1
|
Nam JS, Cho ES, Kwon YR, Park JS, Kim Y. Dynamic Response of Musclin, a Myokine, to Aerobic Exercise and Its Interplay With Natriuretic Peptides and Receptor C. J Clin Endocrinol Metab 2025; 110:1305-1314. [PMID: 38954528 DOI: 10.1210/clinem/dgae450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVES Musclin, recently identified as a myokine, has been recognized for its physiological significance in potentiating the functional properties of natrieutic peptides (NPs) through competitive inhibition of their clearance receptor, natrieutic peptide receptor C (NPR-C). This study, for the first time in the literature, investigated the dynamic response of musclin during and after aerobic exercise in humans, exploring its potential as a myokine and its interaction with NPs and NPR-C in the context of exercise-induced metabolic responses. METHODS Twenty-one inactive young males participated, and we assessed changes in serum levels of musclin, atrial natriuretic peptide (ANP), brain natriuretic peptide, epinephrine, and glycerol as indicative of lipid mobilization, during and after moderate-intensity aerobic exercise. Furthermore, we evaluated the gene expression of NPR-C in subcutaneous fat biopsies. RESULTS Serum musclin levels increased significantly during aerobic exercise, followed by a decline during recovery, remaining elevated compared to baseline. Significant correlations were found between musclin responses and lean body mass (LBM), indicating its regulation by skeletal muscle mass and exercise. Exercise-induced changes in musclin positively correlated with those of ANP, potentially preventing ANP degradation. Additionally, a potential interplay between NPR-C expression and musclin dynamics on ANP was suggested. However, musclin's influence on lipid mobilization was not predominant when considering other lipolytic factors during exercise. DISCUSSION Musclin's classification as a myokine is supported by its response to aerobic exercise and its association with LBM. Additionally, its interactions with NPR-C and NPs suggest its physiological relevance and potential clinical implications.
Collapse
Affiliation(s)
- Ji Sun Nam
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, 03722 Seoul, Republic of Korea
- Division of Endocrinology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 06273 Seoul, Republic of Korea
| | - Eun-Suk Cho
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, 06273 Seoul, Republic of Korea
| | - Yu Rim Kwon
- Department of Physical Education, Yonsei University Graduate School, 03722 Seoul, Republic of Korea
| | - Jong Suk Park
- Division of Endocrinology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 06273 Seoul, Republic of Korea
| | - YuSik Kim
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, 03722 Seoul, Republic of Korea
| |
Collapse
|
2
|
Lee SH, Kim HJ, Kim SW, Lee H, Jung DW, Williams DR. Modulating phosphatase DUSP22 with BML-260 ameliorates skeletal muscle wasting via Akt independent JNK-FOXO3a repression. EMBO Mol Med 2025:10.1038/s44321-025-00234-2. [PMID: 40263624 DOI: 10.1038/s44321-025-00234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/24/2025] Open
Abstract
Skeletal muscle wasting results from numerous conditions, such as sarcopenia, glucocorticoid therapy or intensive care. It prevents independent living in the elderly, predisposes to secondary diseases, and ultimately reduces lifespan. There is no approved drug therapy and the major causative mechanisms are not fully understood. Dual specificity phosphatase 22 (DUSP22) is a pleiotropic signaling molecule that plays important roles in immunity and cancer. However, the role of DUSP22 in skeletal muscle wasting is unknown. In this study, DUSP22 was found to be upregulated in sarcopenia patients and models of skeletal muscle wasting. DUSP22 knockdown or treatment with BML-260 (a small molecule previously reported to target DUSP22) prevented multiple forms of muscle wasting. Mechanistically, targeting DUSP22 suppressed FOXO3a, a master regulator of skeletal muscle wasting, via downregulation of the stress-activated kinase JNK, which occurred independently of aberrant Akt activation. DUSP22 targeting was also effective in human skeletal muscle cells undergoing atrophy. In conclusion, phosphatase DUSP22 is a novel target for preventing skeletal muscle wasting and BML-260 treatment is therapeutically effective. The DUSP22-JNK-FOXO3a axis could be exploited to treat sarcopenia or related aging disorders.
