1
|
Zi X, Ma J, Li X, Wang H, Bao Y, Deng T, Yuan X. BUB1-deficiency suppresses kidney renal clear cell carcinoma progression via the PI3K/Akt pathway: A bioinformatics-oriented validating study. Mol Cell Probes 2025; 81:102024. [PMID: 40081509 DOI: 10.1016/j.mcp.2025.102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Although great advances have been reached in the diagnosis, treatment and prognosis of kidney renal clear cell carcinoma (KIRC), the advancement of therapeutic strategies for KIRC in clinical practices have been seriously limited due to its unknown molecular mechanisms. To resolve this issue, through analyzing the datasets from the online UCSC database, a novel BUB1 gene was found to be elevated in the cancerous tissues compared to their normal tissues of KIRC, and and KIRC patients with high-expressed BUB1 tended to have a worse prognosis. The subsequent experiments validated that BUB1 protein was located in both nucleus and cytoplasm of KIRC cells, and the expression levels of BUB1 gene were significantly elevated in KIRC tissues and cells, in contrast to their normal counterparts. Loss-of-function experiments verified that knockdown of BUB1 suppressed cell proliferation, mobility, epithelial-mesenchymal transition (EMT) and tumor growth, whereas induced apoptotic cell death in the KIRC cells in vitro and in vivo. In addition, bioinformatics analysis predicted that the differentially-expressed genes (DEGs) in the BUB1-deficient cohorts were enriched in the cell division-related PI3K/Akt signal pathway, and we evidenced that silencing of BUB1 was capable of inactivating the downstream PI3K/Akt signal pathway. Of note, deficiency of BUB1-induced suppressing effects on the malignant phenotypes in KIRC cells were all reversed by co-treating cells with PI3K/Akt pathway activator 740Y-P. Furthermore, it was found that the expression status of BUB1 gene were related with epigenetic modifications, immune infiltration and immunotherapy responses in KIRC. Collectively, silencing of BUB1 inhibited the progression of KIRC through inactivating the downstream PI3K/Akt signal pathway, and BUB1 gene could be potentially used as biomarkers for the diagnosis and treatment of KIRC in clinic.
Collapse
Affiliation(s)
- Xiaolin Zi
- Department of Medical Oncology, Fourth Hospital of Harbin Medical University, Yiyuan Street No. 37, Nangang District, Harbin, 150001, China.
| | - Jinpeng Ma
- Institute of Urology, Lanzhou University Second Hospital, Key Laboratory of Gansu Province for Urological Diseases, Gansu Urological Clinical Center, Lanzhou, China.
| | - Xiaoxia Li
- Department of Medical Laboratory, Fourth Affiliated Hospital of Harbin Medical University, Yiyuan Street No. 37, Nangang District, Harbin, 150001, China.
| | - Honglei Wang
- Urology Surgery Department, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.
| | - Yuchen Bao
- Urology Surgery Department, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.
| | - Tao Deng
- Department of Gastroenterology, Fourth Hospital of Harbin Medical University, Yiyuan Street No. 37, Nangang District, Harbin, 150001, China.
| | - Xueli Yuan
- Department of Medical Oncology, Fourth Hospital of Harbin Medical University, Yiyuan Street No. 37, Nangang District, Harbin, 150001, China.
| |
Collapse
|
2
|
Zheng W, Zhou C, Xue Z, Qiao L, Wang J, Lu F. Integrative analysis of a novel signature incorporating metabolism and stemness-related genes for risk stratification and assessing clinical outcomes and therapeutic responses in lung adenocarcinoma. BMC Cancer 2025; 25:591. [PMID: 40170009 PMCID: PMC11963273 DOI: 10.1186/s12885-025-13984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/20/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Metabolism and stemness-related genes (msRGs) are critical in the development and progression of lung adenocarcinoma (LUAD). Nevertheless, reliable prognostic risk signatures derived from msRGs have yet to be established. METHODS In this study, we downloaded and analyzed RNA-sequencing and clinical data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. We employed univariate and multivariate Cox regression analyses, along with least absolute shrinkage and selection operator (LASSO) regression analysis, to identify msRGs that are linked to the prognosis of LUAD and to develop the prognostic risk signature. The prognostic value was evaluated using Kaplan-Meier analysis and log-rank tests. We generated receiver operating characteristic (ROC) curves to evaluate the predictive capability of the prognostic signature. To estimate the relative proportions of infiltrating immune cells, we utilized the CIBERSORT algorithm and the MCPCOUNTER method. The prediction of the half-maximal inhibitory concentration (IC50) for commonly used chemotherapy drugs was conducted through ridge regression employing the "pRRophetic" R package. The validation of our analytical findings was performed through both in vivo and in vitro studies. RESULTS A novel five-gene prognostic risk signature consisting of S100P, GPX2, PRC1, ARNTL2, and RGS20 was developed based on the msRGs. A risk score derived from this gene signature was utilized to stratify LUAD patients into high- and low-risk groups, with the former exhibiting significantly poorer overall survival (OS). A nomogram was constructed incorporating the risk score and other clinical characteristics, showcasing strong capabilities in estimating the OS rates for LUAD patients. Furthermore, we observed notable differences in the infiltration of various immune cell subtypes, as well as in responses to immunotherapy and chemotherapy, between the low-risk and high-risk groups. Results from gene set enrichment analysis (GSEA) and in vitro studies indicated that the prognostic signature gene ARNTL2 influenced the prognosis of LUAD patients, primarily through the activation of the PI3K/AKT/mTOR signaling pathway. CONCLUSIONS Utilizing this gene signature for risk stratification could help with clinical treatment management and improve the prognosis of LUAD patients.
Collapse
Affiliation(s)
- Wanrong Zheng
- Department of Medical Oncology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Chuchu Zhou
- Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Zixin Xue
- Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Ling Qiao
- Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jianjun Wang
- Department of Medical Oncology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Feng Lu
- Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China.
| |
Collapse
|
3
|
Dong Y, Shayegan B, Su Y, Neira SV, Tang D. A novel multigene panel (Sig27) robustly predicts poor prognosis of renal cell carcinoma via high-level associations with immunosuppressive features. BJC REPORTS 2025; 3:16. [PMID: 40097553 PMCID: PMC11914224 DOI: 10.1038/s44276-025-00128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/17/2025] [Accepted: 02/08/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND We investigated a 27-gene panel (Sig27), derived from prostate cancer, for risk stratification of RCC (clear cell RCC/ccRCC, papillary RCC/pRCC, and chromophobe RCC/chRCC). METHODS Sig27 gene expressions were examined in 960 RCC and 201 kidney tissues. Sig27 was evaluated for predicting overall survival (OS), association with immune checkpoints (IC), regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSC), and tumor-associated macrophages (TAM) in RCC. RESULTS Sig27 robustly predicts OS of ccRCC, pRCC, and chRCC. Sig27 stratifies high-risk ccRCCs: median survival month (MSM) 19.3 and 80.4% of deaths and high-risk pRCCs (MSM 19.6 and 58.6% of death) compared to low-risk ccRCCs (2.9% of death) and pRCCs (2.7% of fatality). Sig27 contains several novel genes related to the RCC immunosuppressive features. FPR3, NOD2, MCTP1, LAMP3, TFEC, and FAM65B are highly correlated with MDSC, Treg, TAM and multiple (≥12) ICs in RCCs. FPR3 and NOD2 are pattern recognition receptors and initiate proinflammatory responses via sensing pathogen-associated molecular patterns and damage-associated molecular patterns; their upregulations may contribute to chronic inflammation in RCC. The Sig27 metagene is expressed in ccRCC-associated immune cells: exhausted CD8T cells, TAM, Treg, and others. CONCLUSIONS Sig27 is a novel and effective pan-RCC biomarker with high-level associations with RCC immunosuppressive features.
