1
|
Ma R, Zhang X, Li R, Dong X, Wang W, Jiang Q, Xiao X, Shi Y, Chen L, Zheng T, Xiang Z, Ren L, Zhou Z, Lei X, Wang J. PLSCR1 suppresses SARS-CoV-2 infection by downregulating cell surface ACE2. J Virol 2025; 99:e0208524. [PMID: 39945535 PMCID: PMC11915802 DOI: 10.1128/jvi.02085-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/23/2025] [Indexed: 03/19/2025] Open
Abstract
Type I interferons exert their antiviral effects against SARS-CoV-2 by inducing the expression of interferon-stimulated genes (ISGs), including but not limited to LY6E, CH25H, IFITM2/3, and IFIH1. However, the antiviral effect and underlying mechanisms of action of most ISGs in SARS-CoV-2 infection are not yet fully understood. By screening 109 ISG-knockout cell lines, we identify that phospholipid scramblase 1 (PLSCR1), an interferon-inducible protein, acts as a crucial restriction factor against SARS-CoV-2 infection. Cells lacking PLSCR1 are highly susceptible to SARS-CoV-2 infection. Conversely, overexpression of PLSCR1 inhibits SARS-CoV-2 infection. Depletion of PLSCR1 enhances cellular entry of both pseudotyped and authentic SARS-CoV-2. Mechanistically, PLSCR1 inhibits SARS-CoV-2 entry by specifically downregulating plasma membrane expression of ACE2, the virus's receptor, without affecting the overall levels of ACE2 within the cell. As such, we unraveled previously unappreciated mechanisms by which PLSCR1 exerts its restrictive effect on SARS-CoV-2. These data provide new insights into the interplay between host innate antiviral immunity and SARS-CoV-2 and shed light on novel antiviral therapeutics. IMPORTANCE Phospholipid scramblase 1 (PLSCR1) has been identified as a critical host restriction factor against SARS-CoV-2 infection. In this study, we demonstrated that PLSCR1 inhibited SARS-CoV-2 entry by downregulating the plasma membrane expression of ACE2, the primary receptor for viral entry. Our findings elucidate a novel host-pathogen interaction that not only deepens our understanding of the innate immune response to SARS-CoV-2 but offers potential strategies for therapeutic interventions against COVID-19.
Collapse
Affiliation(s)
- Ruiyi Ma
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Xinyi Zhang
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Ruonan Li
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Xiaojing Dong
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Wenjing Wang
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Qi Jiang
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Xia Xiao
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Yujin Shi
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Lan Chen
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Tian Zheng
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zichun Xiang
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lili Ren
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuo Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, China
| | - Xiaobo Lei
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Ansari AW, Ahmad F, Alam MA, Raheed T, Zaqout A, Al-Maslamani M, Ahmad A, Buddenkotte J, Al-Khal A, Steinhoff M. Virus-Induced Host Chemokine CCL2 in COVID-19 Pathogenesis: Potential Prognostic Marker and Target of Anti-Inflammatory Strategy. Rev Med Virol 2024; 34:e2578. [PMID: 39192485 DOI: 10.1002/rmv.2578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
A wide variety of inflammatory mediators, mainly cytokines and chemokines, are induced during SARS CoV-2 infection. Among these proinflammatory mediators, chemokines tend to play a pivotal role in virus-mediated immunopathology. The C-C chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1) is a potent proinflammatory cytokine and strong chemoattractant of monocytes, macrophages and CD4+ T cells bearing C-C chemokine receptor type-2 (CCR2). Besides controlling immune cell trafficking, CCL2 is also involved in multiple pathophysiological processes including systemic hyperinflammation associated cytokine release syndrome (CRS), organ fibrosis and blood coagulation. These pathological features are commonly manifested in severe and fatal cases of COVID-19. Given the crucial role of CCL2 in COVID-19 pathogenesis, the CCL2:CCR2 axis may constitute a potential therapeutic target to control virus-induced hyperinflammation and multi-organ dysfunction. Herein we describe recent advances on elucidating the role of CCL2 in COVID-19 pathogenesis, prognosis, and a potential target of anti-inflammatory interventions.