Collapse
Affiliation(s)
- Sang-Hoon Lee
- New Drug Targets Laboratory, Department of Life Sciences, College of Life Sciences and Medical Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyun-Jun Kim
- New Drug Targets Laboratory, Department of Life Sciences, College of Life Sciences and Medical Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Seon-Wook Kim
- New Drug Targets Laboratory, Department of Life Sciences, College of Life Sciences and Medical Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyunju Lee
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Da-Woon Jung
- New Drug Targets Laboratory, Department of Life Sciences, College of Life Sciences and Medical Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| | - Darren Reece Williams
- New Drug Targets Laboratory, Department of Life Sciences, College of Life Sciences and Medical Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
3
|
Sun X, Wang J, Xiao Y, Li D, Wang Q, Guo W, Yang Y. Skeletal muscle-derived musclin attenuates glycolysis, oxidative stress, and pulmonary hypertension through the NPR3/AKT/mTORC1 pathway. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39632658 DOI: 10.3724/abbs.2024214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Exercise ameliorates pulmonary hypertension (PH) progression. However, the underlying mechanisms are largely unclear. Musclin is an exercise-responsive myokine that exerts protective effects on cardiovascular diseases. The current study aims to explore the role of musclin in the development of PH. A monocrotaline (MCT)-induced mouse PH model is established. Adeno-associated virus serotype 6 (AAV6)-mediated gene transfer is used to induce musclin overexpression in skeletal muscle. Ultrasound and morphological analyses are utilized to assess the severity of PH. Cell viability assay, Ki-67 immunofluorescence staining, wound healing assay, and transwell assay are used to evaluate the proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs). We find that the musclin levels in both plasma and skeletal muscle are decreased in MCT-treated mice. The external expression of musclin in skeletal muscle ameliorates pulmonary arterial remodeling and right ventricular dysfunction. In vitro, musclin treatment suppresses hypoxia-induced glycolysis, oxidative stress, proliferation, and migration. Further experiments reveal that musclin inhibits mechanistic target of rapamycin complex 1 (mTORC1) activity in hypoxia-stimulated PASMCs and pulmonary arteries of MCT-treated mice. Reactivating mTORC1 abolishes the protective role of musclin against PH. Additionally, musclin enhances its interaction with natriuretic peptide receptor 3 (NPR3) in PASMCs. Silencing of NPR3 reverses the inhibitory effects of musclin on AKT phosphorylation, mTORC1 activity, glycolysis, oxidative stress, proliferation, and migration in hypoxia-challenged PASMCs. In conclusion, our study highlights the inhibitory role of musclin in the proliferation and migration of PASMCs and PH progression, thereby providing a novel potent therapeutic strategy for treating PH and partly clarifying the mechanism of exercise-mediated protection against PH.
Collapse
Affiliation(s)
- Xiongshan Sun
- Department of Cardiovascular Medicine, the General Hospital of Western Theater Command, Chengdu 610083, China
| | - Jia Wang
- Department of Cardiovascular Medicine, the General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yi Xiao
- Department of Laboratory Medicine, the General Hospital of Western Theater Command, Chengdu 610083, China
| | - De Li
- Department of Cardiovascular Medicine, the General Hospital of Western Theater Command, Chengdu 610083, China
| | - Qiang Wang
- Department of Cardiovascular Medicine, the General Hospital of Western Theater Command, Chengdu 610083, China
| | - Wei Guo
- Department of Pharmacy, Stomatological Hospital of Chongqing Medical University, Chongqing 400015, China
| | - Yongjian Yang
- Department of Cardiovascular Medicine, the General Hospital of Western Theater Command, Chengdu 610083, China
| |
Collapse
|
4
|
Meyer A, Kim N, Nguyen M, Misch M, Marmo K, Dowd J, Will C, Janosevic M, Stephenson EJ. Inactivity-mediated molecular adaptations: Insights from a preclinical model of physical activity reduction. Physiol Rep 2024; 12:e70140. [PMID: 39609254 PMCID: PMC11604346 DOI: 10.14814/phy2.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Insufficient physical activity is associated with increased relative risk of cardiometabolic disease and is an independent risk factor for mortality. Experimentally reducing physical activity rapidly induces insulin resistance, impairs glucose handling, and drives metabolic inflexibility. These adaptations manifest during the early stages of physical inactivity, even when energy balance is maintained, suggesting that inactivity-mediated metabolic reprogramming is an early event that precedes changes in body composition. To identify mechanisms that promote metabolic adaptations associated with physical inactivity, we developed a mouse model of physical activity reduction that permits the study of inactivity in animals prior to the onset of overt changes in body composition. Adult mice were randomized into three groups: an inactive control group (standard rodent housing), an active control group (treadmill running 5 d/week for 6-weeks), and an activity reduction group (treadmill running for 4-weeks, followed by 2-weeks of inactivity). Transcriptional profiling of gastrocnemius muscle identified seven transcripts uniquely altered by physical activity reduction compared to the inactive and active control groups. Most identified transcripts had reported functions linked to bioenergetic adaptation. Future studies will provide deeper characterization of the function(s) of each the identified transcripts while also determining how inactivity affects transcriptional regulation in other tissues.