Collapse
Affiliation(s)
- Ying Dong
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON, L8N 4A6, Canada
- Department of Surgery, McMaster University, Hamilton, ON, L8S 4K1, Canada
- The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON, L8N 4A6, Canada
| | - Bobby Shayegan
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON, L8N 4A6, Canada
- Department of Surgery, McMaster University, Hamilton, ON, L8S 4K1, Canada
- The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON, L8N 4A6, Canada
| | - Yingying Su
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON, L8N 4A6, Canada
- Department of Surgery, McMaster University, Hamilton, ON, L8S 4K1, Canada
- The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON, L8N 4A6, Canada
| | - Sandra Vega Neira
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON, L8N 4A6, Canada
- Department of Surgery, McMaster University, Hamilton, ON, L8S 4K1, Canada
- The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON, L8N 4A6, Canada
| | - Damu Tang
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON, L8N 4A6, Canada.
- Department of Surgery, McMaster University, Hamilton, ON, L8S 4K1, Canada.
- The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
4
|
Bao J, Dai B, Yang L, Liu Z, Jin Y, Zhao H, Pan Y. sPLA2-IB and PLA2R Mediate Aberrant Glucose Metabolism in Podocytes via Hyperactivation of the mTOR/HIF-1α Pathway. Cell Biochem Biophys 2025:10.1007/s12013-025-01714-5. [PMID: 40072831 DOI: 10.1007/s12013-025-01714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
Secretory phospholipase A2 group IB (sPLA2-IB) and M-type phospholipase A2 receptor (PLA2R) are closely related to proteinuria and idiopathic membranous nephropathy (IMN). Podocytes are important components of the glomerular filtration barrier and glucose metabolism, including glycolysis and tricarboxylic acid (TCA) cycle, is crucial for maintaining podocyte physiological function. Aberrant energy metabolism has been reported in proteinuria diseases, including diabetic nephropathy. However, altering energy states in podocytes in IMN remain unknown. The study aimed to determine whether sPLA2-IB induces energy metabolism abnormalities in podocytes. Cultured podocytes were treated with sPLA2-IB. siRNAs were used to knockdown expression of HIF-1α and PLA2R. Adenosine triphosphate (ATP) levels, the oxygen consumption rate and lactate content were assessed. Key enzyme of glycolysis, PKM2 and LDHA, TCA cycle-related enzymes and mTOR/HIF-1α pathway, were analyzed by PCR and immunoblotting. MTT assay was used for cell viability and phalloidin for cytoskeleton staining. sPLA2-IB induced insufficient energy states in podocytes, by decreased ATP production, increased lactate accumulation and reduced oxygen consumption rates. Under sPLA2-IB stimulation, LDHA and PKM2 were increased, while TCA cycle-related enzymes (CS, FH and SDHD) were decreased, with upregulated mTOR and HIF-1α. Mechanically, HIF-1α knockdown mitigated sPLA2-IB -induced LDHA upregulation and downregulated TCA cycle-related enzymes. Rapamycin (inhibitor of mTOR) reversed decreased ATP levels and oxygen consumption. 3-MA (activator of mTOR) aggravated lactate production. PLA2R knockdown reversed PKM2 and LDHA upregulation, FH and SDHD downregulation, and increased mTOR and HIF-1α expression. PLA2R activation by sPLA2-IB caused abnormal energy states in podocytes. The underlying mechanism involved the activation of mTOR/HIF-1α pathway.
Collapse
Affiliation(s)
- Jiwen Bao
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China
| | - Binbin Dai
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China
| | - Liyan Yang
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zikang Liu
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China
| | - Yuxuan Jin
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China
| | - Hanxue Zhao
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China
| | - Yangbin Pan
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China.
| |
Collapse
|
5
|
Chang Q, Zhao S, Sun J, Guo W, Yang L, Qiu L, Zhang N, Fan Y, Liu J. Identification of a novel prognostic and therapeutic prediction model in clear cell renal carcinoma based on Renin-angiotensin system related genes. Front Endocrinol (Lausanne) 2025; 16:1521940. [PMID: 40099255 PMCID: PMC11911175 DOI: 10.3389/fendo.2025.1521940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Background Clear cell renal cell carcinoma is the most predominant type of renal malignancies, characterized by high aggressiveness and probability of distant metastasis. Renin angiotensin system (RAS) plays a crucial role in maintaining fluid balance within the human body, and its involvement in tumorigenesis is increasingly being uncovered, while its role in ccRCC remains unclear. Methods WGCNA was used to identify RAS related genes. Machine learning was applied to screen hub genes for constructing risk model, E-MTAB-1980 dataset was used for external validation. Transwell and CCK8 assays were used to investigate the impact of SLC6A19 to ccRCC cells. Results SLC6A19, SLC16A12 and SMIM24 were eventually screened to construct risk model and the predictive efficiency for prognosis was validated by internal and external cohorts. Moreover, the differences were found in pathway enrichment, immune cell infiltration, mutational landscapes and drug prediction between high and low risk groups. Experimental results indicated that SLC6A19 could inhibit invasion and proliferation of ccRCC cells and GSEA pinpointed that SLC6A19 was intimately correlated with fatty acid metabolism and CPT1A. Conclusion The risk model based on the three RAS-related genes have a robust ability to predict the prognosis and drug sensitivity of ccRCC patients, further providing a valid instruction for clinical care.
Collapse
Affiliation(s)
- Qinzheng Chang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shuo Zhao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiajia Sun
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wei Guo
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lin Yang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Laiyuan Qiu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Nianzhao Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yidong Fan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jikai Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
6
|
He J, Li X, Yu H, Xu C, Tian R, Zhou P, Yin Z. Inflammation-induced PFKFB3-mediated glycolysis promoting myometrium contraction through the PI3K-Akt-mTOR pathway in preterm birth mice. Am J Physiol Cell Physiol 2025; 328:C895-C907. [PMID: 39907705 DOI: 10.1152/ajpcell.00704.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025]
Abstract
Inflammation is a significant risk factor for preterm birth. Inflammation enhances glycolytic processes in various cell types and contributes to the development of myometrial contractions. However, the potential of inflammation to activate glycolysis in pregnant murine uterine smooth muscle cells (mUSMCs) and its role in promoting inflammatory preterm birth remain unexplored. In this study, lipopolysaccharide was employed to establish both cell and animal inflammation models. We found that inflammation of mUSMCs during late pregnancy could initiate glycolysis and promote cell contraction. Subsequently, the inhibition of glycolysis using the glycolysis inhibitor 2-deoxyglucose can reverse inflammation-induced cell contraction. The expression of 6-phosphofructokinase 2 kinase (PFKFB3) was significantly upregulated in mUSMCs following lipopolysaccharide stimulation. In addition, lactate accumulation and enhanced contraction were observed. Inhibition of PFKFB3 reversed the lactate accumulation and enhanced contraction induced by inflammation. We also found that inflammation activated the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of the rapamycin (mTOR) pathway, leading to the upregulation of PFKFB3 expression. The PI3K-Akt pathway inhibitor LY294002 and the mTOR pathway inhibitor rapamycin effectively inhibited the upregulation of PFKFB3 protein expression, lactate production, and the enhancement of cell contraction induced by lipopolysaccharide. This study indicates that inflammation regulates PFKFB3 through the PI3K-Akt-mTOR pathway, which enhances the glycolytic process in pregnant mUSMCs, ultimately leading to myometrial contraction.NEW & NOTEWORTHY Expression of PFKFB3, a key enzyme in glycolysis, was significantly upregulated both in the mUSMCs and myometrium of mice during late pregnancy after lipopolysaccharide stimulation. Activation of the PI3K-Akt-mTOR pathway enhanced PFKFB3 expression, which is involved in the initiation of glycolysis. Inflammation-activated PFKFB3 via the PI3K-Akt-mTOR pathway, which enhances the cellular glycolytic process and thus promotes myometrium contraction in pregnancy.