Collapse
Affiliation(s)
- Abdul Wahid Ansari
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Majid Ali Alam
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Thesni Raheed
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Zaqout
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Muna Al-Maslamani
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Abdullatif Al-Khal
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Dermatology Institute, Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine-Qatar, Doha, Qatar
- Dermatology, Weill Cornell University, New York, New York, USA
- College of Medicine, Qatar University, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
3
|
Zhang M, Liu C, Li Y, Li H, Zhang W, Liu J, Wang L, Sun C. Galectin-9 in cancer therapy: from immune checkpoint ligand to promising therapeutic target. Front Cell Dev Biol 2024; 11:1332205. [PMID: 38264357 PMCID: PMC10803597 DOI: 10.3389/fcell.2023.1332205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
Galectin-9 (Gal-9) is a vital member of the galectin family, functioning as a multi-subtype galactose lectin with diverse biological roles. Recent research has revealed that Gal-9's interaction with tumors is an independent factor that influences tumor progression. Furthermore, Gal-9 in the immune microenvironment cross-talks with tumor-associated immune cells, informing the clarification of Gal-9's identity as an immune checkpoint. A thorough investigation into Gal-9's role in various cancer types and its interaction with the immune microenvironment could yield novel strategies for subsequent targeted immunotherapy. This review focuses on the latest advances in understanding the direct and indirect cross-talk between Gal-9 and hematologic malignancies, in addition to solid tumors. In addition, we discuss the prospects of Gal-9 in tumor immunotherapy, including its cross-talk with the ligand TIM-3 and its potential in immune-combination therapy.
Collapse
Affiliation(s)
- Minpu Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Ye Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Wenfeng Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jingyang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Liquan Wang
- Department of Thyroid and Breast Surgery, Weifang People’s Hospital, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
4
|
Ding L, Guo H, Zhang C, Jin H, Guo X, Li T. Elevated matrix metalloproteinase‑9 expression is associated with COVID‑19 severity: A meta‑analysis. Exp Ther Med 2023; 26:545. [PMID: 37928509 PMCID: PMC10623216 DOI: 10.3892/etm.2023.12244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/05/2023] [Indexed: 11/07/2023] Open
Abstract
The present meta-analysis investigated the clinical value of serum matrix metalloproteinase (MMP)-9 levels in Coronavirus Disease 2019 (COVID-19) patients. Studies assessing the outcomes of patients with COVID-19 in correlation with the MMP-9 levels were retrieved from PubMed, Web of Science, EMBASE, Cochrane, WANFANG, and CNKI. A meta-analysis was performed to compare the serum MMP-9 levels between different patient groups: Severe vs. non-severe; acute respiratory distress syndrome (ARDS) vs. non-ARDS; non-survivors vs. survivors; neurologic syndrome vs. non-neurologic syndrome; and obese diabetic vs. non-obese diabetic. A total of 2,062 COVID-19-confirmed patients from 12 studies were included in this meta-analysis. The serum MMP-9 levels were significantly higher in patients with severe COVID-19 than in those with non-severe COVID-19 [weighted mean difference (WMD) 246.61 (95% confidence interval (CI), 115.86-377.36), P<0.001]. Patients with ARDS exhibited significantly higher MMP-9 levels than those without ARDS [WMD 248.55 (95% CI, 63.84-433.25), P<0.001]. The MMP-9 levels in the non-survivors did not significantly differ from those in the survivors [WMD 37.79 (95% CI, -18.08-93.65), P=0.185]. Patients with comorbidities, including neurological syndromes, and obese diabetic patients had significantly higher MMP-9 levels than those without comorbidities [WMD 170.73 (95% CI, 95.61-245.85), P<0.001]. Serum MMP-9 levels were associated with COVID-19 severity and may serve as a therapeutic target for improving the prognosis of patients with COVID-19.
Collapse
Affiliation(s)
- Ling Ding
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161005, P.R. China
- Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| | - Haipeng Guo
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161005, P.R. China
- Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| | - Chao Zhang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161005, P.R. China
- Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| | - Huixin Jin
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161005, P.R. China
- Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| | - Xuyang Guo
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161005, P.R. China
- Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| | - Tong Li
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161005, P.R. China
- Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang 161005, P.R. China
| |
Collapse
|