1
|
Saeedi P, Nilchiani LS, Zand B, Hajimirghasemi M, Halabian R. An overview of stem cells and cell products involved in trauma injury. Regen Ther 2025; 29:60-76. [PMID: 40143930 PMCID: PMC11938091 DOI: 10.1016/j.reth.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/01/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Trauma injuries represent a significant public health burden worldwide, often leading to long-term disability and reduced quality of life. This review provides a comprehensive overview of the therapeutic potential of stem cells and cell products for traumatic injuries. The extraordinary characteristics of stem cells, such as self-renewal and transdifferentiation, make them definitive candidates for tissue regeneration. Mesenchymal stem cells (MSCs), neural stem cells (NSCs), and hematopoietic stem cells (HSCs) have been tested in preclinical studies for treating distinct traumatic injuries. Stem cell mechanisms of action are addressed through paracrine signaling, immunomodulation, differentiation, and neuroprotection. Cell products such as conditioned media, exosomes, and secretomes offer cell-free resources, thereby avoiding the risks of live cell transplantation. Clinical trials have reported many effective outcomes; however, variability exists across trauma types. Some challenges include tumorigenicity, standardized protocols, and regulatory issues. Collaboration and interdisciplinary research are being conducted to harness stem cells and products for trauma treatment. This emerging field is promising for improving patient recovery and quality of life after traumatic injuries.
Collapse
Affiliation(s)
- Pardis Saeedi
- Research Center for Health Management in Mass Gathering, Red Crescent Society of the Islamic Republic of Iran, Tehran, Iran
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Leila Sadat Nilchiani
- Department of Molecular and Cell Biology, Faculty of Advanced Sciences and Technology, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | - Bita Zand
- Department of Molecular and Cell Biology, Faculty of Advanced Sciences and Technology, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | - Maryam Hajimirghasemi
- Department of Internal Medicine, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Li C, Meng X, Li S, Wang C. Therapeutic Advances in Peripheral Nerve Injuries: Nerve-Guided Conduit and Beyond. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 40195945 DOI: 10.1089/ten.teb.2024.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Peripheral nerve injury (PNI), a challenging neurosurgery issue, often leads to partial or complete loss of neuronal functions and even neuropathic pain. Thus far, the gold standard for treating peripheral nerve deficit remains autografts. While numerous reviews have explored PNI and regeneration, this work distinctively synthesizes recent advancements in tissue engineering-particularly four-dimensional (4D) bioprinting and exosome therapies-with an emphasis on their clinical translation. By consolidating findings spanning molecular mechanisms to therapeutic applications, this review proposes an actionable framework for advancing experimental strategies toward clinically viable solutions. Our work critically evaluates emerging innovations such as dynamically adaptive 4D-printed nerve conduits and exosome-based therapies, underscoring their potential to match conventional autografts in achieving functional restoration. Impact Statement Although several previous reviews have been made on describing with great detail the degenerative and regenerative mechanisms of the peripheral nervous systems, as well as the several existing and exploratory treatment strategies, we focus more on the latest advancements of each of those topics.
Collapse
Affiliation(s)
- Changqing Li
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xianyu Meng
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shengji Li
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengjing Wang
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Song S, Li C, Xiao Y, Ye Z, Rong M, Zeng J. Beyond conventional therapies: MSCs in the battle against nerve injury. Regen Ther 2025; 28:280-291. [PMID: 39896446 PMCID: PMC11782851 DOI: 10.1016/j.reth.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Nerve damage can cause abnormal motor and sensory consequences, including lifelong paralysis if not surgically restored. The yearly cost of healthcare in the United States is projected to be $150 billion, and millions of Americans suffer from peripheral nerve injuries as a result of severe traumas and disorders. For nerve injuries, the outcome of conventional therapies is suboptimal and may have unfavorable side effects. However, mesenchymal stem cells (MSCs) have been proven to be a viable option for the reconstruction of injured nerve tissue and bring a ray of hope. These stem cells are derived from bone marrow, adipose tissue, and human umbilical cord blood and have the ability to secrete trophic factors, contribute to the immune system, and stimulate axonal regeneration. The purpose of this review is to examine the potential benefits of MSCs for enhancing functional recovery and patient prognosis by highlighting their characteristics and elucidating their mechanism of action in nerve injury healing.
