1
|
Neag G, Lewis J, Turner JD, Manning JE, Dean I, Finlay M, Poologasundarampillai G, Woods J, Sahu MA, Khan KA, Begum J, McGettrick HM, Bellantuono I, Heath V, Jones SW, Buckley CD, Bicknell R, Naylor AJ. Type-H endothelial cell protein Clec14a orchestrates osteoblast activity during trabecular bone formation and patterning. Commun Biol 2024; 7:1296. [PMID: 39394430 PMCID: PMC11470016 DOI: 10.1038/s42003-024-06971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/26/2024] [Indexed: 10/13/2024] Open
Abstract
Type-H capillary endothelial cells control bone formation during embryogenesis and postnatal growth but few signalling mechanisms underpinning this influence have been characterised. Here, we identify a highly expressed type-H endothelial cell protein, Clec14a, and explore its role in coordinating osteoblast activity. Expression of Clec14a and its ligand, Mmrn2 are high in murine type-H endothelial cells but absent from osteoblasts. Clec14a-/- mice have premature condensation of the type-H vasculature and expanded distribution of osteoblasts and bone matrix, increased long-bone length and bone density indicative of accelerated skeletal development, and enhanced osteoblast maturation. Antibody-mediated blockade of the Clec14a-Mmrn2 interaction recapitulates the Clec14a-/- phenotype. Endothelial cell expression of Clec14a regulates osteoblast maturation and mineralisation activity during postnatal bone development in mice. This finding underscores the importance of type-H capillary control of osteoblast activity in bone formation and identifies a novel mechanism that mediates this vital cellular crosstalk.
Collapse
Affiliation(s)
- Georgiana Neag
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Jonathan Lewis
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Jason D Turner
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Julia E Manning
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Isaac Dean
- School of Medical Sciences, University of Birmingham, Birmingham, UK
| | - Melissa Finlay
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | | | - Jonathan Woods
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Muhammad Arham Sahu
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Kabir A Khan
- School of Medical Sciences, University of Birmingham, Birmingham, UK
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jenefa Begum
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Helen M McGettrick
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Ilaria Bellantuono
- Healthy Lifespan Institute, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Victoria Heath
- School of Medical Sciences, University of Birmingham, Birmingham, UK
| | - Simon W Jones
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Christopher D Buckley
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Roy Bicknell
- School of Medical Sciences, University of Birmingham, Birmingham, UK
| | - Amy J Naylor
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
2
|
Waidi YO, Debnath S, Datta S, Chatterjee K. 3D-Printed Silk Proteins for Bone Tissue Regeneration and Associated Immunomodulation. Biomacromolecules 2024; 25:5512-5540. [PMID: 39133748 DOI: 10.1021/acs.biomac.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Current bone repair methods have limitations, prompting the exploration of innovative approaches. Tissue engineering emerges as a promising solution, leveraging biomaterials to craft scaffolds replicating the natural bone environment, facilitating cell growth and differentiation. Among fabrication techniques, three-dimensional (3D) printing stands out for its ability to tailor intricate scaffolds. Silk proteins (SPs), known for their mechanical strength and biocompatibility, are an excellent choice for engineering 3D-printed bone tissue engineering (BTE) scaffolds. This article comprehensively reviews bone biology, 3D printing, and the unique attributes of SPs, specifically detailing criteria for scaffold fabrication such as composition, structure, mechanics, and cellular responses. It examines the structural, mechanical, and biological attributes of SPs, emphasizing their suitability for BTE. Recent studies on diverse 3D printing approaches using SPs-based for BTE are highlighted, alongside advancements in their 3D and four-dimensional (4D) printing and their role in osteo-immunomodulation. Future directions in the use of SPs for 3D printing in BTE are outlined.
