1
|
Nguyen M, Putot A, Masson D, Cottin Y, Gautier T, Tribouillard L, Rérole AL, Guinot PG, Maza M, Pais de Barros JP, Deckert V, Farnier M, Lagrost L, Zeller M. Risk factors and prognostic value of endotoxemia in patients with acute myocardial infarction. Front Cardiovasc Med 2024; 11:1419001. [PMID: 38984349 PMCID: PMC11232875 DOI: 10.3389/fcvm.2024.1419001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/27/2024] [Indexed: 07/11/2024] Open
Abstract
Background There is increasing evidence regarding the association between endotoxemia and the pathogenesis of atherosclerosis and myocardial infarction (MI). During the acute phase of MI, endotoxemia might increase inflammation and drive adverse cardiovascular (CV) outcomes. We aimed to explore the risk factors and prognostic value of endotoxemia in patients admitted for acute MI. Methods Patients admitted to the coronary care unit of Dijon University Hospital for type 1 acute MI between 2013 and 2015 were included. Endotoxemia, assessed by plasma lipopolysaccharide (LPS) concentration, was measured by mass spectrometry. Major adverse CV events were recorded in the year following hospital admission. Results Data from 245 consecutive MI patients were analyzed. LPS concentration at admission markedly increased with age and diabetes. High LPS concentration was correlated with metabolic biomarkers (glycemia, triglyceride, and total cholesterol) but not with CV (troponin Ic peak and N-terminal pro-brain natriuretic peptide) or inflammatory biomarkers (C-reactive protein, IL6, IL8, and TNFα). LPS concentration was not associated with in-hospital or 1-year outcomes. Conclusions In patients admitted for MI, higher levels of endotoxins were related to pre-existing conditions rather than acute clinical severity. Therefore, endotoxins measured on the day of MI could reflect metabolic chronic endotoxemia rather than MI-related acute gut translocation.
Collapse
Affiliation(s)
- Maxime Nguyen
- Department of Anesthesiology and Intensive Care, Dijon University Hospital, Dijon, France
- Lipides Nutrition Cancer UMR1231 and LipSTIC LabEx, Université de Bourgogne, Dijon, France
| | - Alain Putot
- Geriatrics Internal Medicine Department, Dijon University Hospital, Dijon, France
- Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), EA7460, Université de Bourgogne Franche-Comté, Dijon, France
- Infectious Diseases and Internal Medicine Department, Hôpitaux du Pays du Mont Blanc, Sallanches, France
| | - David Masson
- Lipides Nutrition Cancer UMR1231 and LipSTIC LabEx, Université de Bourgogne, Dijon, France
| | - Yves Cottin
- Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), EA7460, Université de Bourgogne Franche-Comté, Dijon, France
| | - Thomas Gautier
- Lipides Nutrition Cancer UMR1231 and LipSTIC LabEx, Université de Bourgogne, Dijon, France
| | - Laura Tribouillard
- Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), EA7460, Université de Bourgogne Franche-Comté, Dijon, France
| | - Anne-Laure Rérole
- Lipides Nutrition Cancer UMR1231 and LipSTIC LabEx, Université de Bourgogne, Dijon, France
| | - Pierre-Grégoire Guinot
- Department of Anesthesiology and Intensive Care, Dijon University Hospital, Dijon, France
- Lipides Nutrition Cancer UMR1231 and LipSTIC LabEx, Université de Bourgogne, Dijon, France
| | - Maud Maza
- Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), EA7460, Université de Bourgogne Franche-Comté, Dijon, France
| | | | - Valérie Deckert
- Lipides Nutrition Cancer UMR1231 and LipSTIC LabEx, Université de Bourgogne, Dijon, France
| | - Michel Farnier
- Cardiology Department, Dijon University Hospital, Dijon, France
| | - Laurent Lagrost
- Lipides Nutrition Cancer UMR1231 and LipSTIC LabEx, Université de Bourgogne, Dijon, France
| | - Marianne Zeller
- Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), EA7460, Université de Bourgogne Franche-Comté, Dijon, France
- Cardiology Department, Dijon University Hospital, Dijon, France
| |
Collapse
|
2
|
Cao S, Liu M, Han Y, Li S, Zhu X, Li D, Shi Y, Liu B. Effects of Saponins on Lipid Metabolism: The Gut-Liver Axis Plays a Key Role. Nutrients 2024; 16:1514. [PMID: 38794751 PMCID: PMC11124185 DOI: 10.3390/nu16101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Unhealthy lifestyles (high-fat diet, smoking, alcohol consumption, too little exercise, etc.) in the current society are prone to cause lipid metabolism disorders affecting the health of the organism and inducing the occurrence of diseases. Saponins, as biologically active substances present in plants, have lipid-lowering, inflammation-reducing, and anti-atherosclerotic effects. Saponins are thought to be involved in the regulation of lipid metabolism in the body; it suppresses the appetite and, thus, reduces energy intake by modulating pro-opiomelanocortin/Cocaine amphetamine regulated transcript (POMC/CART) neurons and neuropeptide Y/agouti-related peptide (NPY/AGRP) neurons in the hypothalamus, the appetite control center. Saponins directly activate the AMP-activated protein kinase (AMPK) signaling pathway and related transcriptional regulators such as peroxisome-proliferator-activated-receptors (PPAR), CCAAT/enhancer-binding proteins (C/EBP), and sterol-regulatory element binding proteins (SREBP) increase fatty acid oxidation and inhibit lipid synthesis. It also modulates gut-liver interactions to improve lipid metabolism by regulating gut microbes and their metabolites and derivatives-short-chain fatty acids (SCFAs), bile acids (BAs), trimethylamine (TMA), lipopolysaccharide (LPS), et al. This paper reviews the positive effects of different saponins on lipid metabolism disorders, suggesting that the gut-liver axis plays a crucial role in improving lipid metabolism processes and may be used as a therapeutic target to provide new strategies for treating lipid metabolism disorders.