Collapse
Affiliation(s)
- Alice Meyer
- Department of Anatomy, College of Graduate StudiesMidwestern UniversityDowners GroveIllinoisUSA
| | - Nicole Kim
- Chicago College of Osteopathic MedicineMidwestern UniversityDowners GroveIllinoisUSA
| | - Melissa Nguyen
- Department of Biomedical Science, College of Graduate StudiesMidwestern UniversityDowners GroveIllinoisUSA
| | - Monica Misch
- Chicago College of Osteopathic MedicineMidwestern UniversityDowners GroveIllinoisUSA
| | - Kevin Marmo
- Chicago College of Osteopathic MedicineMidwestern UniversityDowners GroveIllinoisUSA
| | - Jacob Dowd
- Department of Biomedical Science, College of Graduate StudiesMidwestern UniversityDowners GroveIllinoisUSA
| | - Christian Will
- Chicago College of Osteopathic MedicineMidwestern UniversityDowners GroveIllinoisUSA
| | - Milica Janosevic
- Chicago College of Osteopathic MedicineMidwestern UniversityDowners GroveIllinoisUSA
| | - Erin J. Stephenson
- Department of Anatomy, College of Graduate StudiesMidwestern UniversityDowners GroveIllinoisUSA
- Chicago College of Osteopathic MedicineMidwestern UniversityDowners GroveIllinoisUSA
- Physical Therapy Program, College of Health SciencesMidwestern UniversityDowners GroveIllinoisUSA
- Physician Assistant Program, College of Health SciencesMidwestern UniversityDowners GroveIllinoisUSA
- College of Dental Medicine IllinoisMidwestern UniversityDowners GroveIllinoisUSA
| |
Collapse
|
5
|
Zhang H, Zhang Y, Zhang J, Jia D. Exercise Alleviates Cardiovascular Diseases by Improving Mitochondrial Homeostasis. J Am Heart Assoc 2024; 13:e036555. [PMID: 39291488 DOI: 10.1161/jaha.124.036555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Engaging in regular exercise and physical activity contributes to delaying the onset of cardiovascular diseases (CVDs). However, the physiological mechanisms underlying the benefits of regular exercise or physical activity in CVDs remain unclear. The disruption of mitochondrial homeostasis is implicated in the pathological process of CVDs. Exercise training effectively delays the onset and progression of CVDs by significantly ameliorating the disruption of mitochondrial homeostasis. This includes improving mitochondrial biogenesis, increasing mitochondrial fusion, decreasing mitochondrial fission, promoting mitophagy, and mitigating mitochondrial morphology and function. This review provides a comprehensive overview of the benefits of physical exercise in the context of CVDs, establishing a connection between the disruption of mitochondrial homeostasis and the onset of these conditions. Through a detailed examination of the underlying molecular mechanisms within mitochondria, the study illuminates how exercise can provide innovative perspectives for future therapies for CVDs.