Collapse
Affiliation(s)
- Jing He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
- NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei, People's Republic of China
- Department of Obstetrics and Gynecology, Anqing Medical Center of Anhui Medical University, Anqing, People's Republic of China
| | - Xuan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
- NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei, People's Republic of China
| | - Huihui Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
- NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei, People's Republic of China
| | - Chenyi Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, People's Republic of China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, People's Republic of China
| | - Ruixian Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, People's Republic of China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, People's Republic of China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
- NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei, People's Republic of China
| | - Zongzhi Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
- NHC Key Laboratory of the Study of Abnormal Gametes and the Reproductive Tract, Anhui Medical University, Hefei, People's Republic of China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei, People's Republic of China
- Center for Big Data and Population Health of IHM, Hefei, People's Republic of China
| |
Collapse
|
7
|
Ding X, Shi J, Lei Z, Wang G, Fu C, Su X, Zhu G. FOXM1 promotes malignant biological behavior and metabolic reprogramming by targeting SPINK1 in hepatocellular carcinoma and affecting the p53 pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167673. [PMID: 39828047 DOI: 10.1016/j.bbadis.2025.167673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/24/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
This study investigates the role of SPINK1 in liver cancer and its regulatory relationship with FOXM1. Using differential gene analysis in the GEO database, SPINK1 was identified as overexpressed in liver cancer tissues and associated with poor prognosis, confirmed via PCR. Functional assays demonstrated that SPINK1 knockdown reduced proliferation, migration, and invasion in liver cancer cells, while promoting apoptosis. In vivo experiments revealed that SPINK1 knockdown inhibited tumor growth, decreased Ki-67 and N-cadherin levels, increased E-cadherin levels, and suppressed lung metastasis. Analysis of upstream factors indicated that FOXM1 binds to the SPINK1 promoter, as validated by dual-luciferase and ChIP assays, thereby promoting SPINK1 transcription. TCGA database analysis and clinical tissue validation showed that FOXM1 expression correlates with poor prognosis in liver cancer. Functional studies demonstrated that FOXM1 knockdown suppressed liver cancer progression, while SPINK1 overexpression reversed these effects. KEGG enrichment analysis identified the p53 pathway as a key downstream target of SPINK1, and Western blotting confirmed its role in modulating p53 pathway activity. These findings reveal a critical FOXM1-SPINK1 axis in liver cancer progression. FOXM1 directly promotes SPINK1 transcription, enhancing tumor cell proliferation and metastasis while regulating the p53 pathway. Targeting this axis could provide a potential therapeutic approach for liver cancer.
Collapse
Affiliation(s)
- Xu Ding
- School of Medicine, Southeast University, Naanjing 210009, Jiangsu, PR China
| | - Jinjun Shi
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, Jiangsu, PR China
| | - Zhengqing Lei
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing 210009, Jiangsu, PR China
| | - Guoqing Wang
- Department of Pathology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, PR China
| | - Chenchun Fu
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, PR China
| | - Xiangyu Su
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, PR China.
| | - Guangyu Zhu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, Jiangsu, PR China.
| |
Collapse
|
8
|
Glorieux C, Enríquez C, Buc Calderon P. The complex interplay between redox dysregulation and mTOR signaling pathway in cancer: A rationale for cancer treatment. Biochem Pharmacol 2025; 232:116729. [PMID: 39709038 DOI: 10.1016/j.bcp.2024.116729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
The mechanistic target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that plays a critical role in regulating cellular processes such as growth, proliferation, and metabolism in healthy cells. Dysregulation of mTOR signaling and oxidative stress have been implicated in various diseases including cancer. This review aims to provide an overview of the current understanding of mTOR and its involvement in cell survival and the regulation of cancer cell metabolism as well as its complex interplay with reactive oxygen species (ROS). On the one hand, ROS can inhibit or activate mTOR pathway in cancer cells through various mechanisms. Conversely, mTOR signaling can induce oxidative stress in tumor cells notably due to the inhibition in the expression of antioxidant enzyme genes. Since mTOR is often activated and plays crucial role in cancer cell survival, the use of mTOR inhibitors, which often induce ROS accumulation, could be an interesting approach for cancer treatment. This review will address the advantages, disadvantages, combination strategies, and limitations associated with therapeutic modulation of mTOR signaling pathway in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 510060 Guangzhou, China.
| | - Cinthya Enríquez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile; Programa de Doctorado en Química Medicinal, Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile; Instituto de Química Medicinal, Universidad Arturo Prat, 1100000 Iquique, Chile; Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium.
| |
Collapse
|
9
|
Xie D, Li G, Zheng Z, Zhang X, Wang S, Jiang B, Li X, Wang X, Wu G. The molecular code of kidney cancer: A path of discovery for gene mutation and precision therapy. Mol Aspects Med 2025; 101:101335. [PMID: 39746268 DOI: 10.1016/j.mam.2024.101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
Renal cell carcinoma (RCC) is a malignant tumor with highly heterogeneous and complex molecular mechanisms. Through systematic analysis of TCGA, COSMIC and other databases, 24 mutated genes closely related to RCC were screened, including VHL, PBRM1, BAP1 and SETD2, which play key roles in signaling pathway transduction, chromatin remodeling and DNA repair. The PI3K/AKT/mTOR signaling pathway is particularly important in the pathogenesis of RCC. Mutations in genes such as PIK3CA, MTOR and PTEN are closely associated with metabolic abnormalities and tumor cell proliferation. Clinically, mTOR inhibitors and VEGF-targeted drugs have shown significant efficacy in personalized therapy. Abnormal regulation of metabolic reprogramming, especially glycolysis and glutamine metabolic pathways, provides tumor cells with continuous energy supply and survival advantages, and GLS1 inhibitors have shown promising results in preclinical studies. This paper also explores the potential of immune checkpoint inhibitors in combination with other targeted drugs, as well as the promising application of nanotechnology in drug delivery and targeted therapy. In addition, unique molecular mechanisms are revealed and individualized therapeutic strategies are explored for specific subtypes such as TFE3, TFEB rearrangement type and SDHB mutant type. The review summarizes the common gene mutations in RCC and their molecular mechanisms, emphasizes their important roles in tumor diagnosis, treatment and prognosis, and looks forward to the application prospects of multi-pathway targeted therapy, metabolic targeted therapy, immunotherapy and nanotechnology in RCC treatment, providing theoretical support and clinical guidance for individualized treatment and new drug development.
