1
|
Zhang P, Zhang C, Zheng B, Liu Y, Zhang D, Xiao H. The "brain-gut" mechanism of postherpetic neuralgia: a mini-review. Front Neurol 2025; 16:1535136. [PMID: 40129863 PMCID: PMC11932021 DOI: 10.3389/fneur.2025.1535136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Postherpetic neuralgia (PHN), a representative type of neuropathic pain, has attracted much research on its diagnosis and therapy at the molecular level. Interestingly, this study based on the brain-gut axis provided a novel point of view to interpret the mechanism of PHN. Past neuroanatomical and neuroimaging studies of pain suggest that the prefrontal cortex, anterior cingulate cortex, amygdala, and other regions of the brain may play crucial roles in the descending inhibition of PHN. Dominant bacterial species in patients with PHN, such as Lactobacillus, generate short-chain fatty acids, including butyrate. Evidence indicates that disturbance of some metabolites (such as butyrate) is closely related to the development of hyperalgesia. In addition, tryptophan and 5-HT in the intestinal tract act as neurotransmitters that regulate the descending transmission of neuropathic pain signals. Concurrently, the enteric nervous system establishes close connections with the central nervous system through the vagus nerve and other pathways. This review aims to investigate and elucidate the molecular mechanisms associated with PHN, focusing on the interplay among PHN, the gut microbiota, and relevant metabolites while scrutinizing its pathogenesis.
Collapse
Affiliation(s)
- Peijun Zhang
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, China
| | - Cuomaoji Zhang
- Department of Anesthesiology, Affiliated Sport Hospital of Chengdu Sport University, Chengdu Sport University, Chengdu, Sichuan, China
| | - Bixin Zheng
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, China
| | - Yuntao Liu
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, China
| | - Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Xiao
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Alfayyadh MM, Maksemous N, Sutherland HG, Lea RA, Griffiths LR. PathVar: A Customisable NGS Variant Calling Algorithm Implicates Novel Candidate Genes and Pathways in Hemiplegic Migraine. Clin Genet 2025; 107:157-168. [PMID: 39394929 PMCID: PMC11725560 DOI: 10.1111/cge.14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024]
Abstract
The exponential growth of next-generation sequencing (NGS) data requires innovative bioinformatics approaches to unravel the genetic underpinnings of diseases. Hemiplegic migraine (HM), a debilitating neurological disorder with a genetic basis, is one such condition that warrants further investigation. Notably, the genetic heterogeneity of HM is underscored by the fact that approximately two-thirds of patients lack pathogenic variants in the known causal ion channel genes. In this context, we have developed PathVar, a novel bioinformatics algorithm that harnesses publicly available tools and software for pathogenic variant discovery in NGS data. PathVar integrates a suite of tools, including HaplotypeCaller from the Genome Analysis Toolkit (GATK) for variant calling, Variant Effect Predictor (VEP) and ANNOVAR for variant annotation, and TAPES for assigning the American College of Medical Genetics and Genomics (ACMG) pathogenicity labels. Applying PathVar to whole exome sequencing data from 184 HM patients, we detected 648 variants that are probably pathogenic in multiple patients. Moreover, we have identified several candidate genes for HM, many of which cluster around the Rho GTPases pathway. Future research can leverage PathVar to generate high quality, candidate pathogenic variants, which may enhance our understanding of HM and other complex diseases.