Collapse
Affiliation(s)
- Huijie Zhang
- School of Exercise and health Shanghai University of Sport Shanghai China
| | - Yuxuan Zhang
- School of Exercise and health Shanghai University of Sport Shanghai China
| | - Jiaqiao Zhang
- School of Exercise and health Shanghai University of Sport Shanghai China
| | - Dandan Jia
- School of Exercise and health Shanghai University of Sport Shanghai China
| |
Collapse
|
6
|
Dickinson YA, Moyes AJ, Hobbs AJ. C-type natriuretic peptide (CNP): The cardiovascular system and beyond. Pharmacol Ther 2024; 262:108708. [PMID: 39154787 DOI: 10.1016/j.pharmthera.2024.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
C-type natriuretic peptide (CNP) represents the 'local' member of the natriuretic peptide family, functioning in an autocrine or paracrine capacity to modulate a hugely diverse portfolio of physiological processes. Whilst the best-characterised of these regulatory roles are in the cardiovascular system, akin to its predominantly endocrine siblings atrial (ANP) and brain (BNP) natriuretic peptides, CNP governs many additional, unrelated mechanisms including bone growth, gamete maturation, auditory processing, and neuronal integrity. Furthermore, there is currently great interest in mimicking the biological activity of CNP for therapeutic gain in many of these disparate organ systems. Herein, we provide an overview of the physiology, pathophysiology and pharmacology of CNP in both cardiovascular and non-cardiovascular settings.
Collapse
Affiliation(s)
- Yasmin A Dickinson
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Amie J Moyes
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
7
|
Potter LR. Phosphorylation-Dependent Regulation of Guanylyl Cyclase (GC)-A and Other Membrane GC Receptors. Endocr Rev 2024; 45:755-771. [PMID: 38713083 PMCID: PMC11405504 DOI: 10.1210/endrev/bnae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/07/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Receptor guanylyl cyclases (GCs) are single membrane spanning, multidomain enzymes, that synthesize cGMP in response to natriuretic peptides or other ligands. They are evolutionarily conserved from sea urchins to humans and regulate diverse physiologies. Most family members are phosphorylated on 4 to 7 conserved serines or threonines at the beginning of their kinase homology domains. This review describes studies that demonstrate that phosphorylation and dephosphorylation are required for activation and inactivation of these enzymes, respectively. Phosphorylation sites in GC-A, GC-B, GC-E, and sea urchin receptors are discussed, as are mutant receptors that mimic the dephosphorylated inactive or phosphorylated active forms of GC-A and GC-B, respectively. A salt bridge model is described that explains why phosphorylation is required for enzyme activation. Potential kinases, phosphatases, and ATP regulation of GC receptors are also discussed. Critically, knock-in mice with glutamate substitutions for receptor phosphorylation sites are described. The inability of opposing signaling pathways to inhibit cGMP synthesis in mice where GC-A or GC-B cannot be dephosphorylated demonstrates the necessity of receptor dephosphorylation in vivo. Cardiac hypertrophy, oocyte meiosis, long-bone growth/achondroplasia, and bone density are regulated by GC phosphorylation, but additional processes are likely to be identified in the future.
