1
|
Kournoutas I, Siontis BL. Minimal Residual Disease in Metastatic Soft Tissue Sarcoma. Curr Treat Options Oncol 2025; 26:251-259. [PMID: 40072823 DOI: 10.1007/s11864-025-01303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2025] [Indexed: 03/14/2025]
Abstract
OPINION STATEMENT Liquid biopsies represent a promising and minimally invasive approach to diagnosing and monitoring cancer. In recent years, studies across a multitude of solid organ malignancies have suggested the clinical utility of biomarkers such as circulating tumor DNA (ctDNA). Particular attention has been given to serial assessment of such biomarkers in an effort to detect minimal residual disease (MRD), in order to predict which patients may be at highest risk of relapse following curative-intent surgical or medical intervention. Such investigations are particularly relevant to sarcomas, which are highly heterogeneous malignancies and commonly develop treatment resistance. While preliminary research described herein is promising, there remain key barriers to widespread adoption of liquid biopsy in sarcoma, including the lack of standardized detection methods, high cost, and the need for large, prospective studies to validate their clinical utility. Given the high level of interest in liquid biopsy in the biomedical community, it is plausible such obstacles may be overcome in the near future. With such advancements, one can anticipate that liquid biopsies may become a key tool in the sarcoma oncologists armamentarium, and offer a path toward improved outcomes for patients with sarcoma.
Collapse
Affiliation(s)
| | - Brittany L Siontis
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Rani S, Bandyopadhyay-Ghosh S, Ghosh SB. Personalized assessment and monitoring of bone health from sweat: unveiling TEGO doped wearable, non-invasive hydrogel nanocomposite biosensor empowered by IL-6 detection. Biomed Mater 2025; 20:035010. [PMID: 40081006 DOI: 10.1088/1748-605x/adc05a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
Portable biosensing is crucial for rapid detection and continuous monitoring of bone diseases such as osteoporosis and bone cancer. It is well established that such bone disorders or diseases trigger release of inflammatory cytokines including interleukin-6 (IL6), detectable in sweat by electrochemical immunosensors. To this end, this study presents a novel hydrogel nanocomposite based immunosensor with highly conductive dual-layer of thermally exfoliated graphene oxide, toward precise detection and determination of loading level of IL-6 biomarker, and in turn, developing a label-free flexible bone biosensing platform. The immunosensor employed antibody immobilization process, which was further facilitated by the modification of the dual-layer by using 1-pyrenebutyric acid N-hydroxy succinimide ester. A thorough analysis of the effects of surface modification was conducted utilizing spectroscopic, electrochemical, and morphological methods. The biosensor's response was assessed through the utilization of the cyclic voltammetry measurement, which exhibited remarkable selectivity, achieving a low limit of detection of 15.4 pg ml-1across a wide linear range. Additionally, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy were successfully used to validate the sensing substrate in bio-fluidic samples and to understand the structure-property correlation. This innovative portable and flexible biosensor thus offers a practical and effective tool for potential application in continuous monitoring of bone health.
Collapse
Affiliation(s)
- Seema Rani
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC) School of Automobile, Mechanical and Mechatronics Engineering (SAMM), Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Sanchita Bandyopadhyay-Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC) School of Automobile, Mechanical and Mechatronics Engineering (SAMM), Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Subrata Bandhu Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC) School of Automobile, Mechanical and Mechatronics Engineering (SAMM), Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| |
Collapse
|
3
|
Ghufran SM, Brown ML, Beierle EA. Role of exosomes in diagnosis, prognostication, and treatment of pediatric solid tumors. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200930. [PMID: 39895692 PMCID: PMC11783428 DOI: 10.1016/j.omton.2024.200930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Cancer is the second leading cause of death in children, and solid tumors make up 30% of childhood cancers. Molecular profiling of pediatric solid tumors allows a personalized approach to therapy, but this approach mostly relies on surgical biopsy, which is invasive and carries the risk of complications. Liquid biopsy serves as a reliable alternative and a minimally invasive tool for diagnosing, prognosticating, and residual disease monitoring in childhood cancers. This review outlines the potential of exosomes as informative liquid biopsies in pediatric solid tumors. Studies highlighting the potential applications and clinical utility of exosomes and their molecular constituents as prognosticators and therapies in common childhood solid tumors, including neuroblastoma, medulloblastoma, sarcoma, and hepatoblastoma, have been overviewed. We also discuss the limitations and technical challenges of utilizing exosomes for pediatric solid tumors.
