A, Giovacchini P, Magherini G, Tovani G, Salvini L, Cicaloni V, Tinti C, Tinti L, Lana D, Magni G, Giovannini MG, Gringeri A, Caricasole A, Alessio M. New orphan disease therapies from the proteome of industrial plasma processing waste- a treatment for aceruloplasminemia. Commun Biol 2024; 7:140. [PMID: 38291108 PMCID: PMC10828504 DOI: 10.1038/s42003-024-05820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
Plasma-derived therapeutic proteins are produced through an industrial fractionation process where proteins are purified from individual intermediates, some of which remain unused and are discarded. Relatively few plasma-derived proteins are exploited clinically, with most of available plasma being directed towards the manufacture of immunoglobulin and albumin. Although the plasma proteome provides opportunities to develop novel protein replacement therapies, particularly for rare diseases, the high cost of plasma together with small patient populations impact negatively on the development of plasma-derived orphan drugs. Enabling therapeutics development from unused plasma fractionation intermediates would therefore constitute a substantial innovation. To this objective, we characterized the proteome of unused plasma fractionation intermediates and prioritized proteins for their potential as new candidate therapies for human disease. We selected ceruloplasmin, a plasma ferroxidase, as a potential therapy for aceruloplasminemia, an adult-onset ultra-rare neurological disease caused by iron accumulation as a result of ceruloplasmin mutations. Intraperitoneally administered ceruloplasmin, purified from an unused plasma fractionation intermediate, was able to prevent neurological, hepatic and hematological phenotypes in ceruloplasmin-deficient mice. These data demonstrate the feasibility of transforming industrial waste plasma fraction into a raw material for manufacturing of new candidate proteins for replacement therapies, optimizing plasma use and reducing waste generation.
Collapse
Affiliation(s)
- Alan Zanardi
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ilaria Nardini
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Sara Raia
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Antonio Conti
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Barbara Ferrini
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Patrizia D'Adamo
- Mouse Behavior Facility, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Enrica Gilberti
- Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppe DePalma
- Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Sara Belloli
- Nuclear Medicine and PET Cyclotron Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Institute of Molecular Bioimaging and Physiology-IBFM, CNR, Segrate, Italy
| | - Cristina Monterisi
- Nuclear Medicine and PET Cyclotron Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Angela Coliva
- Nuclear Medicine and PET Cyclotron Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Paolo Rainone
- Nuclear Medicine and PET Cyclotron Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Institute of Molecular Bioimaging and Physiology-IBFM, CNR, Segrate, Italy
- Medicine and Surgery Department, University of Milano - Bicocca, Monza, Italy
| | - Rosa Maria Moresco
- Nuclear Medicine and PET Cyclotron Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Institute of Molecular Bioimaging and Physiology-IBFM, CNR, Segrate, Italy
- Medicine and Surgery Department, University of Milano - Bicocca, Monza, Italy
| | - Filippo Mori
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Giada Zurlo
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Carla Scali
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Letizia Natali
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Annalisa Pancanti
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | | | - Giulio Magherini
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | - Greta Tovani
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy
| | | | | | | | - Laura Tinti
- Toscana Life Sciences Foundation, Siena, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Firenze, Italy
| | - Giada Magni
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Sesto Fiorentino, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Firenze, Italy
| | | | - Andrea Caricasole
- Research and Innovation, Kedrion S.p.A., Loc, Bolognana, Gallicano, Italy.
| | - Massimo Alessio
- Proteome Biochemistry, COSR-Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy.
| |
Collapse
|
10
|
Wilson G, Yang L, Su X, Ding S, Li L, Yang Y, Wang X, Wang W, Sa Y, Zhang Y, Chen J, Ma X. Exploring the therapeutic potential of natural compounds modulating the endocannabinoid system in various diseases and disorders: review. Pharmacol Rep 2023; 75:1410-1444. [PMID: 37906390 DOI: 10.1007/s43440-023-00544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Cannabinoid receptors, endogenous cannabinoids (endocannabinoids), and the enzymes involved in the biosynthesis and degradation of the endocannabinoids make up the endocannabinoid system (ECS). The components of the ECS are proven to modulate a vast bulk of various physiological and pathological processes due to their abundance throughout the human body. Such discoveries have attracted the researchers' attention and emerged as a potential therapeutical target for the treatment of various diseases. In the present article, we reviewed the discoveries of natural compounds, herbs, herbs formula, and their therapeutic properties in various diseases and disorders by modulating the ECS. We also summarize the molecular mechanisms through which these compounds elicit their properties by interacting with the ECS based on the existing findings. Our study provides the insight into the use of natural compounds that modulate ECS in various diseases and disorders, which in turn may facilitate future studies exploiting natural lead compounds as novel frameworks for designing more effective and safer therapeutics.
Collapse
Affiliation(s)
- Gidion Wilson
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaojuan Su
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Shuqin Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Liuyan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Youyue Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaoying Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Weibiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Yuping Sa
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Yue Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Jianyu Chen
- Fujian University of Traditional Chinese Medicine, No. 1, Huatuo Road, Minhoushangjie, Fuzhou, 350122, China.