Collapse
Affiliation(s)
- Lincoln R Potter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Shahzadi I, Zwanenburg A, Frohwein LJ, Schramm D, Meyer HJ, Hinnerichs M, Moenninghoff C, Niehoff JH, Kroeger JR, Borggrefe J, Surov A. Short-term mortality prediction in acute pulmonary embolism: Radiomics values of skeletal muscle and intramuscular adipose tissue. J Cachexia Sarcopenia Muscle 2024; 15:1430-1440. [PMID: 38859660 PMCID: PMC11294025 DOI: 10.1002/jcsm.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Acute pulmonary embolism (APE) is a potentially life-threatening disorder, emphasizing the importance of accurate risk stratification and survival prognosis. The exploration of imaging biomarkers that can reflect patient survival holds the potential to further enhance the stratification of APE patients, enabling personalized treatment and early intervention. Therefore, in this study, we develop computed tomography pulmonary angiography (CTPA) radiomic signatures for the prognosis of 7- and 30-day all-cause mortality in patients with APE. METHODS Diagnostic CTPA images from 829 patients with APE were collected. Two hundred thirty-four features from each skeletal muscle (SM), intramuscular adipose tissue (IMAT) and both tissues combined (SM + IMAT) were calculated at the level of thoracic vertebra 12. Radiomic signatures were derived using 10 times repeated three-fold cross-validation on the training data for SM, IMAT and SM + IMAT for predicting 7- and 30-day mortality independently. The performance of the radiomic signatures was then evaluated on held-out test data and compared with the simplified pulmonary embolism severity index (sPESI) score, a well-established biomarker for risk stratification in APE. Predictive accuracy was assessed by the area under the receiver operating characteristic curve (AUC) with a 95% confidence interval (CI), sensitivity and specificity. RESULTS The radiomic signatures based on IMAT and a combination of SM and IMAT (SM + IMAT) achieved moderate performance for the prediction of 30-day mortality on test data (IMAT: AUC = 0.68, 95% CI [0.57-0.78], sensitivity = 0.57, specificity = 0.73; SM + IMAT: AUC = 0.70, 95% CI [0.60-0.79], sensitivity = 0.74, specificity = 0.54). Radiomic signatures developed for predicting 7-day all-cause mortality showed overall low performance. The clinical signature, that is, sPESI, achieved slightly better performance in terms of AUC on test data compared with the radiomic signatures for the prediction of both 7- and 30-day mortality on the test data (7 days: AUC = 0.73, 95% CI [0.67-0.79], sensitivity = 0.92, specificity = 0.16; 30 days: AUC = 0.74, 95% CI [0.66-0.82], sensitivity = 0.97, specificity = 0.16). CONCLUSIONS We developed and tested radiomic signatures for predicting 7- and 30-day all-cause mortality in APE using a multicentric retrospective dataset. The present multicentre work shows that radiomics parameters extracted from SM and IMAT can predict 30-day all-cause mortality in patients with APE.
Collapse
Affiliation(s)
- Iram Shahzadi
- Department of Radiology, Neuroradiology and Nuclear MedicineJohannes Wesling University Hospital, Ruhr University BochumBochumGermany
- Siemens Healthineers GmbHErlangenGermany
| | - Alex Zwanenburg
- OncoRay‐National Center for Radiation Research in Oncology, Faculty of Medicine, and University Hospital Carl Gustav CarusTechnische Universität Dresden, Helmholtz‐Zentrum Dresden‐RossendorfDresdenGermany
- National Center for Tumor Diseases (NCT), Partner Site DresdenDresdenGermany
| | | | | | | | | | - Christoph Moenninghoff
- Department of Radiology, Neuroradiology and Nuclear MedicineJohannes Wesling University Hospital, Ruhr University BochumBochumGermany
| | - Julius Henning Niehoff
- Department of Radiology, Neuroradiology and Nuclear MedicineJohannes Wesling University Hospital, Ruhr University BochumBochumGermany
| | - Jan Robert Kroeger
- Department of Radiology, Neuroradiology and Nuclear MedicineJohannes Wesling University Hospital, Ruhr University BochumBochumGermany
| | - Jan Borggrefe
- Department of Radiology, Neuroradiology and Nuclear MedicineJohannes Wesling University Hospital, Ruhr University BochumBochumGermany
| | - Alexey Surov
- Department of Radiology, Neuroradiology and Nuclear MedicineJohannes Wesling University Hospital, Ruhr University BochumBochumGermany
| |
Collapse
|
9
|
Scott NJA, Prickett TCR, Charles CJ, Espiner EA, Richards AM, Rademaker MT. Haemodynamic, hormonal and renal actions of osteocrin in normal sheep. Exp Physiol 2024; 109:1305-1316. [PMID: 38890799 PMCID: PMC11291853 DOI: 10.1113/ep091826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Osteocrin (OSTN) is an endogenous protein sharing structural similarities with the natriuretic peptides [NPs; atrial (ANP), B-type (BNP) and C-type (CNP) NP], which are hormones known for their crucial role in maintaining pressure/volume homeostasis. Osteocrin competes with the NPs for binding to the receptor involved in their clearance (NPR-C). In the present study, having identified, for the first time, the major circulating form of OSTN in human and ovine plasma, we examined the integrated haemodynamic, endocrine and renal effects of vehicle-controlled incremental infusions of ovine proOSTN (83-133) and its metabolism in eight conscious normal sheep. Incremental i.v. doses of OSTN produced stepwise increases in circulating concentrations of the peptide, and its metabolic clearance rate was inversely proportional to the dose. Osteocrin increased plasma levels of ANP, BNP and CNP in a dose-dependent manner, together with concentrations of their intracellular second messenger, cGMP. Increases in plasma cGMP were associated with progressive reductions in arterial pressure and central venous pressure. Plasma cAMP, renin and aldosterone were unchanged. Despite significant increases in urinary cGMP levels, OSTN administration was not associated with natriuresis or diuresis in normal sheep. These results support OSTN as an endogenous ligand for NPR-C in regulating plasma concentrations of NPs and associated cGMP-mediated bioactivity. Collectively, our findings support a role for OSTN in maintaining cardiovascular homeostasis.
