1
|
Obeid MA, Alyamani H, Alenaizat A, Tunç T, Aljabali AAA, Alsaadi MM. Nanomaterial-based drug delivery systems in overcoming bacterial resistance: Current review. Microb Pathog 2025; 203:107455. [PMID: 40057006 DOI: 10.1016/j.micpath.2025.107455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Antimicrobial resistance is one of the most serious contemporary global health concerns, threatening the effectiveness of existing antibiotics and resulting in morbidity, mortality, and economic burdens. This review examines the contribution of nanomaterial-based drug delivery systems to solving the problems associated with bacterial resistance and provides a thorough overview of their mechanisms of action, efficiency, and perspectives for the future. Owing to their unique physicochemical properties, nanomaterials reveal new ways of passing through the traditional mechanisms of bacterial defence connected to the permeability barrier of membranes, efflux pumps, and biofilm formation. This review addresses the different types of nanomaterials, including metallic nanoparticles, liposomes, and polymeric nanoparticles, in terms of their antimicrobial properties and modes of action. More emphasis has been placed on the critical discussion of recent studies on such active systems. Both in vitro and in vivo models are discussed, with particular attention paid to multidrug-resistant bacteria. This review begins by reviewing the urgency for antimicrobial resistance (AMR) by citing recent statistics, which indicate that the number of deaths and reasons for financial losses continue to increase. A background is then provided on the limitations of existing antibiotic therapies and the pressing need to develop innovative approaches. Nanomaterial-based drug delivery systems have been proposed as promising solutions because of their potential to improve drug solubility, stability, and targeted delivery, although side effects can also be mitigated. In addition to established knowledge, this review also covers ongoing debates on the continuous risks associated with the use of nanomaterials, such as toxicity and environmental impact. This discussion emphasizes the optimization of nanomaterial design to target specific bacteria, and rigorous clinical trials to establish safety and efficacy in humans. It concludes with reflections on the future directions of nanomaterial-based drug delivery systems in fighting AMR, underlining the need for an interdisciplinary approach, along with continuous research efforts to translate these promising technologies into clinical practice. As the fight against bacterial resistance reaches its peak, nanomaterials may be the key to developing next-generation antimicrobial therapies.
Collapse
Affiliation(s)
- Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O.BOX 566, Irbid, 21163, Jordan.
| | - Hanin Alyamani
- William Harvey Research Institute, Center for Microvascular Research, Queen Mary University of London, London, United Kingdom
| | | | - Tutku Tunç
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O.BOX 566, Irbid, 21163, Jordan
| | - Manal M Alsaadi
- Department of Industrial Pharmacy, Faculty of Pharmacy, University of Tripoli, PO Box, Tripoli, 13645, Libya
| |
Collapse
|
2
|
Watt E, Andriescu I, Ho EA. Pneumolysin-responsive liposomal platform for selective treatment of Streptococcus pneumoniae. Drug Deliv Transl Res 2025; 15:1739-1754. [PMID: 39285123 DOI: 10.1007/s13346-024-01708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 01/04/2025]
Abstract
The bacterium Streptococcus pneumoniae has become a leading cause of meningitis, sepsis, and bacterial pneumonia worldwide, with increased prevalence of antibiotic-resistant serotypes serving to exacerbate the issue. The main factor responsible for colonization and immune response escape in pneumococcal infections is the secreted molecule pneumolysin, which is a subset within a family of related toxins that form transmembrane pores in biological membranes through cholesterol recognition and binding. The conserved activity and structure of pneumolysin between all observed S. pneumoniae serotypes, along with its requirement for pathogenicity, has made this molecule an attractive target for vaccination, diagnostic, and sequestration platforms, but not yet as a facilitative agent for therapeutic treatment. Consequently, the present work aimed to examine the impact of liposomal cholesterol content for pneumolysin-induced release of the encapsulated antimicrobial peptide nisin. It was determined that a cholesterol content above 45 mol% was necessary to facilitate interactions with both purified pneumolysin toxin and S. pneumoniae culture, demonstrated through enhanced nisin release and a reduction in hemolytic rates upon exposure of the toxin with cholesterol-rich vesicles. Antibacterial testing highlighted the ability of the developed platform to elicit a potent and specific bactericidal response in vitro against cultured S. pneumoniae when compared to a control strain, Staphylococcus epidermidis. It further improved viability of a fibroblast cell line upon S. pneumoniae challenge, outperforming free nisin via the synergistic impact of simultaneous bacterial clearance and pneumolysin neutralization. These findings collectively indicate that cholesterol-rich liposomes hold promise as a selective treatment platform against pneumococcal infections.