Collapse
Affiliation(s)
- Mohammed M. Alfayyadh
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneAustralia
| | - Neven Maksemous
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneAustralia
| | - Heidi G. Sutherland
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneAustralia
| | - Rodney A. Lea
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneAustralia
| | - Lyn R. Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneAustralia
| |
Collapse
|
3
|
Tanaka M, Vécsei L. Revolutionizing our understanding of Parkinson's disease: Dr. Heinz Reichmann's pioneering research and future research direction. J Neural Transm (Vienna) 2024; 131:1367-1387. [PMID: 39110245 PMCID: PMC11608389 DOI: 10.1007/s00702-024-02812-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/22/2024] [Indexed: 11/17/2024]
Abstract
Millions of individuals around the world are afflicted with Parkinson's disease (PD), a prevalent and incapacitating neurodegenerative disorder. Dr. Reichmann, a distinguished professor and neurologist, has made substantial advancements in the domain of PD research, encompassing both fundamental scientific investigations and practical applications. His research has illuminated the etiology and treatment of PD, as well as the function of energy metabolism and premotor symptoms. As a precursor to a number of neurotransmitters and neuromodulators that are implicated in the pathophysiology of PD, he has also investigated the application of tryptophan (Trp) derivatives in the disease. His principal findings and insights are summarized and synthesized in this narrative review article, which also emphasizes the challenges and implications for future PD research. This narrative review aims to identify and analyze the key contributions of Reichmann to the field of PD research, with the ultimate goal of informing future research directions in the domain. By examining Reichmann's work, the study seeks to provide a comprehensive understanding of his major contributions and how they can be applied to advance the diagnosis and treatment of PD. This paper also explores the potential intersection of Reichmann's findings with emerging avenues, such as the investigation of Trp and its metabolites, particularly kynurenines, which could lead to new insights and potential therapeutic strategies for managing neurodegenerative disorders like PD.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, Szeged, H-6725, Hungary.
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, Szeged, H-6725, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| |
Collapse
|
4
|
Yu L, Liu L, Kang Y, Chen Y, Lv Y, Zhang Y, Mou X, Cai Y. Mild photothermal activation of TRPV1 pathway for enhanced calcium ion overload therapy of hepatocellular carcinoma. Int J Biol Macromol 2024; 282:137192. [PMID: 39489262 DOI: 10.1016/j.ijbiomac.2024.137192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) pathway can result in the disruption of intracellular calcium ion (Ca2+) homeostasis, but how to effectively control the process of Ca2+ overload needs to be addressed for tumor treatment. Herein, we developed a mild photothermal activation of TRPV1 pathway strategy for enhanced Ca2+ overload therapy of hepatocellular carcinoma, in which the multifunctional nanoparticle (CNQ) loading with CaCO3, a novel polycyclic conjugated small molecule (2Br-NDIA) and quercetin (Qu) as the core for the efficient mild photothermal therapy (PTT). The photothermal property of CNQ can specifically activate the TRPV1 channel, which leads to mitochondrial Ca2+ overloading and the disruption of intracellular Ca2+ homeostasis. This CNQ-mediated activation of the TRPV1 channel by mild PTT provides an emerging paradigm for enhancing mitochondrial Ca2+ overload therapy and dismantling tumor self-defense, safely expanding cancer therapies for highly refractory tumors.
Collapse
Affiliation(s)
- Liya Yu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014
| | - Longcai Liu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014
| | - Yehui Kang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014
| | - Yang Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014
| | - Yuqing Lv
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014
| | - Yahui Zhang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014.
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014.
| |
Collapse
|
5
|
Huang P, Wu M, Liu M, Li X, Jiang Y, Chen Z. Hypoperfusion of periaqueductal gray as an imaging biomarker in chronic migraine beyond diagnosis: A 3D pseudocontinuous arterial spin labeling MR imaging. Brain Behav 2024; 14:e70008. [PMID: 39236093 PMCID: PMC11376439 DOI: 10.1002/brb3.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/17/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND The periaqueductal gray (PAG) is at the center of a powerful descending antinociceptive neuronal network, and is a key node in the descending pain regulatory system of pain. However, less is known about the altered perfusion of PAG in chronic migraine (CM). AIM To measure the perfusion of PAG matter, an important structure in pain modulation, in CM with magnetic resonance (MR) perfusion without contrast administration. METHODS Three-dimensional pseudocontinuous arterial spin labeling (3D-PCASL) and brain structure imaging were performed in 13 patients with CM and 15 normal subjects. The inverse deformation field generated by brain structure image segmentation was applied to the midbrain PAG template to generate individualized PAG. Then the perfusion value of the PAG area of the midbrain was extracted based on the individual PAG mask. RESULTS Cerebral blood flow (CBF) value of PAG in CM patients (47.98 ± 8.38 mL/100 mg min) was significantly lower than that of the control group (59.87 ± 14.24 mL/100 mg min). Receiver operating characteristic (ROC) curve analysis showed that the area under the curve was 0.77 (95% confidence interval [CI], 0.60, 0.94), and the cutoff value for the diagnosis of CM was 54.83 mL/100 mg min with a sensitivity 84.60% and a specificity 60%. CONCLUSION Imaging evidence of the impaired pain conduction pathway in CM may be related with the decreased perfusion in the PAG, which could be considered as an imaging biomarker for the diagnosis and therapy evaluation.