Collapse
Affiliation(s)
- Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Guandu Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Zunwen Zheng
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Xiaoman Zhang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China.
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China.
| |
Collapse
|
10
|
Kes MMG, Morales-Rodriguez F, Zaal EA, de Souza T, Proost N, van de Ven M, van den Heuvel-Eibrink MM, Jansen JWA, Berkers CR, Drost J. Metabolic profiling of patient-derived organoids reveals nucleotide synthesis as a metabolic vulnerability in malignant rhabdoid tumors. Cell Rep Med 2025; 6:101878. [PMID: 39708810 DOI: 10.1016/j.xcrm.2024.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/27/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Malignant rhabdoid tumor (MRT) is one of the most aggressive childhood cancers for which no effective treatment options are available. Reprogramming of cellular metabolism is an important hallmark of cancer, with various metabolism-based drugs being approved as a cancer treatment. In this study, we use patient-derived tumor organoids (tumoroids) to map the metabolic landscape of several pediatric cancers. Combining gene expression analyses and metabolite profiling using mass spectrometry, we find nucleotide biosynthesis to be a particular vulnerability of MRT. Treatment of MRT tumoroids with de novo nucleotide synthesis inhibitors methotrexate (MTX) and BAY-2402234 lowers nucleotide levels in MRT tumoroids and induces apoptosis. Lastly, we demonstrate in vivo efficacy of MTX in MRT patient-derived xenograft (PDX) mouse models. Our study reveals nucleotide biosynthesis as an MRT-specific metabolic vulnerability, which can ultimately lead to better treatment options for children suffering from this lethal pediatric malignancy.
Collapse
Affiliation(s)
- Marjolein M G Kes
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands; Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Francisco Morales-Rodriguez
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Esther A Zaal
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Terezinha de Souza
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Natalie Proost
- Preclinical Intervention Unit of the Mouse Clinic for Cancer and Ageing (MCCA), Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit of the Mouse Clinic for Cancer and Ageing (MCCA), Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marry M van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Division of Child Health, Wilhelmina Children's Hospital, Utrecht University, Utrecht, the Netherlands
| | - Jeroen W A Jansen
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Celia R Berkers
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
11
|
Feng X, Wang Z, Cen M, Zheng Z, Wang B, Zhao Z, Zhong Z, Zou Y, Lv Q, Li S, Huang L, Huang H, Qiu X. Deciphering potential molecular mechanisms in clear cell renal cell carcinoma based on the ubiquitin-conjugating enzyme E2 related genes: Identifying UBE2C correlates to infiltration of regulatory T cells. Biofactors 2025; 51:e2143. [PMID: 39614426 DOI: 10.1002/biof.2143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Renal clear cell carcinoma (ccRCC) is a highly aggressive and common form of kidney cancer, with limited treatment options for advanced stages. Recent studies have highlighted the importance of the ubiquitin-proteasome system in tumor progression, particularly the role of ubiquitin-conjugating enzyme E2 (UBE2) family members. However, the prognostic significance of UBE2-related genes (UBE2RGs) in ccRCC remains unclear. In this study, bulk RNA-sequencing and single-cell RNA-sequencing data from ccRCC patients were retrieved from the Cancer Genome Atlas and Gene Expression Omnibus databases. Differential expression analysis was performed to identify UBE2RGs associated with ccRCC. A combination of 10 machine learning methods was applied to develop an optimal prognostic model, and its predictive performance was evaluated using area under the curve (AUC) values for 1-, 3-, and 5-year overall survival (OS) in both training and validation cohorts. Functional enrichment analyses of gene ontology and Kyoto Encyclopedia of Genes and Genomes were conducted to explore the biological pathways involved. Correlation analysis was conducted to investigate the association between the risk score and tumor mutational burden (TMB) and immune cell infiltration. Immunotherapy and chemotherapy sensitivity were assessed by immunophenoscore and tumor immune, dysfunction, and exclusion scores to identify potential predictive significance. In vitro, knockdown of the key gene UBE2C in 786-O cells by specific small interfering RNA to validate its impact on apoptosis, migration, cell cycle, migration, invasion of tumor cells, and induction of regulatory T cells (Tregs). Analysis of sc-RNA revealed that UBE2 activity was significantly upregulated in malignant cells, suggesting its role in tumor progression. A three-gene prognostic model comprising UBE2C, UBE2D3, and UBE2T was constructed by Lasoo Cox regression and demonstrated robust predictive accuracy, with AUC values of 0.745, 0.766, and 0.771 for 1-, 3-, and 5-year survival, respectively. The model was validated as an independent prognostic factor in ccRCC. Patients in the high-risk group had a worse prognosis, higher TMB scores, and low responsiveness to immunotherapy. Additionally, immune infiltration and chemotherapy sensitivity analyses revealed that UBE2RGs are associated with various immune cells and drugs, suggesting that UBE2RGs could be a potential therapeutic target for ccRCC. In vitro experiments confirmed that the reduction of UBE2C led to an increase in apoptosis rate, as well as a decrease in tumor cell invasion and metastasis abilities. Additionally, si-UBE2C cells reduced the release of the cytokine Transforming Growth Factor-beta 1 (TGF-β1), leading to a decreased ratio of Tregs in the co-culture system. This study presents a novel three-gene prognostic model based on UBE2RGs that demonstrates significant predictive value for OS, immunotherapy, and chemotherapy in ccRCC patients. The findings underscore the potential of UBE2 family members as biomarkers and therapeutic targets in ccRCC, warranting further investigation in prospective clinical trials.
Collapse
Affiliation(s)
- Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong, China
| | - Zhenwei Wang
- Department of Urology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Meini Cen
- Department of Rehabilitation Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zongtai Zheng
- Department of Urology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Bangqi Wang
- Department of Urology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Zongxiang Zhao
- Department of Urology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Zhihui Zhong
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong, China
| | - Yesong Zou
- Department of Urology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Qian Lv
- Department of Urology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Shiyu Li
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong, China
| | - Hai Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofu Qiu
- Department of Urology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Cimpeanu RC, Fortofoiu D, Sandu E, Dragne IG, Caragea ME, Dumitriu-Stan RI, Salmen BM, Boldeanu L, Reurean-Pintilei DV, Vere CC. The Role of Dopamine in Gastric Cancer-A Systematic Review of the Pathogenesis Phenomena Developments. Biomedicines 2024; 12:2786. [PMID: 39767693 PMCID: PMC11673717 DOI: 10.3390/biomedicines12122786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND In the last few decades, it has been emphasized that dopamine, a well-known neurotransmitter with multiple roles in central nervous system, is also implicated in the activity of peripheral tissues and organs, more specifically influencing the gastrointestinal system (GI). METHODS We registered a protocol under the CRD42024547935 identifier in the Prospero register of systematic reviews. Furthermore, using the Population, Intervention, Comparison, Outcome, and Study Design strategy to guide our study rationale, and under the Preferred Reporting Items for Systematic reviews and Meta-Analyses recommendations, we conducted a qualitative systematic literature search based on the PubMed, Scopus, and Web of Science databases using the "gastric cancers AND dopamine" search criteria. We obtained 68 articles from PubMed, 142 articles from Scopus, and 99 articles from the Web of Science database. RESULTS Within gastric cancer biology, dopamine has notable effects on STAT-3 and DARPP-32. STAT-3, a transcription factor involved in cellular proliferation and invasion, plays a significant role in cancer progression. CONCLUSIONS Understanding the roles of dopamine in cancer, beyond aspects such as cancer cell invasion, immune response modulation, or tumor growth, could guide the development of new cancer therapies by modulating its pathways, especially the DARPP-32/CXCR4/CXCL-12 complex axis, in order to improve the morbidity and mortality caused by this type of cancer.