Collapse
Affiliation(s)
- Ethan Watt
- School of Pharmacy, University of Waterloo, Waterloo, ON, N2G 1C5, Canada
| | - Ilinca Andriescu
- School of Pharmacy, University of Waterloo, Waterloo, ON, N2G 1C5, Canada
| | - Emmanuel A Ho
- School of Pharmacy, University of Waterloo, Waterloo, ON, N2G 1C5, Canada.
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
3
|
George M, Boukherroub R, Sanyal A, Szunerits S. Treatment of lung diseases via nanoparticles and nanorobots: Are these viable alternatives to overcome current treatments? Mater Today Bio 2025; 31:101616. [PMID: 40124344 PMCID: PMC11930446 DOI: 10.1016/j.mtbio.2025.101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Challenges Respiratory diseases remain challenging to treat, with current efforts primarily focused on managing symptoms rather than maintaining overall lung health. Traditional treatment methods, such as oral or parenteral administration of antiviral, antibacterial, and anti-inflammatory drugs, face limitations. These include difficulty in delivering therapeutic agents to pathogens residing deep in the airways and the risk of severe side effects due to high systemic drug concentrations. The growing threat of drug-resistant pathogens further complicates infection management. Advancements The lung's large surface area offers an attractive target for inhalation-based drug delivery. Nanoparticles (NP) enable uniform and sustained drug distribution across the alveolar network, overcoming challenges posed by complex lung anatomy. Recent breakthroughs in nanorobots (NR) have demonstrated precise navigation through biological environments, delivering therapies directly to affected lung areas with enhanced accuracy. Nanotechnology has also shown promise in treating lung cancer, with nanoparticles engineered to overcome biological barriers, improve drug solubility, and enable controlled drug release. Future scope This review explores the progress of NP and NR in addressing challenges in pulmonary drug delivery. These innovations allow targeted delivery of nucleic acids, drugs, or peptides to the pulmonary epithelium with unprecedented accuracy, offering significant potential for improving therapeutic effectiveness in respiratory disorders.
Collapse
Affiliation(s)
- Meekha George
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University (DPU), Viktor-Kaplan-Straße 2, Geb. E, 2700, Wiener Neustadt, Austria
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique, Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, 34342, Istanbul, Turkey
| | - Sabine Szunerits
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University (DPU), Viktor-Kaplan-Straße 2, Geb. E, 2700, Wiener Neustadt, Austria
- Univ. Lille, CNRS, Univ. Polytechnique, Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| |
Collapse
|
4
|
Sharma D, Gautam S, Singh S, Srivastava N, Khan AM, Bisht D. Unveiling the nanoworld of antimicrobial resistance: integrating nature and nanotechnology. Front Microbiol 2025; 15:1391345. [PMID: 39850130 PMCID: PMC11754303 DOI: 10.3389/fmicb.2024.1391345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
A significant global health crisis is predicted to emerge due to antimicrobial resistance by 2050, with an estimated 10 million deaths annually. Increasing antibiotic resistance necessitates continuous therapeutic innovation as conventional antibiotic treatments become increasingly ineffective. The naturally occurring antibacterial, antifungal, and antiviral compounds offer a viable alternative to synthetic antibiotics. This review presents bacterial resistance mechanisms, nanocarriers for drug delivery, and plant-based compounds for nanoformulations, particularly nanoantibiotics (nAbts). Green synthesis of nanoparticles has emerged as a revolutionary approach, as it enhances the effectiveness, specificity, and transport of encapsulated antimicrobials. In addition to minimizing systemic side effects, these nanocarriers can maximize therapeutic impact by delivering the antimicrobials directly to the infection site. Furthermore, combining two or more antibiotics within these nanoparticles often exhibits synergistic effects, enhancing the effectiveness against drug-resistant bacteria. Antimicrobial agents are routinely obtained from secondary metabolites of plants, including essential oils, phenols, polyphenols, alkaloids, and others. Integrating plant-based antibacterial agents and conventional antibiotics, assisted by suitable nanocarriers for codelivery, is a potential solution for addressing bacterial resistance. In addition to increasing their effectiveness and boosting the immune system, this synergistic approach provides a safer and more effective method of tackling future bacterial infections.
