1
|
Tomonaga T, Izumi H, Nishida C, Sato K, Nakamura Y, Morimoto T, Higashi Y, Wang KY, Higashi H, Kojima T, Sakurai K, Takeshita JI, Moriyama A, Yamasaki K, Yatera K, Morimoto Y. The degree of cross-linking of polyacrylic acid affects the fibrogenicity in rat lungs. Sci Rep 2025; 15:3514. [PMID: 39875494 PMCID: PMC11775097 DOI: 10.1038/s41598-025-87174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Polyacrylic acid (PAA) with different concentrations of cross-linker was instilled into the trachea of rats to examine the effect of PAA crosslink density on lung disorders. Methods: F344 rats were intratracheally exposed to low and high doses of PAA with cross-linker concentrations of 0.1, 1.0, and 5.0% (CL0.1%, CL1.0%, and CL5.0%, respectively). Rats were sacrificed at 3 days, 1 week, 1 month, 3 months, and 6 months after exposure. PAA with different cross-linker concentrations caused an increase in neutrophil influx, cytokine-induced neutrophils, and chemotactic factor (CINC) in bronchoalveolar lavage fluid (BALF) from 3 days to 1 week after instillation. Lactate dehydrogenase (LDH) activity in BALF and heme oxygenase-1 (HO-1) release in lung tissue were higher in the CL0.1% exposure group during the acute phase. Lung histopathological findings also showed that severe fibrotic changes induced by CL0.1% were greater than those observed in CL1.0% and CL5.0% exposure during the observation period. CL0.1% was associated with more severe lung fibrosis, and a decrease in lung fibrosis was observed with increasing cross-linker concentrations, suggesting that the cross-link density of PAA is a physicochemical feature that affects lung disorders.
Collapse
Affiliation(s)
- Taisuke Tomonaga
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Chinatsu Nishida
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Kazuma Sato
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yuiko Nakamura
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Toshiki Morimoto
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yasuyuki Higashi
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Hidenori Higashi
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Takuma Kojima
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1Wakamatsu-ku, HibikinoKitakyushu, Fukuoka, 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1Wakamatsu-ku, HibikinoKitakyushu, Fukuoka, 808-0135, Japan
| | - Jun-Ichi Takeshita
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, TsukubaTsukuba, Ibaraki, 305-8569, Japan
| | - Akihiro Moriyama
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, TsukubaTsukuba, Ibaraki, 305-8569, Japan
| | - Kei Yamasaki
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| |
Collapse
|
2
|
Morimoto Y, Izumi H, Tomonaga T, Nishida C, Higashi H. Adverse effects of nanoparticles on humans. J Occup Health 2025; 67:uiaf002. [PMID: 39890621 PMCID: PMC11849340 DOI: 10.1093/joccuh/uiaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 02/03/2025] Open
Abstract
It was previously thought that the particles inhaled by humans and having adverse effects were micron-sized; particles with a particularly high content of crystalline silica were thought to have harmful effects. In recent years, manufactured materials have been further refined to nano-level particles, and it has been reported that these ultrafine particles have different adverse effects, making it necessary to perform occupational health management for chemicals that differ from micron-sized particles. Here we report the adverse effects of carbon nanotubes, welding fumes, and organic substances as examples of nanoparticles.
Collapse
Affiliation(s)
- Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Yahatanishi-ku, Iseigaoka 1-1, Kitakyushu City, Fukuoka Prefecture, 807-8555, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Yahatanishi-ku, Iseigaoka 1-1, Kitakyushu City, Fukuoka Prefecture, 807-8555, Japan
| | - Taisuke Tomonaga
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Yahatanishi-ku, Iseigaoka 1-1, Kitakyushu City, Fukuoka Prefecture, 807-8555, Japan
| | - Chinatsu Nishida
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Yahatanishi-ku, Iseigaoka 1-1, Kitakyushu City, Fukuoka Prefecture, 807-8555, Japan
| | - Hidenori Higashi
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Yahatanishi-ku, Iseigaoka 1-1, Kitakyushu City, Fukuoka Prefecture, 807-8555, Japan
| |
Collapse
|
3
|
Higashi Y, Nishida C, Izumi H, Sato K, Kawai N, Tomonaga T, Morimoto T, Yamasaki K, Wang KY, Higashi H, Moriyama A, Takeshita JI, Kojima T, Sakurai K, Yatera K, Morimoto Y. Inhalation exposure to cross-linked polyacrylic acid induces pulmonary disorders. Toxicology 2025; 510:154001. [PMID: 39549915 DOI: 10.1016/j.tox.2024.154001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Organic polymers, widely used in food, daily necessities, and medicines, include cross-linked polyacrylic acid (CL-PAA), which has been reported to induce severe lung disease. While previous studies mainly used intratracheal instillation, our research focused on inhalation exposure to corroborate these findings. We conducted 5-day (short-term) and 13-week (subchronic) inhalation exposure studies with CL-PAA. In the short-term study, male F344 rats inhaled CL-PAA at 0.2, 2.0, or 20 mg/m³ for 6 hours/day over 5 days. Rats were dissected 3 days and 1 month post-exposure. In the subchronic study, rats inhaled CL-PAA at 0.2 or 2.0 mg/m³ for 6 hours/day, 5 days/week for 13 weeks, with dissections from 3 days to 6 months post-exposure. To investigate the mechanism of pulmonary disorders, an additional short-term study with 20 mg/m³ CL-PAA included intraperitoneal injections of the antioxidant N-acetylcysteine (NAC) (200 mg/kg) with dissection the day after exposure. Short-term exposure led to concentration-dependent increases in neutrophil influx, cytokine-induced neutrophil chemoattractant (CINC), total protein, lactate dehydrogenase (LDH) in bronchoalveolar lavage fluid (BALF), and heme oxygenase-1 (HO-1) in lung tissue. Histopathology showed concentration-dependent neutrophil infiltration. Subchronic exposure caused persistent increases in BALF total protein and lung HO-1, with ongoing neutrophil infiltration and fibrosis. NAC administration reduced neutrophils, total protein, LDH, and CINC in BALF, and HO-1 in lung tissue, improving histopathological findings. Inhalation of CL-PAA caused concentration-dependent lung inflammation and persistent fibrosis. The no observed adverse effect level (NOAEL) for chronic pulmonary disorders was 0.2 mg/m³. Oxidative stress linked to CL-PAA-induced inflammation was mitigated by NAC administration.