Collapse
Affiliation(s)
- Radu-Cristian Cimpeanu
- Doctoral School, University of Medicine and Pharmacy, 200349 Craiova, Romania; (R.-C.C.); (D.F.); (E.S.); (I.-G.D.); (M.-E.C.)
| | - Dragoș Fortofoiu
- Doctoral School, University of Medicine and Pharmacy, 200349 Craiova, Romania; (R.-C.C.); (D.F.); (E.S.); (I.-G.D.); (M.-E.C.)
| | - Elena Sandu
- Doctoral School, University of Medicine and Pharmacy, 200349 Craiova, Romania; (R.-C.C.); (D.F.); (E.S.); (I.-G.D.); (M.-E.C.)
| | - Ioana-Gabriela Dragne
- Doctoral School, University of Medicine and Pharmacy, 200349 Craiova, Romania; (R.-C.C.); (D.F.); (E.S.); (I.-G.D.); (M.-E.C.)
| | - Mariana-Emilia Caragea
- Doctoral School, University of Medicine and Pharmacy, 200349 Craiova, Romania; (R.-C.C.); (D.F.); (E.S.); (I.-G.D.); (M.-E.C.)
| | | | - Bianca-Margareta Salmen
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Lidia Boldeanu
- Department of Microbiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Delia Viola Reurean-Pintilei
- Department of Medical-Surgical and Complementary Sciences, Faculty of Medicine and Biological Sciences, “Stefan cel Mare” University, 720229 Suceava, Romania;
| | - Cristin-Constantin Vere
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
13
|
Wang L, Wang Y, Xie Q, Xu S, Yang C, Liu F, Liu Y, Wang F, Chen W, Li J, Sun L. Resveratrol liposomes reverse sorafenib resistance in renal cell carcinoma models by modulating PI3K-AKT-mTOR and VHL-HIF signaling pathways. Int J Pharm X 2024; 8:100280. [PMID: 39286037 PMCID: PMC11403058 DOI: 10.1016/j.ijpx.2024.100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024] Open
Abstract
RCC is a malignant tumor arising from the urothelium of renal parenchyma that remains challenging to be treated. In this study, we assessed the anti-tumor effects of Resveratrol liposomes (RES-lips) combined with sorafenib on renal cell carcinoma (RCC) and explored the potential mechanisms underlying the improvement of sorafenib resistance models. Tumor growth and survival following treatment with sorafenib alone or in combination with RES-lips was evaluated in a RCC xenograft mouse model. Flow cytometry results demonstrated that the combination of RES-lips and sorafenib significantly enhanced the G1/S phase arrest of sorafenib-resistant cells. When compared with the PBS or monotherapy groups, treatment with RES-lips combined with sorafenib exhibited significant inhibition of tumor growth in the RCC xenograft mouse model with tumor growth inhibition (TGI) rates and complete remission (CR) rates of 90.1 % and 50 %, respectively. Concersely, the maximum TGI rate was 53.6 % in the RES-lips monoherapy group and 29.2 % and in the sorafenib monotherapy group, and no animals achieved CR. Additionally, the current combination therapy promoted the proliferation of unactivated splenic lymphocytes and the proliferation of soybean protein A- and lipopolysaccharide-stimulated lymphocytes compared with PBS or monotherapy treatments. Further western blotting analysis suggested that RES-lips may enhance the resistance of RCC to sorafenib by inhibiting PI3K-AKT-mTOR and VHL-HIF signaling pathways, ultimately augmenting the tumor growth inhibition effect of the combination therapy. RES-lips may improve the sorafenib resistance in RCC, and the underlying mechanism may be related to the regulation of PI3K-AKT-mTOR and VHL-HIF signaling pathways.
Collapse
Affiliation(s)
- Ligang Wang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wang
- Health Management Center, Health Promotion Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiqi Xie
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Songcheng Xu
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen Yang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fei Liu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yang Liu
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fuwei Wang
- Department of Oncology and Cancer Biotherapy Center, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, China
| | - Weinan Chen
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianchun Li
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Litao Sun
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Jia M, Xie M, Luo X, Wang H, Duan C, Lai W, Dai R, Wang R. Cancer-Associated Fibroblast-Derived FGF7 Promotes Clear Cell Renal Cell Carcinoma Progression and Macrophage Infiltration. Cells 2024; 13:1824. [PMID: 39594574 PMCID: PMC11593278 DOI: 10.3390/cells13221824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
As the predominant stromal cells in the ccRCC surrounding environment, cancer-associated fibroblasts (CAFs) have been established as supportive of tumor growth. However, the detailed molecular mechanisms underlying the supporting role of CAFs in ccRCC have not been well characterized. Evidence from the clustering consensus analysis, single-cell analysis, and the experimental results illustrate that CAF-derived FGF7 plays a crucial role as a signaling mediator between CAFs and ccRCC tumor cells. Mechanistically, CAF-derived FGF7 triggers AKT activation to promote cell growth and cell invasion of ccRCC tumor cells. As a response, ccRCC tumor cells stimulate STAT3-mediated transcriptional regulation, directly increasing FGF7 expression at the chromatin level in CAFs. Moreover, there exists a positive clinical correlation between the abundance of CAFs, FGF7 expression, and the infiltration of M2 type macrophages. The RENCA in vivo mouse model also confirmed that FGF7 depletion could impede RCC development by reducing the recruitment of M2 type macrophages. Overall, this study delineates a key signaling axis governing the crosstalk between CAFs and ccRCC tumor cells, highlighting FGF7 as a promising therapeutic target of ccRCC.
Collapse
Affiliation(s)
- Man Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Mingyu Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xixi Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Huiping Wang
- Department of Genetics, Xuzhou Medical University, Xuzhou 221004, China
| | - Chunyan Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Wanni Lai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ronghao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
15
|
Markowitsch SD, Pham T, Rutz J, Chun FKH, Haferkamp A, Tsaur I, Juengel E, Ries N, Thomas A, Blaheta RA. Growth of Renal Cancer Cell Lines Is Strongly Inhibited by Synergistic Activity of Low-Dosed Amygdalin and Sulforaphane. Nutrients 2024; 16:3750. [PMID: 39519581 PMCID: PMC11547972 DOI: 10.3390/nu16213750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Plant derived isolated compounds or extracts enjoy great popularity among cancer patients, although knowledge about their mode of action is unclear. The present study investigated whether the combination of two herbal drugs, the cyanogenic diglucoside amygdalin and the isothiocyanate sulforaphane (SFN), influences growth and proliferation of renal cell carcinoma (RCC) cell lines. Methods: A498, Caki-1, and KTCTL-26 cells were exposed to low-dosed amygdalin (1 or 5 mg/mL), or SFN (5 µM) or to combined SFN-amygdalin. Tumor growth and proliferation were analyzed by MTT, BrdU incorporation, and clone formation assays. Cell cycle phases and cell cycle-regulating proteins were analyzed by flow cytometry and Western blotting, respectively. The effectiveness of the amygdalin-SFN combination was determined using the Bliss independence model. Results: 1 mg/mL amygdalin or 5 µM SFN, given separately, did not suppress RCC cell growth, and 5 mg/mL amygdalin only slightly diminished A498 (but not Caki-1 and KTCTL-26) cell growth. However, already 1 mg/mL amygdalin potently inhibited growth of all tumor cell lines when combined with SFN. Accordingly, 1 mg/mL amygdalin suppressed BrdU incorporation only when given together with SFN. Clonogenic growth was also drastically reduced by the drug combination, whereas only minor effects were seen under single drug treatment. Superior efficacy of co-treatment, compared to monodrug exposure, was also seen for cell cycling, with an enhanced G0/G1 and diminished G2/M phase in A498 cells. Cell cycle regulating proteins were altered differently, depending on the applied drug schedule (single versus dual application) and the RCC cell line, excepting phosphorylated Akt which was considerably diminished in all three cell lines with maximum effects induced by the drug combination. The Bliss independence analysis verified synergistic interactions between amygdalin and SFN. Conclusions: These results point to synergistic effects of amygdalin and SFN on RCC cell growth and clone formation and Akt might be a relevant target protein. The combined use of low-dosed amygdalin and SFN could, therefore, be beneficial as a complementary option to treat RCC. To evaluate clinical feasibility, the in vitro protocol must be applied to an in vivo model.