Collapse
Affiliation(s)
- Pan Huang
- Department of Radiology, Hainan Hospital of PLA General Hospital, Sanya, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Mei Wu
- Department of Radiology, Hainan Hospital of PLA General Hospital, Sanya, China
| | - Mengqi Liu
- Department of Radiology, Hainan Hospital of PLA General Hospital, Sanya, China
| | - Xin Li
- Department of Radiology, Hainan Hospital of PLA General Hospital, Sanya, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yujiao Jiang
- Department of Radiology, Hainan Hospital of PLA General Hospital, Sanya, China
- School of Medical Imaging, Bengbu Medical College, Bengbu, China
| | - Zhiye Chen
- Department of Radiology, Hainan Hospital of PLA General Hospital, Sanya, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- School of Medical Imaging, Bengbu Medical College, Bengbu, China
| |
Collapse
|
6
|
An N, Zhang Y, Xie J, Li J, Lin J, Li Q, Wang Y, Liu Y, Yang Y. Study on the involvement of microglial S100A8 in neuroinflammation and microglia activation during migraine attacks. Mol Cell Neurosci 2024; 130:103957. [PMID: 39111720 DOI: 10.1016/j.mcn.2024.103957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/25/2024] Open
Abstract
BACKGROUND Microglia is the primary source of inflammatory factors during migraine attacks. This study aims to investigate the role of microglia related genes (MRGs) in migraine attacks. METHODS The RNA sequencing results of migraineurs and the panglaodb database were used to obtain differentially expressed genes (DEGs) in migraine related to microglia. A migraine rat model was established for validating and localizing of the MRGs, and subsequent screening for target genes was conducted. A shRNA was designed to interference the expression of target genes and administered into the trigeminal ganglion (TG) of rats. Pain sensitivity in rats was evaluated via the hot water tail-flick (HWTF) and formalin-induced pain (FIP) experiments. ELISA was used to quantify the levels of inflammatory cytokines and CGRP. WB and immunofluorescence assays were applied to detect the activation of microglia. RESULTS A total of five DEGs in migraine related to microglia were obtained from RNA sequencing and panglaodb database. Animal experiments showed that these genes expression were heightened in the TG and medulla oblongata (MO) of migraine rats. The gene S100A8 co-localized with microglia in both TG and MO. The HWTF and FIP experiments demonstrated that interference with S100A8 alleviated the sense of pain in migraine rats. Moreover, the levels of TNFα, IL-1β, IL-6, and CGRP in the TG and MO of rats in the model rats were increased, and the expression of microglia markers IBA-1, M1 polarization markers CD86 and iNOS was upregulated. Significantly, interference with S100A8 reversed these indicators. CONCLUSION Interference with S100A8 in microglia increased the pain threshold during migraine attacks, and inhibited neuroinflammation and microglia activation.