Collapse
Affiliation(s)
- Yusuf Olatunji Waidi
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Sudipto Datta
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Bioengineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| |
Collapse
|
3
|
Guerrero J, Maevskaia E, Ghayor C, Bhattacharya I, Weber FE. Optimizing Filament-Based TCP Scaffold Design for Osteoconduction and Bone Augmentation: Insights from In Vivo Rabbit Models. J Funct Biomater 2024; 15:174. [PMID: 39057296 PMCID: PMC11278252 DOI: 10.3390/jfb15070174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/11/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Additive manufacturing has emerged as a transformative tool in biomedical engineering, offering precise control over scaffold design for bone tissue engineering and regenerative medicine. While much attention has been focused on optimizing pore-based scaffold architectures, filament-based microarchitectures remain relatively understudied, despite the fact that the majority of 3D-printers generate filament-based structures. Here, we investigated the influence of filament characteristics on bone regeneration outcomes using a lithography-based additive manufacturing approach. Three distinct filament-based scaffolds (Fil050, Fil083, and Fil125) identical in macroporosity and transparency, crafted from tri-calcium phosphate (TCP) with varying filament thicknesses and distance, were evaluated in a rabbit model of bone augmentation and non-critical calvarial defect. Additionally, two scaffold types differing in filament directionality (Fil and FilG) were compared to elucidate optimal design parameters. Distance of bone ingrowth and percentage of regenerated area within scaffolds were measured by histomorphometric analysis. Our findings reveal filaments of 0.50 mm as the most effective filament-based scaffold, demonstrating superior bone ingrowth and bony regenerated area compared to larger size filament (i.e., 0.83 mm and 1.25 mm scaffolds). Optimized directionality of filaments can overcome the reduced performance of larger filaments. This study advances our understanding of microarchitecture's role in bone tissue engineering and holds significant implications for clinical practice, paving the way for the development of highly tailored, patient-specific bone substitutes with enhanced efficacy.
Collapse
Affiliation(s)
- Julien Guerrero
- Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zurich, 8032 Zurich, Switzerland
- Center for Surgical Research, University Hospital and University of Zurich, 8032 Zurich, Switzerland
| | - Ekaterina Maevskaia
- Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zurich, 8032 Zurich, Switzerland
- Center for Surgical Research, University Hospital and University of Zurich, 8032 Zurich, Switzerland
| | - Chafik Ghayor
- Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zurich, 8032 Zurich, Switzerland
- Center for Surgical Research, University Hospital and University of Zurich, 8032 Zurich, Switzerland
| | - Indranil Bhattacharya
- Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zurich, 8032 Zurich, Switzerland
- Center for Surgical Research, University Hospital and University of Zurich, 8032 Zurich, Switzerland
| | - Franz E. Weber
- Center of Dental Medicine, Oral Biotechnology & Bioengineering, University of Zurich, 8032 Zurich, Switzerland
- Center for Surgical Research, University Hospital and University of Zurich, 8032 Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
4
|
Kumar Shetty S, Sundar Santhanakrishnan S, Padurao S, Mirazkar Dasharatharao P. Prioritizing Biomaterial Driven Clinical Bioactivity Over Designing Intricacy during Bioprinting of Trabecular Microarchitecture: A Clinician's Perspective. ACS OMEGA 2024; 9:12426-12435. [PMID: 38524444 PMCID: PMC10956407 DOI: 10.1021/acsomega.3c08112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
Bone tissue engineering has witnessed a historical shift from three perspectives. From a biomaterial perspective, materials have now become smarter and dynamic; from a bioengineering perspective the bioprinting techniques have now advanced to 4D bioprinting; and from a clinical perspective scaffold bioactivity has progressed toward enhanced osteoinductive scaffolds driven by intricate biomechanical, biophysical, biochemical, and biological cues. Though all of these advancements are indicative of improvised scaffold engineering, a pivotal question regarding the critical role and need of designing and replicating the intricacies of trabecular microarchitecture for enhanced, clinically appreciable osteoangiogenicity needs to be answered. This review hence critically evaluates the rationale and the need of investing substantial effort into designing complex microarchitectures amidst the era of "smart biomaterials" and dynamic 4D bioprinting aimed toward enhancing clinically appreciable bioactivity. The article explores the concept of integrating intricate designs into a scaffold microarchitecture to bolster bioactivity and the practical challenges encountered in 3D bioprinting of complex designs and meticulously examines the pivotal role of biomaterials in scaffold bioactivity, proposing a comprehensive approach to bioprinting geared toward achieving clinical bioactivity and striking a judicious balance between design intricacy and functional outcomes in bone bioprinting.
Collapse
Affiliation(s)
- Sahith Kumar Shetty
- Department
of Oral and Maxillofacial Surgery, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Shyam Sundar Santhanakrishnan
- Department
of Oral and Maxillofacial Surgery, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Shubha Padurao
- Department
of Material Science, Mangalagangothri Mangalore
University, Konaja 571449, India
| | | |
Collapse
|