Collapse
Affiliation(s)
- Sascha D. Markowitsch
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany; (S.D.M.); (J.R.); (A.H.); (I.T.); (E.J.); (N.R.); (A.T.)
| | - Thao Pham
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (T.P.); (F.K.-H.C.)
| | - Jochen Rutz
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany; (S.D.M.); (J.R.); (A.H.); (I.T.); (E.J.); (N.R.); (A.T.)
| | - Felix K.-H. Chun
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (T.P.); (F.K.-H.C.)
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany; (S.D.M.); (J.R.); (A.H.); (I.T.); (E.J.); (N.R.); (A.T.)
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany; (S.D.M.); (J.R.); (A.H.); (I.T.); (E.J.); (N.R.); (A.T.)
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany; (S.D.M.); (J.R.); (A.H.); (I.T.); (E.J.); (N.R.); (A.T.)
| | - Nathalie Ries
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany; (S.D.M.); (J.R.); (A.H.); (I.T.); (E.J.); (N.R.); (A.T.)
| | - Anita Thomas
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany; (S.D.M.); (J.R.); (A.H.); (I.T.); (E.J.); (N.R.); (A.T.)
| | - Roman A. Blaheta
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany; (S.D.M.); (J.R.); (A.H.); (I.T.); (E.J.); (N.R.); (A.T.)
| |
Collapse
|
16
|
Lu W, Huang H, Xu Z, Xu S, Zhao K, Xiao M. MiR-27a inhibits the growth and metastasis of multiple myeloma through regulating Th17/Treg balance. PLoS One 2024; 19:e0311419. [PMID: 39413115 PMCID: PMC11482689 DOI: 10.1371/journal.pone.0311419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 09/18/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The imbalance between T helper 17 (Th17) and T regulatory (Treg) cells plays a key role in the progression of multiple myeloma (MM). METHODS The gene expression profiles of MM were acquired and examined from the Gene Expression Omnibus (GEO) database (GSE72213). Our research involved experimental investigations conducted using the MOPC-MM mouse model. Dysregulation of Treg and Th17 cells was evaluated through flow cytometry, while the levels of inflammatory factors were measured using the enzyme-linked immunosorbent assay. Cell proliferation was gauged using the Cell Counting Kit-8 assay, and cell apoptosis was quantified via flow cytometry. Cell metastasis capabilities were determined by conducting transwell assays. To confirm the relationship between miR-27a and PI3K, a dual-luciferase reporter assay was employed. Finally, proteins associated with the PI3K/AKT/mTOR signaling pathway were assessed using western blotting. RESULTS MiR-27a exhibited reduced expression levels in MM. Moreover, it exerted control over the equilibrium of Th17 and Treg cells while reducing the expression of inflammatory mediators such as TGF-β1 and IL-10 in an in vivo setting. Elevated miR-27a levels led to the inhibition of cell viability, colony formation capacity, migratory and invasive traits in an in vitro context. The PI3K/AKT/mTOR signaling pathway was identified as a direct target of miR-27a and could reverse the effects induced by miR-27a in MM cells. Notably, PI3K was directly targeted by miR-27a. CONCLUSIONS Our study revealed that miR-27a inhibited MM evolution by regulating the Th17/Treg balance. Inhibition of the PI3K/AKT/mTOR signaling pathway by miR-27a may play a potential mechanistic role.
Collapse
Affiliation(s)
- Weiguo Lu
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Zhanjie Xu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shumin Xu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Kewei Zhao
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Mingfeng Xiao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Darmadi D, Aminov Z, Hjazi A, R R, Kazmi SW, Mustafa YF, Hosseen B, Sharma A, Alubiady MHS, Al-Abdeen SHZ. Investigation of the regulation of EGF signaling by miRNAs, delving into the underlying mechanism and signaling pathways in cancer. Exp Cell Res 2024; 442:114267. [PMID: 39313176 DOI: 10.1016/j.yexcr.2024.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
The EGF receptors (EGFRs) signaling pathway is essential for tumorigenesis and progression of cancer. Emerging evidence suggests that miRNAs are essential regulators of EGF signaling, influencing various pathway components and tumor behavior. This article discusses the underlying mechanisms and clinical implications of miRNA-mediated regulation of EGF signaling in cancer. miRNAs utilize multiple mechanisms to exert their regulatory effects on EGF signaling. They can target EGF ligands, including EGF and TGF-directly, inhibiting their expression and secretion. In addition, miRNAs can modulate EGF signaling indirectly by targeting EGF receptors, downstream signaling molecules, and transcription factors implicated in regulating the EGF pathway. These miRNAs can disrupt the delicate equilibrium of EGF signaling, resulting in aberrant activation and fostering tumor cell proliferation, survival, angiogenesis, and metastasis. The dysregulation of the expression of specific miRNAs has been linked to clinical outcomes in numerous types of cancer. Specific profiles of miRNA expression have been identified as prognostic markers, reflecting tumor characteristics, invasiveness, metastatic potential, and therapeutic response. These miRNAs can serve as potential therapeutic targets for interventions that modulate EGF signaling and improve patient outcomes. Understanding the intricate relationship between miRNAs and EGF signaling in cancer can transform cancer diagnosis, prognosis, and treatment. The identification of specific miRNAs involved in the regulation of the EGF pathway opens the door to the development of targeted therapies and personalized medicine approaches. In addition, miRNA-based interventions promise to overcome therapeutic resistance and improve the efficacy of existing treatments. miRNAs are crucial regulators of EGF signaling in cancer, affecting tumor behavior and clinical outcomes. Further research is required to decipher the complex network of miRNA-mediated EGF signaling regulation and translate these findings into clinically applicable strategies for enhanced cancer treatment.