Collapse
Affiliation(s)
- Ning An
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Department of Neurology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yingying Zhang
- Department of Neurology, the forth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinding Xie
- Department of chirurgery, Maternal and Child Health Care Hospital, Mudanjiang, Heilongjiang, China
| | - Jingchao Li
- Department of Neurology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Jing Lin
- Department of Neurology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Qiuyan Li
- Department of Neurology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yating Wang
- Department of Neurology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yang Liu
- Department of Neurology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yindong Yang
- Department of Neurology, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China.
| |
Collapse
|
7
|
Tendilla-Beltrán H, Aguilar-Alonso P, Hernández-González CA, Baltazar-Gaytán E, Orduña AA, Nicolini H, García-Dolores F, Flores G. Dysregulated zinc homeostasis and microadenomas in the anterior pituitary: pathological insights into suicide risk. Front Psychiatry 2024; 15:1446255. [PMID: 39193580 PMCID: PMC11347757 DOI: 10.3389/fpsyt.2024.1446255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Background Suicide is a significant public health problem influenced by various risk factors, including dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis. Zinc (Zn), essential for pituitary function in hormone synthesis and release, has been linked to suicide, with studies noting reduced serum levels and altered brain transport mechanisms. Despite Zn's crucial role in pituitary function and its involvement in suicidal behavior, information on pituitary Zn in suicide is scarce. Tumor cells modify Zn dynamics in tissues, and a previous report suggests microadenomas in the anterior pituitary as a risk factor for suicide. Methods Histopathological analysis with hematoxylin-eosin stain and histochemical techniques to assess Zn homeostasis were carried out on anterior pituitary postmortem samples from 14 suicide completers and 9 non-suicidal cases. Results Pituitary microadenomas were identified in 35% of suicide cases and none in the non-suicidal cases. Furthermore, compartmentalized Zn (detected via dithizone reactivity), but not free Zn levels (detected via zinquin reactivity), was lower in the suicide cases compared to the non-suicidal group. Conclusion This is the first report of a potential association between disrupted Zn homeostasis and microadenomas in the anterior pituitary as a feature in suicide and provides critical insights for future neuroendocrine Zn-related research.
Collapse
Affiliation(s)
- Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Patricia Aguilar-Alonso
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | | | - Eduardo Baltazar-Gaytán
- Facultad de Medicina, Universidad Veracruzana (UV) Región Córdoba – Orizaba, Campus Ciudad Mendoza, Mendoza, Veracruz, Mexico
- Escuela Superior de Medicina, Centro de Estudios Tecnológicos y Universitarios del Golfo, Orizaba, Veracruz, Mexico
| | - Ana A. Orduña
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Humberto Nicolini
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Fernando García-Dolores
- Instituto de Ciencias Forenses (INCIFO), Tribunal Superior de Justicia de la Ciudad de México (TSJCDMX), Mexico City, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| |
Collapse
|
8
|
Shen Z, Bian Y, Huang Y, Zhou W, Chen H, Zhou X, Li L. Migraine and gastroesophageal reflux disease: Disentangling the complex connection with depression as a mediator. PLoS One 2024; 19:e0304370. [PMID: 38990854 PMCID: PMC11239078 DOI: 10.1371/journal.pone.0304370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/10/2024] [Indexed: 07/13/2024] Open
Abstract
OBJECTIVE Gastroesophageal reflux disease (GERD) and migraine are public health concerns worldwide. No observational study has conclusively elucidated the causal relationship between these two conditions. We employed Mendelian randomization (MR) methods to explore the potential causal links between GERD and migraine. METHODS Genome-wide association studies were subjected to MR to infer the causality between GERD and migraine. Bidirectional two-sample MR was performed to establish causal relationships. Multivariable MR analysis was conducted to adjust potential confounding factors, and mediation MR analysis was utilized to assess the role of depression between GERD and migraine as a mediator. We primarily utilized the inverse variance weighted method (IVW) and sensitivity analysis methods, including MR-Egger, weighted median, and leave-one-out methods. We assessed heterogeneity and pleiotropy to ensure the reliability of the results. RESULTS Bidirectional two-sample MR revealed a positive causal effect of GERD on migraine (IVW: OR = 1.49, 95% CI: 1.34-1.66, p = 3.70E-13). Migraine did not increase the risk of GERD (IVW: OR = 1.07, 95% CI: 0.98-1.17, p = 0.1139). Multivariable MR indicated that the positive causal effect of GERD on migraine remained after adjustment for factors, such as smoking, alcohol consumption, obesity, type 2 diabetes, and depression. Mediation MR revealed that depression mediated 28.72% of GERD's effect on migraine. MR analysis was supported by all sensitivity analyses and was replicated and validated in another independent dataset on migraine. CONCLUSION Our findings elucidate the positive causal effect of GERD on migraine and underscores the mediating role of depression in increasing the risk of migraine due to GERD. Effective control of GERD, particularly interventions targeting depression, may aid in preventing the occurrence of migraine. Future research should delve deeper into the specific pathophysiological mechanisms through which GERD affects migraine risk, facilitating the development of more effective drug targets or disease management strategies.