Collapse
Affiliation(s)
- Shaikh M. Ghufran
- University of Alabama at Birmingham, Department of Surgery, Division of Pediatric Surgery, Birmingham, AL 35233, USA
| | - Morgan L. Brown
- University of Alabama at Birmingham, Department of Surgery, Division of Pediatric Surgery, Birmingham, AL 35233, USA
| | - Elizabeth A. Beierle
- University of Alabama at Birmingham, Department of Surgery, Division of Pediatric Surgery, Birmingham, AL 35233, USA
| |
Collapse
|
4
|
Saadh MJ, Al-Rihaymee AMA, Kaur M, Kumar A, Mutee AF, Ismaeel GL, Shomurotova S, Alubiady MHS, Hamzah HF, Alhassan ZAA, Alazzawi TS, Muzammil K, Alhadrawi M. Advancements in Exosome Proteins for Breast Cancer Diagnosis and Detection: With a Focus on Nanotechnology. AAPS PharmSciTech 2024; 25:276. [PMID: 39604642 DOI: 10.1208/s12249-024-02983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Breast cancer, a leading cause of mortality among women, has been recognized as requiring improved diagnostic methods. Exosome proteins, found in small extracellular vesicles, have emerged as a promising solution, reflecting the state of their cell of origin and playing key roles in cancer progression. This review examines their potential in breast cancer diagnosis, discussing advanced isolation and characterization techniques such as ultracentrifugation and microfluidic-based approaches. Various detection methods-including electrochemical, nano-based, optical, and machine learning platforms-were evaluated for their high sensitivity, specificity, and non-invasive capabilities. Electrochemical methods were used to identify unique protein signatures for rapid, cost-effective diagnosis, while machine learning enhanced the classification of exosome proteins. Nano-based techniques leveraged nanomaterials to detect low-abundance proteins, and optical methods offered real-time, label-free monitoring. Despite their promise, challenges in standardizing protocols and integrating these diagnostics into clinical practice remain. Future directions include technological advancements, personalized medicine, and exploring the therapeutic potential of exosome proteins.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Afrah Majeed Ahmed Al-Rihaymee
- Anesthesia Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, Babylon, 51001, Iraq
| | - Mandeep Kaur
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, 560069, Karnataka, India
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, 247341, Uttar Pradesh, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | | | - Ghufran Lutfi Ismaeel
- Department of Pharmacology, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | - Shirin Shomurotova
- Department of Chemistry Teaching Methods, Tashkent State Pedagogical University named after Nizami, Bunyodkor street 27, Tashkent, Uzbekistan
| | | | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Tuqa S Alazzawi
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Khamis Mushait Campus, Abha, 62561, Saudi Arabia
| | - Merwa Alhadrawi
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Deng L, Liu Y, Wu Q, Lai S, Yang Q, Mu Y, Dong M. Exosomes to exosome-functionalized scaffolds: a novel approach to stimulate bone regeneration. Stem Cell Res Ther 2024; 15:407. [PMID: 39521993 PMCID: PMC11550564 DOI: 10.1186/s13287-024-04024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Bone regeneration is a complex biological process that relies on the orchestrated interplay of various cellular and molecular events. Bone tissue engineering is currently the most promising method for treating bone regeneration. However, the immunogenicity, stable and cell quantity of seed cells limited their application. Recently, exosomes, which are small extracellular vesicles released by cells, have been found to effectively address these problems and better induce bone regeneration. Meanwhile, a growing line of research has shown the cargos of exosomes may provide effective therapeutic and biomarker tools for bone repair, including miRNA, lncRNA, and proteins. Moreover, engineered scaffolds loaded with exosomes can offer a cell-free bone repair strategy, addressing immunogenicity concerns and providing a more stable functional performance. Herein, we provide a comprehensive summary of the role played by scaffolds loaded with exosomes in bone regeneration, drawing on a systematic analysis of relevant literature available on PubMed, Scopus, and Google Scholar database.
Collapse
Affiliation(s)
- Li Deng
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Yang Liu
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Qian Wu
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Shuang Lai
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qiu Yang
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China
| | - Yandong Mu
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611135, Sichuan, China.
| |
Collapse
|
6
|
Racca L, Liuzzi E, Comparato S, Giordano G, Pignochino Y. Nanoparticles-Delivered Circular RNA Strategy as a Novel Antitumor Approach. Int J Mol Sci 2024; 25:8934. [PMID: 39201617 PMCID: PMC11354327 DOI: 10.3390/ijms25168934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Anticancer therapy urgently needs the development of novel strategies. An innovative molecular target is represented by circular RNAs (circRNAs), single-strand RNA molecules with the 5' and 3' ends joined, characterized by a high stability. Although circRNA properties and biological functions have only been partially elucidated, their relationship and involvement in the onset and progression of cancer have emerged. Specific targeting of circRNAs may be obtained with antisense oligonucleotides and silencing RNAs. Nanotechnology is at the forefront of research for perfecting their delivery. Continuous efforts have been made to develop novel nanoparticles (NPs) and improve their performance, materials, and properties regarding biocompatibility and targeting capabilities. Applications in various fields, from imaging to gene therapy, have been explored. This review sums up the smart strategies developed to directly target circRNAs with the fruitful application of NPs in this context.