Collapse
Affiliation(s)
- Devesh Sharma
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
- School of Studies in Biochemistry, Jiwaji University, Gwalior, India
| | - Sakshi Gautam
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Sakshi Singh
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Nalini Srivastava
- School of Studies in Biochemistry, Jiwaji University, Gwalior, India
| | - Abdul Mabood Khan
- Division of Clinical Trials and Implementation Research, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Deepa Bisht
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| |
Collapse
|
5
|
Shi M, Li X, Xing L, Li Z, Zhou S, Wang Z, Zou X, She Y, Zhao R, Qin D. Polycystic Ovary Syndrome and the Potential for Nanomaterial-Based Drug Delivery in Therapy of This Disease. Pharmaceutics 2024; 16:1556. [PMID: 39771535 PMCID: PMC11678845 DOI: 10.3390/pharmaceutics16121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is the predominant endocrine disorder among women of reproductive age and represents the leading cause of anovulatory infertility, which imposes a considerable health and economic burden. Currently, medications used to treat PCOS can lead to certain adverse reactions, such as affecting fertility and increasing the risk of venous thrombosis. Drug delivery systems utilizing nanomaterials, characterized by prolonged half-life, precision-targeted delivery, enhanced bioavailability, and reduced toxicity, are currently being employed in the management of PCOS. This innovative approach is gaining traction as a favored strategy for augmenting the therapeutic efficacy of medications. Consequently, this paper discusses the roles of nanoparticles, nanocarriers, and targeted ligands within nanomaterial-based drug delivery systems, aiming to identify optimal methodologies for treating PCOS using nanomaterials. Additionally, prospective research avenues concerning nanomaterial-based delivery systems in the context of PCOS, as well as the implications of existing insights on the advancement of novel therapies for PCOS, are highlighted.
Collapse
Affiliation(s)
- Mingqin Shi
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China; (M.S.); (L.X.)
| | - Xinyao Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (S.Z.); (X.Z.); (Y.S.)
| | - Liwei Xing
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China; (M.S.); (L.X.)
| | - Zhenmin Li
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China;
| | - Sitong Zhou
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (S.Z.); (X.Z.); (Y.S.)
| | - Zihui Wang
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Xuelian Zou
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (S.Z.); (X.Z.); (Y.S.)
| | - Yuqing She
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (S.Z.); (X.Z.); (Y.S.)
| | - Rong Zhao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China; (M.S.); (L.X.)
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (S.Z.); (X.Z.); (Y.S.)
| |
Collapse
|
6
|
Thy M, Magréault S, Zahar JR, Jullien V, Timsit JF. Improving pharmacokinetic/pharmacodynamic outcomes of antimicrobial therapy for pneumonia in the ICU. Expert Opin Pharmacother 2024; 25:2347-2365. [PMID: 39587056 DOI: 10.1080/14656566.2024.2432478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
INTRODUCTION Pneumonia remains a significant global health challenge due to its high prevalence and mortality rate, and challenging treatment. This review explores the best strategies to optimize the antibiotic therapy for pneumonia in critically ill patients, focusing on pharmacokinetics, pharmacodynamics, and therapeutic data. AREAS COVERED A review of scientific publications on severe pneumonia highlights the challenges of optimizing antibiotic use to improve lung diffusion, bacterial killing, and achieving PK/PD targets, emphasizing the need to understand microbiological epidemiology and MIC breakpoints. Key strategies like nebulization, therapeutic drug monitoring, and emerging technologies such as ELF TDM and nanomaterial-based drug delivery systems are essential for optimizing PK/PD outcomes and addressing antimicrobial resistance. EXPERT OPINION Improving our understanding of pulmonary pharmacokinetics and optimizing their tissue diffusion are instrumental for achieving precision antibiotic therapy for severe pneumonia. By addressing current limitations and embracing interdisciplinary collaboration, we can pave the way for more efficient personalized approaches in infectious disease management.