Collapse
Affiliation(s)
- Zixiong Shen
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yewen Bian
- Department of Acupuncture and Physiotherapy, Nantong Third People’s Hospital (Affiliated Nantong Hospital 3 of Nantong University), Nantong, Jiangsu, China
| | - Yao Huang
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenhua Zhou
- Department of Traditional Chinese Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Hao Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xia Zhou
- Department of Traditional Chinese Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Liuying Li
- Department of Traditional Chinese Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
| |
Collapse
|
9
|
Niemeyer CS, Harlander-Locke M, Bubak AN, Rzasa-Lynn R, Birlea M. Trigeminal Postherpetic Neuralgia: From Pathophysiology to Treatment. Curr Pain Headache Rep 2024; 28:295-306. [PMID: 38261232 PMCID: PMC10940365 DOI: 10.1007/s11916-023-01209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 01/24/2024]
Abstract
PURPOSE OF REVIEW Trigeminal postherpetic neuralgia (TG-PHN) is a neuropathic pain condition complicating herpes zoster (HZ) attributed to the trigeminal nerve. It poses significant challenges due to its persistent and debilitating nature. This review explores the clinical characteristics of TG-PHN, analyzes its pathophysiological underpinnings, and addresses existent and potential therapies. RECENT FINDINGS TG-PHN is one of the most common and complex PHN locations. It has distinguishing clinical and pathophysiological characteristics, starting with viral triggered injuries to the trigeminal ganglion (TG) and peripheral tissue and involving the ascending and descending brain modulation pathways. Current therapies include vaccines, oral and topical medications, and interventional approaches, like nerve blocks and neurostimulation. This review covers TG-PHN's clinical and physiological components, treatment options, and potential future targets for improved management. By exploring the complexities of this condition, we aim to contribute to developing more effective and targeted therapies for patients suffering from trigeminal PHN.
Collapse
Affiliation(s)
- Christy S Niemeyer
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael Harlander-Locke
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew N Bubak
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rachael Rzasa-Lynn
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marius Birlea
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
10
|
Kushibiki H, Mizukami H, Osonoi S, Takeuchi Y, Sasaki T, Ogasawara S, Wada K, Midorikawa S, Ryuzaki M, Wang Z, Yamada T, Yamazaki K, Tarusawa T, Tanba T, Mikami T, Matsubara A, Ishibashi Y, Hakamada K, Nakaji S. Tryptophan metabolism and small fibre neuropathy: a correlation study. Brain Commun 2024; 6:fcae103. [PMID: 38618209 PMCID: PMC11010654 DOI: 10.1093/braincomms/fcae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/10/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Small nerve fibres located in the epidermis sense pain. Dysfunction of these fibres decreases the pain threshold known as small fibre neuropathy. Diabetes mellitus is accompanied by metabolic changes other than glucose, synergistically eliciting small fibre neuropathy. These findings suggest that various metabolic changes may be involved in small fibre neuropathy. Herein, we explored the correlation between pain sensation and changes in plasma metabolites in healthy Japanese subjects. The pain threshold evaluated from the intraepidermal electrical stimulation was used to quantify pain sensation in a total of 1021 individuals in the 2017 Iwaki Health Promotion Project. Participants with a pain threshold evaluated from the intraepidermal electrical stimulation index <0.20 mA were categorized into the pain threshold evaluated from the intraepidermal electrical stimulation index-low group (n = 751); otherwise, they were categorized into the pain threshold evaluated from the intraepidermal electrical stimulation index-high group (n = 270). Metabolome analysis of plasma was conducted using capillary electrophoresis time-of-flight mass spectrometry. The metabolite set enrichment analysis revealed that the metabolism of tryptophan was significantly correlated with the pain