Collapse
Affiliation(s)
- Yasuyuki Higashi
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Chinatsu Nishida
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Kazuma Sato
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Naoki Kawai
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Taisuke Tomonaga
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Toshiki Morimoto
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Kei Yamasaki
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, Japan. 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Hidenori Higashi
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Akihiro Moriyama
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan. 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Jun-Ichi Takeshita
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan. 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Takuma Kojima
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan.
| |
Collapse
|
4
|
Liu J, Wang Y, Zeng L, Yu C, Kang R, Klionsky DJ, Jiang J, Tang D. Extracellular NCOA4 is a mediator of septic death by activating the AGER-NFKB pathway. Autophagy 2024; 20:2616-2631. [PMID: 38916095 PMCID: PMC11587848 DOI: 10.1080/15548627.2024.2372215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024] Open
Abstract
Sepsis, a life-threatening condition resulting from a dysregulated response to pathogen infection, poses a significant challenge in clinical management. Here, we report a novel role for the autophagy receptor NCOA4 in the pathogenesis of sepsis. Activated macrophages and monocytes secrete NCOA4, which acts as a mediator of septic death in mice. Mechanistically, lipopolysaccharide, a major component of the outer membrane of Gram-negative bacteria, induces NCOA4 secretion through autophagy-dependent lysosomal exocytosis mediated by ATG5 and MCOLN1. Moreover, bacterial infection with E. coli or S. enterica leads to passive release of NCOA4 during GSDMD-mediated pyroptosis. Upon release, extracellular NCOA4 triggers the activation of the proinflammatory transcription factor NFKB/NF-κB by promoting the degradation of NFKBIA/IκB molecules. This process is dependent on the pattern recognition receptor AGER, rather than TLR4. In vivo studies employing endotoxemia and polymicrobial sepsis mouse models reveal that a monoclonal neutralizing antibody targeting NCOA4 or AGER delays animal death, protects against organ damage, and attenuates systemic inflammation. Furthermore, elevated plasma NCOA4 levels in septic patients, particularly in non-survivors, correlate positively with the sequential organ failure assessment score and concentrations of lactate and proinflammatory mediators, such as TNF, IL1B, IL6, and HMGB1. These findings demonstrate a previously unrecognized role of extracellular NCOA4 in inflammation, suggesting it as a potential therapeutic target for severe infectious diseases. Abbreviation: BMDMs: bone marrow-derived macrophages; BUN: blood urea nitrogen; CLP: cecal ligation and puncture; ELISA: enzyme-linked immunosorbent assay; LPS: lipopolysaccharide; NO: nitric oxide; SOFA: sequential organ failure assessment.