Collapse
Affiliation(s)
- Michael Thy
- Medical and infectious diseases ICU (MI2), AP-HP, Bichat Hospital, Université Paris Cité, Paris, France
- UMR 1137, IAME, INSERM, Université Paris Cité, Paris, France
- OUTCOME REA research network, Drancy, France
| | - Sophie Magréault
- UMR 1137, IAME, INSERM, Université Paris Cité, Paris, France
- Department of Pharmacology, AP-HP, Jean Verdier Hospital, Sorbonne Paris Nord, Bobigny, France
| | - Jean-Ralph Zahar
- UMR 1137, IAME, INSERM, Université Paris Cité, Paris, France
- OUTCOME REA research network, Drancy, France
- Clinical Microbiology Department, Avicenne Hospital, Bobigny, France
| | - Vincent Jullien
- UMR 1137, IAME, INSERM, Université Paris Cité, Paris, France
- Department of Pharmacology, AP-HP, Jean Verdier Hospital, Sorbonne Paris Nord, Bobigny, France
| | - Jean-François Timsit
- Medical and infectious diseases ICU (MI2), AP-HP, Bichat Hospital, Université Paris Cité, Paris, France
- UMR 1137, IAME, INSERM, Université Paris Cité, Paris, France
- OUTCOME REA research network, Drancy, France
| |
Collapse
|
7
|
Kang C, Zhang H, Yin Y. A Dual-Modality Complex-Valued Fusion Method for Predicting Side Effects of Drug-Drug Interactions Based on Graph Neural Network. IEEE J Biomed Health Inform 2024; 28:6212-6224. [PMID: 38990748 DOI: 10.1109/jbhi.2024.3422673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Predicting potential side effects of drug-drug interactions (DDIs), which is a major concern in clinical treatment, can increase therapeutic efficacy. In recent studies, how to use the multi-modal drug features is important for DDI prediction. Thus, it remains a challenge to explore an efficient computational method to achieve the feature fusion cross- and intra-modality. In this paper, we propose a dual-modality complex-valued fusion method (DMCF-DDI) for predicting the side effects of DDIs, using the form and properties of complex-vector to enhance the representations of DDIs. Firstly, DMCF-DDI applies two Graph Convolutional Network (GCN) encoders to learn molecular structure and topological features from fingerprint and knowledge graphs, respectively. Secondly, an asymmetric skip connection (ASC) uses distinct semantic-level features to construct the complex-valued drug pair representations (DPRs). Then, the complex-vector multiplication is used as a fusion operator to obtain the fine-grained DPRs. Finally, we calculate the prediction probability of DDIs by Hermitian inner product in the complex space. Compared with other methods, DMCF-DDI achieves superior performance in all situations using a fusion operator with the lowest parameter numbers. For the case study, we select six diseases and common side effects in clinical treatment to verify identification ability of our model. We also prove the advantage of ASC and complex-valued fusion can achieve to align the cross-modal fused positive DPRs through a comprehensive analysis on the phase-modulus distribution histogram of DPRs. In the end, we explain the reason for alignment based on the similarity of features and node neighbors.
Collapse
|
8
|
Wang X, Zhang H, XinZhang, Liu Y. Abscopal effect: from a rare phenomenon to a new frontier in cancer therapy. Biomark Res 2024; 12:98. [PMID: 39228005 PMCID: PMC11373306 DOI: 10.1186/s40364-024-00628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Radiotherapy (RT) controls local lesions, meantime it has the capability to induce systemic response to inhibit distant, metastatic, non-radiated tumors, which is referred to as the "abscopal effect". It is widely recognized that radiotherapy can stimulate systemic immune response. This provides a compelling theoretical basis for the combination of immune therapy combined with radiotherapy(iRT). Indeed, this phenomenon has also been observed in clinical treatment, bringing significant clinical benefits to patients, and a series of basic studies are underway to amplify this effect. However, the molecular mechanisms of immune response induced by RT, determination of the optimal treatment regimen for iRT, and how to amplify the abscopal effect. In order to amplify and utilize this effect in clinical management, these key issues require to be well addressed; In this review, we comprehensively summarize the growing consensus and emphasize the emerging limitations of enhancing the abscopal effect with radiotherapy or immunotherapy. Finally, we discuss the prospects and barriers to the current clinical translational applications.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Haoyu Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - XinZhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| |
Collapse
|
9
|
Cojocaru E, Petriș OR, Cojocaru C. Nanoparticle-Based Drug Delivery Systems in Inhaled Therapy: Improving Respiratory Medicine. Pharmaceuticals (Basel) 2024; 17:1059. [PMID: 39204164 PMCID: PMC11357421 DOI: 10.3390/ph17081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Inhaled nanoparticle (NP) therapy poses intricate challenges in clinical and pharmacodynamic realms. Recent strides have revolutionized NP technology by enabling the incorporation of diverse molecules, thus circumventing systemic clearance mechanisms and enhancing drug effectiveness while mitigating systemic side effects. Despite the established success of systemic NP delivery in oncology and other disciplines, the exploration of inhaled NP therapies remains relatively nascent. NPs loaded with bronchodilators or anti-inflammatory agents exhibit promising potential for precise distribution throughout the bronchial tree, offering targeted treatment for respiratory diseases. This article conducts a comprehensive review of NP applications in respiratory medicine, highlighting their merits, ranging from heightened stability to exacting lung-specific delivery. It also explores cutting-edge technologies optimizing NP-loaded aerosol systems, complemented by insights gleaned from clinical trials. Furthermore, the review examines the current challenges and future prospects in NP-based therapies. By synthesizing current data and perspectives, the article underscores the transformative promise of NP-mediated drug delivery in addressing chronic conditions such as chronic obstructive pulmonary disease, a pressing global health concern ranked third in mortality rates. This overview illuminates the evolving landscape of NP inhalation therapies, presenting optimistic avenues for advancing respiratory medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Elena Cojocaru