threshold evaluated from the intraepidermal electrical stimulation index in all participants (P < 0.05). The normalized level of tryptophan was significantly decreased in participants with a high pain threshold evaluated from the intraepidermal electrical stimulation index. In addition to univariate linear regression analyses, the correlation between tryptophan concentration and the pain threshold evaluated from the intraepidermal electrical stimulation index remained significant after adjustment for multiple factors (β = -0.07615, P < 0.05). These findings indicate that specific metabolic changes are involved in the deterioration of pain thresholds. Here, we show that abnormal tryptophan metabolism is significantly correlated with an elevated pain threshold evaluated from the intraepidermal electrical stimulation index in the Japanese population. This correlation provides insight into the pathology and clinical application of small fibre neuropathy.
Collapse
Affiliation(s)
- Hanae Kushibiki
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Yuki Takeuchi
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Takanori Sasaki
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Saori Ogasawara
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Kanichiro Wada
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Shin Midorikawa
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Masaki Ryuzaki
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Zhenchao Wang
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Takahiro Yamada
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Keisuke Yamazaki
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Takefusa Tarusawa
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Taiyo Tanba
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Tatsuya Mikami
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Atsushi Matsubara
- Department of Otorhinolaryngology-Head and Neck Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
11
|
Martos D, Lőrinczi B, Szatmári I, Vécsei L, Tanaka M. The Impact of C-3 Side Chain Modifications on Kynurenic Acid: A Behavioral Analysis of Its Analogs in the Motor Domain. Int J Mol Sci 2024; 25:3394. [PMID: 38542368 PMCID: PMC10970565 DOI: 10.3390/ijms25063394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
The central nervous system (CNS) is the final frontier in drug delivery because of the blood-brain barrier (BBB), which poses significant barriers to the access of most drugs to their targets. Kynurenic acid (KYNA), a tryptophan (Trp) metabolite, plays an important role in behavioral functions, and abnormal KYNA levels have been observed in neuropsychiatric conditions. The current challenge lies in delivering KYNA to the CNS owing to its polar side chain. Recently, C-3 side chain-modified KYNA analogs have been shown to cross the BBB; however, it is unclear whether they retain the biological functions of the parent molecule. This study examined the impact of KYNA analogs, specifically, SZR-72, SZR-104, and the newly developed SZRG-21, on behavior. The analogs were administered intracerebroventricularly (i.c.v.), and their effects on the motor domain were compared with those of KYNA. Specifically, open-field (OF) and rotarod (RR) tests were employed to assess motor activity and skills. SZR-104 increased horizontal exploratory activity in the OF test at a dose of 0.04 μmol/4 μL, while SZR-72 decreased vertical activity at doses of 0.04 and 0.1 μmol/4 μL. In the RR test, however, neither KYNA nor its analogs showed any significant differences in motor skills at either dose. Side chain modification affects affective motor performance and exploratory behavior, as the results show for the first time. In this study, we showed that KYNA analogs alter emotional components such as motor-associated curiosity and emotions. Consequently, drug design necessitates the development of precise strategies to traverse the BBB while paying close attention to modifications in their effects on behavior.
Collapse
Affiliation(s)
- Diána Martos
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry and HUN-REN–SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.)
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and HUN-REN–SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.)