Collapse
Affiliation(s)
- Shuo Song
- Central Laboratory, The Fourth People's Hospital of Shenzhen, Shenzhen 518118, China
| | - Cong Li
- Department of Stomatology, Dongguan Key Laboratory of Metabolic Immunology and Oral Diseases, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Ya Xiao
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Xinghai Institute of Cell, Guangdong Xianhua Institute for Medical Research, Dongguan 523808, Guangdong, China
| | - Mingdeng Rong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Jincheng Zeng
- Department of Stomatology, Dongguan Key Laboratory of Metabolic Immunology and Oral Diseases, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Xinghai Institute of Cell, Guangdong Xianhua Institute for Medical Research, Dongguan 523808, Guangdong, China
| |
Collapse
|
4
|
Chang J, Yin XM, Zhang M, Liu JW, Zhao L. Bridging bioengineering and nanotechnology: Bone marrow derived mesenchymal stem cell-exosome solutions for peripheral nerve injury. World J Stem Cells 2025; 17:101161. [PMID: 39866899 PMCID: PMC11752453 DOI: 10.4252/wjsc.v17.i1.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/22/2024] [Accepted: 12/13/2024] [Indexed: 01/20/2025] Open
Abstract
Peripheral nerve injury (PNI) is a common disease that is difficult to nerve regeneration with current therapies. Fortunately, Zou et al demonstrated the role and mechanism of bone marrow derived mesenchymal stem cells (BMSCs) in promoting nerve regeneration, revealing broad prospects for BMSCs transplantation in alleviating PNI. We confirmed the fact that BMSCs significantly alleviate PNI, but there are shortcomings such as low cell survival rate and immune rejection, which limit the wide application of BMSCs. BMSCs-derived exosomes (Exos) are considered as a promising cell-free nanomedicine for PNI, avoiding the ethical issues of BMSCs. Exos in combination with bioengineering therapeutics (including extracellular matrix, hydrogel) brings new hope for PNI, provides a favorable microenvironment for neurological restoration and a therapeutic strategy with a favorable safety profile, significantly increases expression of neurotrophic factors, promotes axonal and myelin regeneration, and demonstrates a strong potential to enhance neurogenesis. Therefore, engineered Exos exhibit better properties, such as stronger targeting and more beneficial components. This article briefly describes the role of nanotechnology and bioengineering therapies for BMSCs in PNI, proposes clinical application prospects and challenges of nanotechnology and bioengineering BMSCs-derived Exos in PNI to improve the efficacy of BMSCs in the treatment of PNI.
Collapse
Affiliation(s)
- Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xiu-Mei Yin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Man Zhang
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jian-Wei Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
5
|
Dean J, Hoch C, Wollenberg B, Navidzadeh J, Maheta B, Mandava A, Knoedler S, Sherwani K, Baecher H, Schmitz A, Alfertshofer M, Heiland M, Kreutzer K, Koerdt S, Knoedler L. Advancements in bioengineered and autologous skin grafting techniques for skin reconstruction: a comprehensive review. Front Bioeng Biotechnol 2025; 12:1461328. [PMID: 39840132 PMCID: PMC11747595 DOI: 10.3389/fbioe.2024.1461328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/03/2024] [Indexed: 01/23/2025] Open
Abstract
The reconstruction of complex skin defects challenges clinical practice, with autologous skin grafts (ASGs) as the traditional choice due to their high graft take rate and patient compatibility. However, ASGs have limitations such as donor site morbidity, limited tissue availability, and the necessity for multiple surgeries in severe cases. Bioengineered skin grafts (BSGs) aim to address these drawbacks through advanced tissue engineering and biomaterial science. This study conducts a systematic review to describe the benefits and shortcomings of BSGs and ASGs across wound healing efficacy, tissue integration, immunogenicity, and functional outcomes focusing on wound re-epithelialization, graft survival, and overall aesthetic outcomes. Preliminary findings suggest ASGs show superior early results, while BSGs demonstrate comparable long-term outcomes with reduced donor site morbidity. This comparative analysis enhances understanding of bioengineered alternatives in skin reconstruction, potentially redefining best practices based on efficacy, safety, and patient-centric outcomes, highlighting the need for further innovation in bioengineered solutions.
Collapse
Affiliation(s)
- Jillian Dean
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cosima Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Justin Navidzadeh
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bhagvat Maheta
- California Northstate University College of Medicine, Elk Grove, CA, United States
| | - Anisha Mandava
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samuel Knoedler
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Khalil Sherwani
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Helena Baecher
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Alina Schmitz
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Michael Alfertshofer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Max Heiland
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Kilian Kreutzer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Steffen Koerdt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Leonard Knoedler
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| |
Collapse
|
6
|
Pai V, Singh BN, Singh AK. Insights into Advances and Applications of Biomaterials for Nerve Tissue Injuries and Neurodegenerative Disorders. Macromol Biosci 2024; 24:e2400150. [PMID: 39348168 DOI: 10.1002/mabi.202400150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/12/2024] [Indexed: 10/01/2024]
Abstract
The incidence of nerve tissue injuries, such as peripheral nerve injury, spinal cord injury, traumatic brain injury, and various neurodegenerative diseases (NDs), is continuously increasing because of stress, physical and chemical trauma, and the aging population worldwide. Restoration of the damaged nervous system is challenging because of its structural and functional complexity and limited regenerative ability. Additionally, there is no cure available for NDs except for medications that provide symptomatic relief. Stem cells offer an alternative approach for promoting damage repair, but their efficacy is limited by a compromised survival rate and neurogenesis process. To address these challenges, neural tissue engineering has emerged as a promising strategy in which stem cells are seeded or encapsulated within a suitable biomaterial construct, increasing cell survival and neurogenesis. Numerous biomaterials are utilized to create different types of constructs for this purpose. Researchers are trying to develop ideal scaffolds that combine biomaterials, cells, and molecules that exactly mimic the biological and mechanical properties of the tissue to achieve functional recovery associated with neurological dysfunction. This review focuses on exploring the development and applications of different biomaterials for their potential use in the diagnosis, therapy, nerve tissue regeneration, and treatment of neurological disorders.