Collapse
Affiliation(s)
- Nicola J. A. Scott
- Department of Medicine, Christchurch Heart InstituteUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Timothy C. R. Prickett
- Department of Medicine, Christchurch Heart InstituteUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Christopher J. Charles
- Department of Medicine, Christchurch Heart InstituteUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Eric A. Espiner
- Department of Medicine, Christchurch Heart InstituteUniversity of Otago ChristchurchChristchurchNew Zealand
| | - A. Mark Richards
- Department of Medicine, Christchurch Heart InstituteUniversity of Otago ChristchurchChristchurchNew Zealand
- Cardiovascular Research Institute, National University Health SystemsCentre for Translational MedicineSingaporeSingapore
| | - Miriam T. Rademaker
- Department of Medicine, Christchurch Heart InstituteUniversity of Otago ChristchurchChristchurchNew Zealand
| |
Collapse
|
10
|
Berezin OO, Berezina TA, Hoppe UC, Lichtenauer M, Berezin AE. Diagnostic and predictive abilities of myokines in patients with heart failure. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:45-98. [PMID: 39059994 DOI: 10.1016/bs.apcsb.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Myokines are defined as a heterogenic group of numerous cytokines, peptides and metabolic derivates, which are expressed, synthesized, produced, and released by skeletal myocytes and myocardial cells and exert either auto- and paracrine, or endocrine effects. Previous studies revealed that myokines play a pivotal role in mutual communications between skeletal muscles, myocardium and remote organs, such as brain, vasculature, bone, liver, pancreas, white adipose tissue, gut, and skin. Despite several myokines exert complete divorced biological effects mainly in regulation of skeletal muscle hypertrophy, residential cells differentiation, neovascularization/angiogenesis, vascular integrity, endothelial function, inflammation and apoptosis/necrosis, attenuating ischemia/hypoxia and tissue protection, tumor growth and malignance, for other occasions, their predominant effects affect energy homeostasis, glucose and lipid metabolism, adiposity, muscle training adaptation and food behavior. Last decade had been identified 250 more myokines, which have been investigating for many years further as either biomarkers or targets for heart failure management. However, only few myokines have been allocated to a promising tool for monitoring adverse cardiac remodeling, ischemia/hypoxia-related target-organ dysfunction, microvascular inflammation, sarcopenia/myopathy and prediction for poor clinical outcomes among patients with HF. This we concentrate on some most plausible myokines, such as myostatin, myonectin, brain-derived neurotrophic factor, muslin, fibroblast growth factor 21, irisin, leukemia inhibitory factor, developmental endothelial locus-1, interleukin-6, nerve growth factor and insulin-like growth factor-1, which are suggested to be useful biomarkers for HF development and progression.