Collapse
Affiliation(s)
- Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
| | - Yao Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
| | - Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
- Henan Provincial Key Laboratory of Forage Resource Innovation and Utilization, Zhengzhou 450046, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450046, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
- Henan Provincial Key Laboratory of Forage Resource Innovation and Utilization, Zhengzhou 450046, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450046, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
- Henan Provincial Key Laboratory of Forage Resource Innovation and Utilization, Zhengzhou 450046, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450046, China
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
- Henan Provincial Key Laboratory of Forage Resource Innovation and Utilization, Zhengzhou 450046, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450046, China
| |
Collapse
|
3
|
Wang K, Lai W, Min T, Wei J, Bai Y, Cao H, Guo J, Su Z. The Effect of Enteric-Derived Lipopolysaccharides on Obesity. Int J Mol Sci 2024; 25:4305. [PMID: 38673890 PMCID: PMC11050189 DOI: 10.3390/ijms25084305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Endotoxin is a general term for toxic substances in Gram-negative bacteria, whose damaging effects are mainly derived from the lipopolysaccharides (LPS) in the cell walls of Gram-negative bacteria, and is a strong pyrogen. Obesity is a chronic, low-grade inflammatory condition, and LPS are thought to trigger and exacerbate it. The gut flora is the largest source of LPS in the body, and it is increasingly believed that altered intestinal microorganisms can play an essential role in the pathology of different diseases. Today, the complex axis linking gut flora to inflammatory states and adiposity has not been well elucidated. This review summarises the evidence for an interconnection between LPS, obesity, and gut flora, further expanding our understanding of LPS as a mediator of low-grade inflammatory disease and contributing to lessening the effects of obesity and related metabolic disorders. As well as providing targets associated with LPS, obesity, and gut flora, it is hoped that interventions that combine targets with gut flora address the individual differences in gut flora treatment.
Collapse
Affiliation(s)
- Kai Wang
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiwen Lai
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianqi Min
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jintao Wei
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China;
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
4
|
Hamamah S, Iatcu OC, Covasa M. Nutrition at the Intersection between Gut Microbiota Eubiosis and Effective Management of Type 2 Diabetes. Nutrients 2024; 16:269. [PMID: 38257161 PMCID: PMC10820857 DOI: 10.3390/nu16020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Nutrition is one of the most influential environmental factors in both taxonomical shifts in gut microbiota as well as in the development of type 2 diabetes mellitus (T2DM). Emerging evidence has shown that the effects of nutrition on both these parameters is not mutually exclusive and that changes in gut microbiota and related metabolites such as short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) may influence systemic inflammation and signaling pathways that contribute to pathophysiological processes associated with T2DM. With this background, our review highlights the effects of macronutrients, carbohydrates, proteins, and lipids, as well as micronutrients, vitamins, and minerals, on T2DM, specifically through their alterations in gut microbiota and the metabolites they produce. Additionally, we describe the influences of common food groups, which incorporate varying combinations of these macronutrients and micronutrients, on both microbiota and metabolic parameters in the context of diabetes mellitus. Overall, nutrition is one of the first line modifiable therapies in the management of T2DM and a better understanding of the mechanisms by which gut microbiota influence its pathophysiology provides opportunities for optimizing dietary interventions.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
5
|