- Morpho-Functional Sciences II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ovidiu Rusalim Petriș
- Medical II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Cojocaru
- Medical III Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
10
|
Mardikasari SA, Katona G, Sipos B, Csóka I. Essential considerations towards development of effective nasal antibiotic formulation: features, strategies, and future directions. Expert Opin Drug Deliv 2024; 21:611-625. [PMID: 38588551 DOI: 10.1080/17425247.2024.2341184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Intranasal antibiotic products are gaining popularity as a promising method of administering antibiotics, which provide numerous benefits, e.g. enhancing drug bioavailability, reducing adverse effects, and potentially minimizing resistance threats. However, some issues related to the antibiotic substances and nasal route challenges must be addressed to prepare effective formulations. AREAS COVERED This review focuses on the valuable points of nasal delivery as an alternative route for administering antibiotics, coupled with the challenges in the nasal cavity that might affect the formulations. Moreover, this review also highlights the application of nasal delivery to introduce antibiotics for local therapy, brain targeting, and systemic effects that have been conducted. In addition, this viewpoint provides strategies to maintain antibiotic stability and several crucial aspects to be considered for enabling effective nasal formulation. EXPERT OPINION In-depth knowledge and understanding regarding various key considerations with respect to the antibiotic substances and nasal route delivery requirement in preparing effective nasal antibiotic formulation would greatly improve the development of nasally administered antibiotic products, enabling better therapeutic outcomes of antibiotic treatment and establishing appropriate use of antibiotics, which in turn might reduce the chance of antibiotic resistance and enhance patient comfort.
Collapse
Affiliation(s)
- Sandra Aulia Mardikasari
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| |
Collapse
|
11
|
Chaudhary KR, Singh K, Singh C. Recent Updates in Inhalable Drug Delivery System against Various Pulmonary Diseases: Challenges and Future Perspectives. Curr Drug Deliv 2024; 21:1320-1345. [PMID: 37870055 DOI: 10.2174/0115672018265571231011093546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
In the current scenario, pulmonary disease has become a prime burden for morbidity and mortality alongside tremendous social and economic crises throughout the world. Numerous conventional drug delivery system and treatment approach targeting the respiratory region has been driven out. However, effective and accurate recovery has not been achieved yet. In this regard, nanotechnological- based inhalable drug delivery strategy including polymeric, lipidic, or metallic-based respirable microparticles plays an indispensable role in circumventing numerous challenges faced during traditional treatment. Excellent aerodynamic performance leads to enhanced lung targetability, reduced dosing frequency and hence systemic toxicities, as well as improved pharmaceutical attributes, and therefore pharmacokinetic profiles are interminable factors associated with nanotechnologicalbased inhalable delivery. In this review, we comprehensively explored recent advancements in nanotechnologically engineered inhalable formulations targeting each of the mentioned pulmonary diseases. Moreover, we systematically discussed possible respiratory or systemic toxicities about the indeterminate and undefined physicochemical characteristics of inhaled particles.
Collapse
Affiliation(s)
- Kabi Raj Chaudhary
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India
- Department of Research and Development, United Biotech [P] Ltd. Bagbania, Nalagarh, Solan, Himachal Pradesh, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India
- Department of Pharmaceutical Sciences HNB Garhwal University, Madhi Chauras, Srinagar, Uttarakhand 246174, India
| |
Collapse
|
12
|
Popescu M, Ungureanu C. Green Nanomaterials for Smart Textiles Dedicated to Environmental and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4075. [PMID: 37297209 PMCID: PMC10254517 DOI: 10.3390/ma16114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Smart textiles recently reaped significant attention owing to their potential applications in various fields, such as environmental and biomedical monitoring. Integrating green nanomaterials into smart textiles can enhance their functionality and sustainability. This review will outline recent advancements in smart textiles incorporating green nanomaterials for environmental and biomedical applications. The article highlights green nanomaterials' synthesis, characterization, and applications in smart textile development. We discuss the challenges and limitations of using green nanomaterials in smart textiles and future perspectives for developing environmentally friendly and biocompatible smart textiles.
Collapse
Affiliation(s)
- Melania Popescu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
| | - Camelia Ungureanu
- General Chemistry Department, University “Politehnica” of Bucharest, Gheorghe Polizu Street, 1-7, 011061 Bucharest, Romania
| |
Collapse
|