Collapse
Affiliation(s)
- Darmadi Darmadi
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | - Beneen Hosseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | | | | |
Collapse
|
18
|
Alves Â, Medeiros R, Teixeira AL, Dias F. Decoding PTEN regulation in clear cell renal cell carcinoma: Pathway for biomarker discovery and therapeutic insights. Biochim Biophys Acta Rev Cancer 2024; 1879:189165. [PMID: 39117092 DOI: 10.1016/j.bbcan.2024.189165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Renal cell carcinoma is the most common adult renal solid tumor and the deadliest urological cancer, with clear cell renal cell carcinoma (ccRCC) being the predominant subtype. The PI3K/AKT signaling pathway assumes a central role in ccRCC tumorigenesis, wherein its abnormal activation confers a highly aggressive phenotype, leading to swift resistance against current therapies and distant metastasis. Thus, treatment resistance and disease progression remain a persistent clinical challenge in managing ccRCC effectively. PTEN, an antagonist of the PI3K/AKT signaling axis, emerges as a crucial factor in tumor progression, often experiencing loss or inactivation in ccRCC, thereby contributing to elevated mortality rates in patients. Therefore, understanding the molecular mechanisms underlying PTEN suppression in ccRCC tumors holds promise for the discovery of biomarkers and therapeutic targets, ultimately enhancing patient monitoring and treatment outcomes. The present review aims to summarize these mechanisms, emphasizing their potential prognostic, predictive, and therapeutic value in managing ccRCC.
Collapse
Affiliation(s)
- Ângela Alves
- Molecular Oncology and Viral Pathology Group, Research Center of IPO-Porto (CI-IPOP) &RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO-Porto (CI-IPOP) &RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-513 Porto, Portugal; Faculty of Medicine (FMUP), University of Porto, 4200-319 Porto, Portugal; Laboratory Medicine, Clinical Pathology Department, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; Biomedicine Research Center (CEBIMED), Research Innovation and Development Institute (FP-I3ID), Faculty of Health Sciences, Fernando Pessoa University (UFP), 4249-004 Porto, Portugal; Research Department, Portuguese League Against Cancer Northern Branch (LPCC-NRN), 4200-172 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO-Porto (CI-IPOP) &RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO-Porto (CI-IPOP) &RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal.
| |
Collapse
|
19
|
Vacaroiu IA, Șerban-Feier LF, Georgescu DE, Balan DG, Lupușoru MOD, Cuiban E, Mihai AD, Balcangiu-Stroescu AE. Long-Term Interplay Between SARS-CoV-2 and Renal Impairment. Cureus 2024; 16:e66553. [PMID: 39252712 PMCID: PMC11381964 DOI: 10.7759/cureus.66553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction The SARS-CoV-2 virus causes the highly contagious coronavirus disease 2019 (COVID-19), which most commonly manifests as severe acute respiratory syndrome. The virus is part of the Coronaroviridae family, a group of viruses that can cause various diseases, such as the common cold, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). The World Health Organization (WHO) declared the outbreak of COVID-19 as a pandemic on March 11, 2020. On February 26, 2020, Romania confirmed the first case of COVID-19, initiating a series of challenges that negatively impacted the lives of thousands of people. The COVID-19 pandemic has had a disproportionate effect on patients at risk of kidney damage. Patients with chronic kidney disease (CKD) are at high risk of SARS-CoV-2 infection and mortality associated with COVID-19. CKD is associated with pronounced immunodeficiency and represents a risk factor for contracting the infection, but also increases the risk of hospitalization, oxygen therapy, and prolonged treatments. The evidence regarding the management of patients with CKD undergoing renal replacement therapy (RRT) infected with SARS-CoV-2 is still misleading. While these are high-risk patients due to the presence of multiple comorbidities, especially cardiovascular, e.g., hypertension, left ventricular hypertrophy, but also diabetes, the question remains whether RRT itself is associated with a worse prognosis in patients infected with SARS-CoV-2, although infections generally induce severe complications in patients with CKD and RRT. Methods This retrospective study aims to analyze the evolution of COVID-19 disease in patients with CKD, focusing on the association with some common comorbidities such as ischemic coronary disease (ICD), obesity, and diabetes. The study included 72 hemodialyzed patients; they were hospitalized between November 2020 and February 2021 at "Sf. Ioan" Clinical Emergency Hospital, Nephrology and Dialysis Clinic; peritoneal dialysis patients were excluded. Results Older age was found to be an important risk factor for death in hemodialyzed patients admitted with COVID-19 infection. Obese patients were found to be at greater risk of mortality. Discussion This study showed that there is a complex relationship between COVID-19 infection and increased mortality in patients with CKD associating ischemic coronary disease, obesity, and diabetes.
Collapse
Affiliation(s)
- Ileana Adela Vacaroiu
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Department of Nephrology, "Sf. Ioan" Clinical Emergency Hospital, Bucharest, ROU
| | - Larisa Florina Șerban-Feier
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Department of Nephrology, "Sf. Ioan" Clinical Emergency Hospital, Bucharest, ROU
| | - Dragos Eugen Georgescu
- Department of General Surgery, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Department of General Surgery, Dr. I. Cantacuzino Clinical Hospital, Bucharest, ROU
| | - Daniela-Gabriela Balan
- Department of Physiology, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | - Mircea Ovidiu Denis Lupușoru
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | - Elena Cuiban
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
- Department of Nephrology, "Sf. Ioan" Clinical Emergency Hospital, Bucharest, ROU
| | - Andrada Doina Mihai
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | | |
Collapse
|
20
|
Qin T, Huang M, Wei W, Zhou W, Tang Q, Huang Q, Tang N, Gai S. PLAUR facilitates the progression of clear cell renal cell carcinoma by activating the PI3K/AKT/mTOR signaling pathway. PeerJ 2024; 12:e17555. [PMID: 38948215 PMCID: PMC11214736 DOI: 10.7717/peerj.17555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Background PLAUR has been found upregulated in various tumors and closely correlated with the malignant phenotype of tumor cells. The aim of this study was to investigate the relationship between PLAUR and clear cell renal cell carcinoma (ccRCC) and its potential mechanism of promoting tumor progression. Methods The expression levels and clinical significance of PLAUR, along with the associated signaling pathways, were extensively investigated in ccRCC samples obtained from The Cancer Genome Atlas (TCGA). PLAUR expression in 20 pairs of ccRCC tumor tissues and the adjacent tissues was assessed using qRT-PCR and IHC staining. Additionally, a series of in vitro experiments were conducted to investigate the impact of PLAUR suppression on cellular proliferation, migration, invasion, cell cycle progression, and apoptosis in ccRCC. The Western blot analysis was employed to investigate the expression levels of pivotal genes associated with the PI3K/AKT/mTOR signaling pathway. Results The expression of PLAUR was significantly upregulated in ccRCC compared to normal renal tissues, and higher PLAUR expression in ccRCC was associated with a poorer prognosis than low expression. The in-vitro functional investigations demonstrated that knockdown of PLAUR significantly attenuated the proliferation, migration, and invasion capabilities of ccRCC cells. Concurrently, PLAUR knockdown effectively induced cellular apoptosis, modulated the cell cycle, inhibited the EMT process, and attenuated the activation of the PI3K/AKT/mTOR signaling pathway. PLAUR may represent a key mechanism underlying ccRCC progression. Conclusions The involvement of PLAUR in ccRCC progression may be achieved through the activation of the PI3K/AKT/mTOR signaling pathway, making it a reliable biomarker for the identification and prediction of ccRCC.