Collapse
Affiliation(s)
- Oleksandr O Berezin
- Luzerner Psychiatrie AG, Department of Senior Psychiatrie, St. Urban, Switzerland
| | - Tetiana A Berezina
- Department of Internal Medicine and Nephrology, VitaCenter, Zaporozhye, Ukraine
| | - Uta C Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Alexander E Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
11
|
Jin L, Diaz-Canestro C, Wang Y, Tse MA, Xu A. Exerkines and cardiometabolic benefits of exercise: from bench to clinic. EMBO Mol Med 2024; 16:432-444. [PMID: 38321233 PMCID: PMC10940599 DOI: 10.1038/s44321-024-00027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Regular exercise has both immediate and long-lasting benefits on cardiometabolic health, and has been recommended as a cornerstone of treatment in the management of diabetes and cardiovascular conditions. Exerkines, which are defined as humoral factors responsive to acute or chronic exercise, have emerged as important players conferring some of the multiple cardiometabolic benefits of exercise. Over the past decades, hundreds of exerkines released from skeletal muscle, heart, liver, adipose tissue, brain, and gut have been identified, and several exerkines (such as FGF21, IL-6, and adiponectin) have been exploited therapeutically as exercise mimetics for the treatment of various metabolic and cardiovascular diseases. Recent advances in metagenomics have led to the identification of gut microbiota, a so-called "hidden" metabolic organ, as an additional class of exerkines determining the efficacy of exercise in diabetes prevention, cardiac protection, and exercise performance. Furthermore, multiomics-based studies have shown the feasibility of using baseline exerkine signatures to predict individual responses to exercise with respect to metabolic and cardiorespiratory health. This review aims to explore the molecular pathways whereby exerkine networks mediate the cardiometabolic adaptations to exercise by fine-tuning inter-organ crosstalk, and discuss the roadmaps for translating exerkine-based discovery into the therapeutic application and personalized medicine in the management of the cardiometabolic disease.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Candela Diaz-Canestro
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Michael Andrew Tse
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Centre for Sports and Exercise, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Ataka K, Asakawa A, Iwai H, Kato I. Musclin prevents depression-like behavior in male mice by activating urocortin 2 signaling in the hypothalamus. Front Endocrinol (Lausanne) 2023; 14:1288282. [PMID: 38116320 PMCID: PMC10728487 DOI: 10.3389/fendo.2023.1288282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction Physical activity is recommended as an alternative treatment for depression. Myokines, which are secreted from skeletal muscles during physical activity, play an important role in the skeletal muscle-brain axis. Musclin, a newly discovered myokine, exerts physical endurance, however, the effects of musclin on emotional behaviors, such as depression, have not been evaluated. This study aimed to access the anti-depressive effect of musclin and clarify the connection between depression-like behavior and hypothalamic neuropeptides in mice. Methods We measured the immobility time in the forced swim (FS) test, the time spent in open arm in the elevated-plus maze (EPM) test, the mRNA levels of hypothalamic neuropeptides, and enumerated the c-Fos-positive cells in the paraventricular nucleus (PVN), arcuate nucleus (ARC), and nucleus tractus solitarii (NTS) in mice with the intraperitoneal (i.p.) administration of musclin. Next, we evaluated the effects of a selective corticotropin-releasing factor (CRF) type 1 receptor antagonist, selective CRF type 2 receptor antagonist, melanocortin receptor (MCR) agonist, and selective melanocortin 4 receptor (MC4R) agonist on changes in behaviors induced by musclin. Finally we evaluated the antidepressant effect of musclin using mice exposed to repeated water immersion (WI) stress. Results We found that the i.p. and i.c.v. administration of musclin decreased the immobility time and relative time in the open arms (open %) in mice and increased urocortin 2 (Ucn 2) levels but decreased proopiomelanocortin levels in the hypothalamus. The numbers of c-Fos-positive cells were increased in the PVN and NTS but decreased in the ARC of mice with i.p. administration of musclin. The c-Fos-positive cells in the PVN were also found to be Ucn 2-positive. The antidepressant and anxiogenic effects of musclin were blocked by central administration of a CRF type 2 receptor antagonist and a melanocortin 4 receptor agonist, respectively. Peripheral administration of musclin also prevented depression-like behavior and the decrease in levels of hypothalamic Ucn 2 induced by repeated WI stress. Discussion These data identify the antidepressant effects of musclin through the activation of central Ucn 2 signaling and suggest that musclin and Ucn 2 can be new therapeutic targets and endogenous peptides mediating the muscle-brain axis.
Collapse
Affiliation(s)
- Koji Ataka
- Laboratory of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ikuo Kato
- Laboratory of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|