Collapse
Affiliation(s)
- Varsha Pai
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| | - Bhisham Narayan Singh
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| |
Collapse
|
7
|
Aisaiti A, Aierxiding S, Shoukeer K, Muheremu A. Mesenchymal stem cells for peripheral nerve injury and regeneration: a bibliometric and visualization study. Front Neurol 2024; 15:1420402. [PMID: 39161869 PMCID: PMC11330774 DOI: 10.3389/fneur.2024.1420402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/10/2024] [Indexed: 08/21/2024] Open
Abstract
Objective To use bibliometric methods to analyze the research hotspots and future development trends regarding the application of mesenchymal stem cells in peripheral nerve injury and regeneration. Methods Articles published from January 1, 2013, to December 31, 2023, were meticulously screened using the MeSH terms: TS = ("Mesenchymal stem cells" AND "Peripheral nerve injury") OR TS = ("Mesenchymal stem cells" AND "Peripheral nerve regeneration") within the Web of Science database. The compiled data was then subjected to in-depth analysis with the aid of VOSviewer and Cite Space software, which facilitated the identification of the most productive countries, organizations, authors, and the predominant keywords prevalent within this research domain. Results An extensive search of the Web of Science database yielded 350 relevant publications. These scholarly works were authored by 2,049 collaborative researchers representing 41 countries and affiliated with 585 diverse academic and research institutions. The findings from this research were disseminated across 167 various journals, and the publications collectively cited 21,064 references from 3,339 distinct journals. Conclusion Over the past decade, there has been a consistent upward trajectory in the number of publications and citations pertaining to the use of mesenchymal stem cells in the realm of peripheral nerve injury and regeneration. The domain of stem cell therapy for nerve injury has emerged as a prime focus of research, with mesenchymal stem cell therapy taking center stage due to its considerable promise in the treatment of nerve injuries. This therapeutic approach holds the potential to significantly enhance treatment options and rehabilitation prospects for patients suffering from such injuries.
Collapse
Affiliation(s)
- Aikebaierjiang Aisaiti
- Key Laboratory of Orthopedic Regenerative Medicine, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Shalayiding Aierxiding
- Key Laboratory of Orthopedic Regenerative Medicine, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Kutiluke Shoukeer
- Key Laboratory of Orthopedic Regenerative Medicine, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Aikeremujiang Muheremu
- Key Laboratory of Orthopedic Regenerative Medicine, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
- Beijing Darwin Cell Biotechnology Co., Ltd., Beijing, China
| |
Collapse
|
8
|
Kong J, Teng C, Liu F, Wang X, Zhou Y, Zong Y, Wan Z, Qin J, Yu B, Mi D, Wang Y. Enhancing regeneration and repair of long-distance peripheral nerve defect injuries with continuous microcurrent electrical nerve stimulation. Front Neurosci 2024; 18:1361590. [PMID: 38406586 PMCID: PMC10885699 DOI: 10.3389/fnins.2024.1361590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Peripheral nerve injuries, especially those involving long-distance deficits, pose significant challenges in clinical repair. This study explores the potential of continuous microcurrent electrical nerve stimulation (cMENS) as an adjunctive strategy to promote regeneration and repair in such cases. Methods The study initially optimized cMENS parameters and assessed its impact on Schwann cell activity, neurotrophic factor secretion, and the nerve regeneration microenvironment. Subsequently, a rat sciatic nerve defect-bridge repair model was employed to evaluate the reparative effects of cMENS as an adjuvant treatment. Functional recovery was assessed through gait analysis, motor function tests, and nerve conduction assessments. Additionally, nerve regeneration and denervated muscle atrophy were observed through histological examination. Results The study identified a 10-day regimen of 100uA microcurrent stimulation as optimal. Evaluation focused on Schwann cell activity and the microenvironment, revealing the positive impact of cMENS on maintaining denervated Schwann cell proliferation and enhancing neurotrophic factor secretion. In the rat model of sciatic nerve defect-bridge repair, cMENS demonstrated superior effects compared to control groups, promoting motor function recovery, nerve conduction, and sensory and motor neuron regeneration. Histological examinations revealed enhanced maturation of regenerated nerve fibers and reduced denervated muscle atrophy. Discussion While cMENS shows promise as an adjuvant treatment for long-distance nerve defects, future research should explore extended stimulation durations and potential synergies with tissue engineering grafts to improve outcomes. This study contributes comprehensive evidence supporting the efficacy of cMENS in enhancing peripheral nerve regeneration.