Collapse
Affiliation(s)
- Luisa Racca
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (L.R.); (S.C.)
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Università del Piemonte Orientale, 28100 Novara, Italy
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Elisabetta Liuzzi
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| | - Simona Comparato
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (L.R.); (S.C.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| | - Giorgia Giordano
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
- Department of Oncology, University of Turin, 10060 Turin, Italy
| | - Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (L.R.); (S.C.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| |
Collapse
|
7
|
Wang Z, Wang Q, Qin F, Chen J. Exosomes: a promising avenue for cancer diagnosis beyond treatment. Front Cell Dev Biol 2024; 12:1344705. [PMID: 38419843 PMCID: PMC10900531 DOI: 10.3389/fcell.2024.1344705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Exosomes, extracellular vesicles secreted by cells, have garnered significant attention in recent years for their remarkable therapeutic potential. These nanoscale carriers can be harnessed for the targeted delivery of therapeutic agents, such as pharmaceuticals, proteins, and nucleic acids, across biological barriers. This versatile attribute of exosomes is a promising modality for precision medicine applications, notably in the realm of cancer therapy. However, despite their substantial therapeutic potential, exosomes still confront challenges tied to standardization and scalability that impede their practice in clinical applications. Moreover, heterogeneity in isolation methodologies and limited cargo loading mechanisms pose obstacles to ensuring consistent outcomes, thereby constraining their therapeutic utility. In contrast, exosomes exhibit a distinct advantage in cancer diagnosis, as they harbor specific signatures reflective of the tumor's genetic and proteomic profile. This characteristic endows them with the potential to serve as valuable liquid biopsies for non-invasive and real-time monitoring, making possible early cancer detection for the development of personalized treatment strategies. In this review, we provide an extensive evaluation of the advancements in exosome research, critically examining their advantages and limitations in the context of cancer therapy and early diagnosis. Furthermore, we present a curated overview of the most recent technological innovations utilizing exosomes, with a focus on enhancing the efficacy of early cancer detection.
Collapse
Affiliation(s)
- Zhu Wang
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Qin
- School of Basic Medicine, Dali University, Dali, Yunnan, China
| | - Jie Chen
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Ekhator C, Grezenko H, Haider Z, Ali Cheema U, Haider H, Mohsin SN, Affaf M, Bellegarde SB, Amir S, Kumar S, Shehryar A, Arif S, Fareed MU, Rehman A. Beneath the Layers: Deciphering the Molecular Pathways, Therapeutic Avenues, and Neurological Connections of Soft Tissue Sarcomas. Cureus 2023; 15:e44694. [PMID: 37674761 PMCID: PMC10477814 DOI: 10.7759/cureus.44694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/08/2023] Open
Abstract
Soft tissue sarcomas (STSs) are a heterogeneous group of malignancies that have long posed challenges in terms of diagnosis, treatment, and management. This narrative review provides a comprehensive exploration into the multifaceted realm of STS, spanning from its historical origins to the latest advancements in research and clinical care. We delve into the molecular intricacies of STS, highlighting the genetic and epigenetic aberrations that drive these tumors. The review emphasizes the neurological implications of STS, a relatively underexplored area, shedding light on the interplay between tumor biology and neural processes. The evolving therapeutic landscape is discussed, with a focus on the promise of targeted therapies, immunotherapy, and precision medicine. A significant portion is dedicated to the patient-centric approach, underscoring the importance of holistic care that addresses both the physical and psychological needs of STS patients. Furthermore, we highlight the gaps in current research and clinical practices, offering insights into potential avenues for future exploration. This review serves as a valuable resource for clinicians, researchers, and the broader scientific community, encapsulating the current state of STS knowledge and pointing toward future directions in this dynamic field.
Collapse
Affiliation(s)
- Chukwuyem Ekhator
- Neuro-oncology, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, USA
| | - Han Grezenko
- Translational Neuroscience, Barrow Neurological Institute, Phoenix, USA
| | - Zaroon Haider
- Internal Medicine, CMH Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | | | - Haseeb Haider
- Medicine and Surgery, CMH Multan Institute of Medical Sciences, Multan, PAK
| | | | - Maryam Affaf
- Internal Medicine, Women's Medical and Dental college, Abbottabad, PAK
| | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, St. John's, ATG
| | - Saniya Amir
- Accident and Emergency, Liaquat National Hospital and Medical College, Karachi, PAK
| | - Sahil Kumar
- Medicine, Liaquat National Hospital, Karachi, PAK
| | | | - Sidra Arif
- Urology, Jinnah Postgraduate Medical Center, Karachi, PAK
| | | | | |
Collapse
|