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| |
Collapse
|
12
|
Tanaka M, Vécsei L. From Lab to Life: Exploring Cutting-Edge Models for Neurological and Psychiatric Disorders. Biomedicines 2024; 12:613. [PMID: 38540226 PMCID: PMC10968028 DOI: 10.3390/biomedicines12030613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 11/11/2024] Open
Abstract
Neuroscience, neurology, and psychiatry are rapidly evolving fields that aim to understand the complex mechanisms underlying brain function and dysfunction, as well as to develop effective interventions for various neurological and psychiatric disorders [...].
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
13
|
Tanaka M, Chen C. Editorial: Towards a mechanistic understanding of depression, anxiety, and their comorbidity: perspectives from cognitive neuroscience. Front Behav Neurosci 2023; 17:1268156. [PMID: 37654442 PMCID: PMC10466044 DOI: 10.3389/fnbeh.2023.1268156] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Affiliation(s)
- Masaru Tanaka
- Danube Neuroscience Research Laboratory, ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Szeged, Hungary
| | - Chong Chen
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| |
Collapse
|
14
|
Battaglia MR, Di Fazio C, Battaglia S. Activated Tryptophan-Kynurenine metabolic system in the human brain is associated with learned fear. Front Mol Neurosci 2023; 16:1217090. [PMID: 37575966 PMCID: PMC10416643 DOI: 10.3389/fnmol.2023.1217090] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Affiliation(s)
- Maria Rita Battaglia
- Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola, Bologna, Italy
| | - Chiara Di Fazio
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
| | - Simone Battaglia
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
- Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
15
|
Shi XL, Li LY, Fan ZG. Psychiatrists' occupational stigma conceptualization, measurement, and intervention: A literature review. World J Psychiatry 2023; 13:298-318. [PMID: 37383285 PMCID: PMC10294130 DOI: 10.5498/wjp.v13.i6.298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/05/2023] [Accepted: 05/11/2023] [Indexed: 06/19/2023] Open
Abstract
Psychiatrists require frequent contact with and treatment of patients with mental illnesses. Due to the influence of associative stigma, psychiatrists may also be targets of stigma. Occupational stigma warrants special consideration because it significantly affects psychiatrists' career advancement, well-being, and their patients' health. Given that there is no complete summary of this issue, this study reviewed the existing literature on psychiatrists' occupational stigma to clearly synthesize its concepts, measurement tools, and intervention strategies. Herein, we emphasize that psychiatrists' occupational stigma is a multifaceted concept that simultaneously encompasses physically, socially, and morally tainted aspects. Currently, standardized methods to specifically measure psychiatrists' occupational stigma are lacking. Interventions for psychiatrists' occupational stigma may consider the use of protest, contact, education, comprehensive and systematic methods, as well as the use of psychotherapeutic approaches. This review provides a theoretical basis for the development of relevant measurement tools and intervention practices. Overall, this review seeks to raise public awareness of psychiatrists' occupational stigma, thereby promoting psychiatric professionalism and reducing its stigma.
Collapse
Affiliation(s)
- Xiao-Li Shi
- School of Education, Jilin International Studies University, Changchun 130000, Jilin Province, China
| | - Lu-Yao Li
- School of Education, Jilin International Studies University, Changchun 130000, Jilin Province, China
| | - Zhi-Guang Fan
- School of Education, Jilin International Studies University, Changchun 130000, Jilin Province, China
| |
Collapse
|
16
|
Tanaka M, Diano M, Battaglia S. Editorial: Insights into structural and functional organization of the brain: evidence from neuroimaging and non-invasive brain stimulation techniques. Front Psychiatry 2023; 14:1225755. [PMID: 37377471 PMCID: PMC10291688 DOI: 10.3389/fpsyt.2023.1225755] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Affiliation(s)
- Masaru Tanaka
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Szeged, Hungary
| | - Matteo Diano
- Department of Psychology, University of Turin, Turin, Italy
| | - Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| |
Collapse
|