Collapse
Affiliation(s)
- Junjie Kong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Cheng Teng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fenglan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xuzhaoyu Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yi Zhou
- Department of Orthopedics, Nantong City Hospital of Traditional Chinese Medicine, Nantong, China
| | - Ying Zong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zixin Wan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jun Qin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Daguo Mi
- Department of Orthopedics, Nantong City Hospital of Traditional Chinese Medicine, Nantong, China
| | - Yaxian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
9
|
Shin YH, Choi SJ, Kim JK. Mechanisms of Wharton's Jelly-derived MSCs in enhancing peripheral nerve regeneration. Sci Rep 2023; 13:21214. [PMID: 38040829 PMCID: PMC10692106 DOI: 10.1038/s41598-023-48495-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Warton's jelly-derived Mesenchymal stem cells (WJ-MSCs) play key roles in improving nerve regeneration in acellular nerve grafts (ANGs); however, the mechanism of WJ-MSCs-related nerve regeneration remains unclear. This study investigated how WJ-MSCs contribute to peripheral nerve regeneration by examining immunomodulatory and paracrine effects, and differentiation potential. To this end, WJ-MSCs were isolated from umbilical cords, and ANGs (control) or WJ-MSCs-loaded ANGs (WJ-MSCs group) were transplanted in injury animal model. Functional recovery was evaluated by ankle angle and tetanic force measurements up to 16 weeks post-surgery. Tissue biopsies at 3, 7, and 14 days post-transplantation were used to analyze macrophage markers and interleukin (IL) levels, paracrine effects, and MSC differentiation potential by quantitative real-time polymerase chain reaction (RT-qPCR) and immunofluorescence staining. The WJ-MSCs group showed significantly higher ankle angle at 4 weeks and higher isometric tetanic force at 16 weeks, and increased expression of CD206 and IL10 at 7 or 14 days than the control group. Increased levels of neurotrophic and vascular growth factors were observed at 14 days. The WJ-MSCs group showed higher expression levels of S100β; however, the co-staining of human nuclei was faint. This study demonstrates that WJ-MSCs' immunomodulation and paracrine actions contribute to peripheral nerve regeneration more than their differentiation potential.
Collapse
Affiliation(s)
- Young Ho Shin
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic Road 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | | | - Jae Kwang Kim
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic Road 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
10
|
Meng Q, Burrell JC, Zhang Q, Le AD. Potential Application of Orofacial MSCs in Tissue Engineering Nerve Guidance for Peripheral Nerve Injury Repair. Stem Cell Rev Rep 2023; 19:2612-2631. [PMID: 37642899 DOI: 10.1007/s12015-023-10609-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Injury to the peripheral nerve causes potential loss of sensory and motor functions, and peripheral nerve repair (PNR) remains a challenging endeavor. The current clinical methods of nerve repair, such as direct suture, autografts, and acellular nerve grafts (ANGs), exhibit their respective disadvantages like nerve tension, donor site morbidity, size mismatch, and immunogenicity. Even though commercially available nerve guidance conduits (NGCs) have demonstrated some clinical successes, the overall clinical outcome is still suboptimal, especially for nerve injuries with a large gap (≥ 3 cm) due to the lack of biologics. In the last two decades, the combination of advanced tissue engineering technologies, stem cell biology, and biomaterial science has significantly advanced the generation of a new generation of NGCs incorporated with biological factors or supportive cells, including mesenchymal stem cells (MSCs), which hold great promise to enhance peripheral nerve repair/regeneration (PNR). Orofacial MSCs are emerging as a unique source of MSCs for PNR due to their neural crest-origin and easy accessibility. In this narrative review, we have provided an update on the pathophysiology of peripheral nerve injury and the properties and biological functions of orofacial MSCs. Then we have highlighted the application of orofacial MSCs in tissue engineering nerve guidance for PNR in various preclinical models and the potential challenges and future directions in this field.
Collapse
Affiliation(s)
- Qingyu Meng
- Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40Th Street, Philadelphia, PA, 19104, USA
| | - Justin C Burrell
- Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40Th Street, Philadelphia, PA, 19104, USA
| | - Qunzhou Zhang
- Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40Th Street, Philadelphia, PA, 19104, USA.
| | - Anh D Le
- Department of Oral & Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40Th Street, Philadelphia, PA, 19104, USA.
- Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|