Collapse
Affiliation(s)
- Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yichun Wang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Chongqing, China
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Chongqing, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
5
|
Higashi Y, Nishida C, Tomonaga T, Izumi H, Kawai N, Morimoto T, Hara K, Yamasaki K, Moriyama A, Takeshita JI, Wang KY, Higashi H, Ono R, Sumiya K, Sakurai K, Yatera K, Morimoto Y. Intratracheal instillation of polyacrylic acid induced pulmonary fibrosis with elevated transforming growth factor-β1 and connective tissue growth factor. Toxicology 2024; 506:153845. [PMID: 38801935 DOI: 10.1016/j.tox.2024.153845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
We investigated the intratracheal instillation of Polyacrylic acid (PAA) in rats to determine if it would cause pulmonary disorders, and to see what factors would be associated with the pathological changes. Male F344 rats were intratracheally instilled with low (0.2 mg/rat) and high (1.0 mg/rat) doses of PAA. They were sacrificed at 3 days, 1 week, 1 month, 3 months, and 6 months after PAA exposure to examine inflammatory and fibrotic changes in the lungs. There was a persistent increase in the neutrophil count, lactate dehydrogenase (LDH) levels, cytokine-induced neutrophil chemoattractant (CINC) values in bronchoalveolar lavage fluid (BALF), and heme oxygenase-1 (HO-1) in lung tissue. Transforming growth factor-beta 1 (TGF-β1), a fibrotic factor, showed a sustained increase in the BALF until 6 months after intratracheal instillation, and connective tissue growth factor (CTGF) in lung tissue was elevated at 3 days after exposure. Histopathological findings in the lung tissue showed persistent (more than one month) inflammation, fibrotic changes, and epithelial-mesenchymal transition (EMT) changes. There was also a strong correlation between TGF-β1 in the BALF and, especially, in the fibrosis score of histopathological specimens. Intratracheal instillation of PAA induced persistent neutrophilic inflammation, fibrosis, and EMT in the rats' lungs, and TGF-β1 and CTGF appeared to be associated with the persistent fibrosis.
Collapse
Affiliation(s)
- Yasuyuki Higashi
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Chinatsu Nishida
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Taisuke Tomonaga
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Naoki Kawai
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Toshiki Morimoto
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Kanako Hara
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Kei Yamasaki
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Akihiro Moriyama
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Jun-Ichi Takeshita
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Hidenori Higashi
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Ryohei Ono
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuki Sumiya
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan.
| |
Collapse
|
6
|
Morimoto T, Izumi H, Tomonaga T, Nishida C, Kawai N, Higashi Y, Wang KY, Ono R, Sumiya K, Sakurai K, Moriyama A, Takeshita JI, Yamasaki K, Yatera K, Morimoto Y. The Effects of Endoplasmic Reticulum Stress via Intratracheal Instillation of Water-Soluble Acrylic Acid Polymer on the Lungs of Rats. Int J Mol Sci 2024; 25:3573. [PMID: 38612383 PMCID: PMC11011863 DOI: 10.3390/ijms25073573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Polyacrylic acid (PAA), an organic chemical, has been used as an intermediate in the manufacture of pharmaceuticals and cosmetics. It has been suggested recently that PAA has a high pulmonary inflammatory and fibrotic potential. Although endoplasmic reticulum stress is induced by various external and intracellular stimuli, there have been no reports examining the relationship between PAA-induced lung injury and endoplasmic reticulum stress. F344 rats were intratracheally instilled with dispersed PAA (molecular weight: 269,000) at low (0.5 mg/mL) and high (2.5 mg/mL) doses, and they were sacrificed at 3 days, 1 week, 1 month, 3 months and 6 months after exposure. PAA caused extensive inflammation and fibrotic changes in the lungs' histopathology over a month following instillation. Compared to the control group, the mRNA levels of endoplasmic reticulum stress markers Bip and Chop in BALF were significantly increased in the exposure group. In fluorescent immunostaining, both Bip and Chop exhibited co-localization with macrophages. Intratracheal instillation of PAA induced neutrophil inflammation and fibrosis in the rat lung, suggesting that PAA with molecular weight 269,000 may lead to pulmonary disorder. Furthermore, the presence of endoplasmic reticulum stress in macrophages was suggested to be involved in PAA-induced lung injury.
Collapse
Affiliation(s)
- Toshiki Morimoto
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (T.M.); (K.Y.); (K.Y.)
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (H.I.); (T.T.); (N.K.)
| | - Taisuke Tomonaga
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (H.I.); (T.T.); (N.K.)
| | - Chinatsu Nishida
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan;
| | - Naoki Kawai
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (H.I.); (T.T.); (N.K.)
| | - Yasuyuki Higashi
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (T.M.); (K.Y.); (K.Y.)
| | - Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan;
| | - Ryohei Ono
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan; (R.O.); (K.S.); (K.S.)
| | - Kazuki Sumiya
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan; (R.O.); (K.S.); (K.S.)
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan; (R.O.); (K.S.); (K.S.)
| | - Akihiro Moriyama
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan; (A.M.); (J.-i.T.)
| | - Jun-ichi Takeshita
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan; (A.M.); (J.-i.T.)
| | - Kei Yamasaki
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (T.M.); (K.Y.); (K.Y.)
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (T.M.); (K.Y.); (K.Y.)
| | - Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan; (H.I.); (T.T.); (N.K.)
| |
Collapse
|
7
|
Neffe AT. Cell-Material Interactions 2022. Int J Mol Sci 2023; 24:ijms24076057. [PMID: 37047029 PMCID: PMC10093964 DOI: 10.3390/ijms24076057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Cell-material interactions are the defining feature of biomaterials, and they are relevant for evaluating material residues and pollutants [...].
Collapse
Affiliation(s)
- Axel T Neffe
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstrasse 55, 14513 Teltow, Germany
| |
Collapse
|