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| |
Collapse
|
11
|
Landucci E, Ribaudo G, Anyanwu M, Oselladore E, Giannangeli M, Mazzantini C, Lana D, Giovannini MG, Memo M, Pellegrini-Giampietro DE, Gianoncelli A. Virtual Screening-Accelerated Discovery of a Phosphodiesterase 9 Inhibitor with Neuroprotective Effects in the Kainate Toxicity In Vitro Model. ACS Chem Neurosci 2023; 14:3826-3838. [PMID: 37726213 PMCID: PMC10587872 DOI: 10.1021/acschemneuro.3c00431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023] Open
Abstract
In the central nervous system, some specific phosphodiesterase (PDE) isoforms modulate pathways involved in neuronal plasticity. Accumulating evidence suggests that PDE9 may be a promising therapeutic target for neurodegenerative diseases. In the current study, computational techniques were used to identify a nature-inspired PDE9 inhibitor bearing the scaffold of an isoflavone, starting from a database of synthetic small molecules using a ligand-based approach. Furthermore, docking studies supported by molecular dynamics investigations allowed us to evaluate the features of the ligand-target complex. In vitro assays confirmed the computational results, showing that the selected compound inhibits the enzyme in the nanomolar range. Additionally, we evaluated the expression of gene and protein levels of PDE9 in organotypic hippocampal slices, observing an increase following exposure to kainate (KA). Importantly, the PDE9 inhibitor reduced CA3 damage induced by KA in a dose-dependent manner in organotypic hippocampal slices. Taken together, these observations strongly support the potential of the identified nature-inspired PDE9 inhibitor and suggest that such a molecule could represent a promising lead compound to develop novel therapeutic tools against neurological diseases..
Collapse
Affiliation(s)
- Elisa Landucci
- Department
of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Firenze, Firenze 50139, Italy
| | - Giovanni Ribaudo
- Department
of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Margrate Anyanwu
- Department
of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Erika Oselladore
- Department
of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Matteo Giannangeli
- Department
of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Costanza Mazzantini
- Department
of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Firenze, Firenze 50139, Italy
| | - Daniele Lana
- Department
of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Firenze, Firenze 50139, Italy
| | - Maria Grazia Giovannini
- Department
of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Firenze, Firenze 50139, Italy
| | - Maurizio Memo
- Department
of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | | | - Alessandra Gianoncelli
- Department
of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| |
Collapse
|
12
|
Yan G, Zhang X, Li H, Guo Y, Yong VW, Xue M. Anti-oxidant effects of cannabidiol relevant to intracerebral hemorrhage. Front Pharmacol 2023; 14:1247550. [PMID: 37841923 PMCID: PMC10568629 DOI: 10.3389/fphar.2023.1247550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke with a high mortality rate. Oxidative stress cascades play an important role in brain injury after ICH. Cannabidiol, a major non-psychotropic phytocannabinoids, has drawn increasing interest in recent years as a potential therapeutic intervention for various neuropsychiatric disorders. Here we provide a comprehensive review of the potential therapeutic effects of cannabidiol in countering oxidative stress resulting from ICH. The review elaborates on the various sources of oxidative stress post-ICH, including mitochondrial dysfunction, excitotoxicity, iron toxicity, inflammation, and also highlights cannabidiol's ability to inhibit ROS/RNS generation from these sources. The article also delves into cannabidiol's role in promoting ROS/RNS scavenging through the Nrf2/ARE pathway, detailing both extranuclear and intranuclear regulatory mechanisms. Overall, the review underscores cannabidiol's promising antioxidant effects in the context of ICH and suggests its potential as a therapeutic option.
Collapse
Affiliation(s)
- Gaili Yan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongmin Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Guo
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - V. Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Lana D, Magni G, Landucci E, Wenk GL, Pellegrini-Giampietro DE, Giovannini MG. Phenomic Microglia Diversity as a Druggable Target in the Hippocampus in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:13668. [PMID: 37761971 PMCID: PMC10531074 DOI: 10.3390/ijms241813668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Phenomics, the complexity of microglia phenotypes and their related functions compels the continuous study of microglia in disease animal models to find druggable targets for neurodegenerative disorders. Activation of microglia was long considered detrimental for neuron survival, but more recently it has become apparent that the real scenario of microglia morphofunctional diversity is far more complex. In this review, we discuss the recent literature on the alterations in microglia phenomics in the hippocampus of animal models of normal brain aging, acute neuroinflammation, ischemia, and neurodegenerative disorders, such as AD. Microglia undergo phenomic changes consisting of transcriptional, functional, and morphological changes that transform them into cells with different properties and functions. The classical subdivision of microglia into M1 and M2, two different, all-or-nothing states is too simplistic, and does not correspond to the variety of phenotypes recently discovered in the brain. We will discuss the phenomic modifications of microglia focusing not only on the differences in microglia reactivity in the diverse models of neurodegenerative disorders, but also among different areas of the brain. For instance, in contiguous and highly interconnected regions of the rat hippocampus, microglia show a differential, finely regulated, and region-specific reactivity, demonstrating that microglia responses are not uniform, but vary significantly from area to area in response to insults. It is of great interest to verify whether the differences in microglia reactivity may explain the differential susceptibility of different brain areas to insults, and particularly the higher sensitivity of CA1 pyramidal neurons to inflammatory stimuli. Understanding the spatiotemporal heterogeneity of microglia phenomics in health and disease is of paramount importance to find new druggable targets for the development of novel microglia-targeted therapies in different CNS disorders. This will allow interventions in three different ways: (i) by suppressing the pro-inflammatory properties of microglia to limit the deleterious effect of their activation; (ii) by modulating microglia phenotypic change to favor anti-inflammatory properties; (iii) by influencing microglia priming early in the disease process.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| | - Giada Magni
- Institute of Applied Physics “Nello Carrara”, National Research Council (IFAC-CNR), Via Madonna del Piano 10, 50019 Florence, Italy;
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| | - Gary L. Wenk
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA;
| | - Domenico Edoardo Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| |
Collapse
|