Liu C, Zeng H, Jiang R, Wang K, Ouyang J, Wen S, Peng L, Xu H, Huang J, Liu Z. Effects of Mulberry Leaf Fu Tea on the Intestines and Intestinal Flora of Goto-Kakizaki Type 2 Diabetic Rats. Foods 2023; 12:4006. [PMID: 37959125 PMCID: PMC10648540 DOI: 10.3390/foods12214006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Type 2 diabetes mellitus is a disease caused by hyperglycemia, an imbalance in the intestinal flora and disruption of the endocrine system. At present, it is primarily controlled through drug treatment and an improved diet. Mulberry leaf and fu brick tea were considered to have excellent hypoglycemic effects. This study used mulberry leaves and fu brick tea as raw materials to develop a dietary regulator that can assist in the prevention and alleviation of diabetes. The experiment used the Goto-Kakizaki (GK) rat model to investigate the hypoglycemic effect of mulberry leaf fu tea (MFT) and its influence on the intestinal flora of diabetic rats through methods including ELISA, tissue section observation and 16S RNA microbial sequencing. The results showed that, compared with the GK group, the intervention of mulberry leaf fu tea significantly reduced the activities of α-glucosidase (p < 0.05) and α-amylase (p < 0.05) in the duodenum of GK diabetic rats. The height of the duodenal villi was significantly reduced (p < 0.001), leading to decreased intestinal sugar absorption. At the same time, MFT alleviates the imbalance of intestinal flora caused by high blood sugar, promotes the growth of beneficial bacteria (Lactobacillus, Bifidobacterium, etc.), and inhibits the reproduction of harmful bacteria (Blautia, Klebsiella, Helicobacter, Alistipes, etc.). MFT helps reduce the secretion of toxic substances (lipopolysaccharide, p < 0.001), decreases oxidative stress and inflammation, mitigates organ damage, and improves symptoms of diabetes. Finally, the random blood glucose value of GK rats dropped from 22.79 mmol/L to 14.06 mmol/L. In summary, mulberry leaf fu tea can lower sugar absorption in diabetic rats, reduce the body's oxidative stress and inflammatory response, regulate intestinal flora, and reduce blood sugar levels in GK rats. It is hinted that mulberry leaf fu tea could be used as a functional drink to help prevent the occurrence of diabetes.
Collapse
Affiliation(s)
- Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Hongzhe Zeng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Ronggang Jiang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Kuofei Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Jian Ouyang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Shuai Wen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Liyuan Peng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Hao Xu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
6
|
Pezzino S, Sofia M, Greco LP, Litrico G, Filippello G, Sarvà I, La Greca G, Latteri S. Microbiome Dysbiosis: A Pathological Mechanism at the Intersection of Obesity and Glaucoma. Int J Mol Sci 2023; 24:ijms24021166. [PMID: 36674680 PMCID: PMC9862076 DOI: 10.3390/ijms24021166] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The rate at which obesity is becoming an epidemic in many countries is alarming. Obese individuals have a high risk of developing elevated intraocular pressure and glaucoma. Additionally, glaucoma is a disease of epidemic proportions. It is characterized by neurodegeneration and neuroinflammation with optic neuropathy and the death of retinal ganglion cells (RGC). On the other hand, there is growing interest in microbiome dysbiosis, particularly in the gut, which has been widely acknowledged to play a prominent role in the etiology of metabolic illnesses such as obesity. Recently, studies have begun to highlight the fact that microbiome dysbiosis could play a critical role in the onset and progression of several neurodegenerative diseases, as well as in the development and progression of several ocular disorders. In obese individuals, gut microbiome dysbiosis can induce endotoxemia and systemic inflammation by causing intestinal barrier malfunction. As a result, bacteria and their metabolites could be delivered via the bloodstream or mesenteric lymphatic vessels to ocular regions at the level of the retina and optic nerve, causing tissue degeneration and neuroinflammation. Nowadays, there is preliminary evidence for the existence of brain and intraocular microbiomes. The altered microbiome of the gut could perturb the resident brain-ocular microbiome ecosystem which, in turn, could exacerbate the local inflammation. All these processes, finally, could lead to the death of RGC and neurodegeneration. The purpose of this literature review is to explore the recent evidence on the role of gut microbiome dysbiosis and related inflammation as common mechanisms underlying obesity and glaucoma.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Maria Sofia
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Luigi Piero Greco
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Giorgia Litrico
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Giulia Filippello
- Complex Operative Unit of Ophtalmology, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Iacopo Sarvà
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Gaetano La Greca
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
- Correspondence: ; Tel.: +39-0957263584
| |
Collapse
|