Collapse
Affiliation(s)
- Tianzi Qin
- The First Clinical Medical College of Jinan University, Guangzhou, China
- Department of Urology, the Affiliated Hospital of Youjinag Medical University for Nationalities, Baise, China
| | - Minyu Huang
- Department of Urology, the Affiliated Hospital of Youjinag Medical University for Nationalities, Baise, China
| | - Wenjuan Wei
- Department of Ultrasound department, the Affiliated Hospital of Youjinag Medical University for Nationalities, Baise, China
| | - Wei Zhou
- Department of Urology, the Affiliated Hospital of Youjinag Medical University for Nationalities, Baise, China
| | - Qianli Tang
- The First Clinical Medical College of Jinan University, Guangzhou, China
- The Affiliated Hospital of Youjinag Medical University for Nationalities, Baise, China
| | - Qun Huang
- Department of Urology, the Affiliated Hospital of Youjinag Medical University for Nationalities, Baise, China
| | - Ning Tang
- Youjinag Medical University for Nationalities, Baise, China
| | - Shasha Gai
- Youjinag Medical University for Nationalities, Baise, China
| |
Collapse
|
21
|
Tufail M, Wan WD, Jiang C, Li N. Targeting PI3K/AKT/mTOR signaling to overcome drug resistance in cancer. Chem Biol Interact 2024; 396:111055. [PMID: 38763348 DOI: 10.1016/j.cbi.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
This review comprehensively explores the challenge of drug resistance in cancer by focusing on the pivotal PI3K/AKT/mTOR pathway, elucidating its role in oncogenesis and resistance mechanisms across various cancer types. It meticulously examines the diverse mechanisms underlying resistance, including genetic mutations, feedback loops, and microenvironmental factors, while also discussing the associated resistance patterns. Evaluating current therapeutic strategies targeting this pathway, the article highlights the hurdles encountered in drug development and clinical trials. Innovative approaches to overcome resistance, such as combination therapies and precision medicine, are critically analyzed, alongside discussions on emerging therapies like immunotherapy and molecularly targeted agents. Overall, this comprehensive review not only sheds light on the complexities of resistance in cancer but also provides a roadmap for advancing cancer treatment.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
22
|
Huang Q, Liang Z, Huang Q, Li X, Xia J, Huang L, Huang LB, Ou C. Involvement of lncRNAs in the regulation of aerobic glycolysis in hepatocellular carcinoma: Main functions, regulatory mechanisms and potential therapeutic implications (Review). Oncol Rep 2024; 51:84. [PMID: 38666534 PMCID: PMC11082637 DOI: 10.3892/or.2024.8743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/11/2024] [Indexed: 05/04/2024] Open
Abstract
Even under aerobic conditions, tumor cells can reprogram their metabolism to preferentially metabolize glucose into lactic acid. This abnormal metabolic pattern, known as the 'Warburg' effect or aerobic glycolysis, promotes cancer progression. Long non‑coding RNAs (lncRNAs) are RNAs that are >200 nucleotides in length and do not have protein‑coding capabilities. However, these RNAs play a key role in tumor development. There is increasing evidence to indicate that lncRNAs regulate glucose metabolism in tumor cells by affecting metabolic enzymes and some signaling pathways, thereby regulating the occurrence and progression of hepatocellular carcinoma (HCC). Therefore, it is crucial to understand which lncRNAs play a regulatory role in HCC glycolysis and to determine the related molecular mechanisms. The present review summarized and discussed the functions of lncRNAs, focusing on the regulatory mechanisms of lncRNAs in the process of glycolysis in HCC. In addition, the present review suggests the importance of lncRNAs as future therapeutic targets for antitumor cell metabolism.
Collapse
Affiliation(s)
- Qiongqing Huang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Zhengui Liang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Qiqi Huang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Xueyu Li
- Experimental Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Jingjing Xia
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Lining Huang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Lin Bing Huang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Chao Ou
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
23
|
Soleimani M, Thi M, Janfaza S, Ozcan G, Mazurek S, Ozgun G, Maurice-Dror C, Eigl B, Chi K, Kollmannsberger C, Nappi L. Circulating microRNA-155-3p levels predicts response to first line immunotherapy in patients with metastatic renal cell carcinoma. Sci Rep 2024; 14:8603. [PMID: 38615118 PMCID: PMC11016103 DOI: 10.1038/s41598-024-59337-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/09/2024] [Indexed: 04/15/2024] Open
Abstract
Predictive biomarkers of response to immune checkpoint-based therapies (ICI) remain a critically unmet need in the management of advanced renal cell carcinoma (RCC). The complex interplay of the tumour microenvironment (TME) and the circulating immune response has proven to be challenging to decipher. MicroRNAs have gained increasing attention for their role in post-transcriptional gene expression regulation, particularly because they can have immunomodulatory properties. We evaluated the presence of immune-specific extracellular vesicle (EV) microRNAs in the plasma of patients with metastatic RCC (mRCC) prior to initiation of ICI. We found significantly lower levels of microRNA155-3p (miR155) in responders to ICI, when compared to non-responders. This microRNA has unique immunomodulatory properties, thus providing potential biological rationale for our findings. Our results support further work in exploring microRNAs as potential biomarkers of response to immunotherapy.
Collapse
Affiliation(s)
- Maryam Soleimani
- Division of Medical Oncology, British Columbia Cancer-Vancouver Cancer Centre, 600 West 10th Avenue, Vancouver, BC, V5Z 4E6, Canada
| | - Marisa Thi
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Sajjad Janfaza
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Gizem Ozcan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sylwia Mazurek
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Guliz Ozgun
- Division of Medical Oncology, British Columbia Cancer-Vancouver Cancer Centre, 600 West 10th Avenue, Vancouver, BC, V5Z 4E6, Canada
| | - Corinne Maurice-Dror
- Division of Medical Oncology, British Columbia Cancer-Vancouver Cancer Centre, 600 West 10th Avenue, Vancouver, BC, V5Z 4E6, Canada
| | - Bernhard Eigl
- Division of Medical Oncology, British Columbia Cancer-Vancouver Cancer Centre, 600 West 10th Avenue, Vancouver, BC, V5Z 4E6, Canada
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kim Chi
- Division of Medical Oncology, British Columbia Cancer-Vancouver Cancer Centre, 600 West 10th Avenue, Vancouver, BC, V5Z 4E6, Canada
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Christian Kollmannsberger
- Division of Medical Oncology, British Columbia Cancer-Vancouver Cancer Centre, 600 West 10th Avenue, Vancouver, BC, V5Z 4E6, Canada
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lucia Nappi
- Division of Medical Oncology, British Columbia Cancer-Vancouver Cancer Centre, 600 West 10th Avenue, Vancouver, BC, V5Z 4E6, Canada.
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
24
|
Wang L, Qiu Q, Yang D, Cao C, Lu Y, Zeng Y, Jiang W, Shen Y, Ye Y. Clinical research progress of ridaforolimus (AP23573, MK8668) over the past decade: a systemic review. Front Pharmacol 2024; 15:1173240. [PMID: 38584599 PMCID: PMC10995224 DOI: 10.3389/fphar.2024.1173240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 01/19/2024] [Indexed: 04/09/2024] Open
Abstract
Rapamycin, an established mTOR inhibitor in clinical practice, is widely recognized for its therapeutic efficacy. Ridaforolimus, a non-prodrug rapalog, offers improved aqueous solubility, stability, and affinity compared to rapamycin. In recent years, there has been a surge in clinical trials involving ridaforolimus. We searched PubMed for ridaforolimus over the past decade and selected clinical trials of ridaforolimus to make a summary of the research progress of ridaforolimus in clinical trials. The majority of these trials explored the application of ridaforolimus in treating various tumors, including endometrial cancer, ovarian cancer, prostate cancer, breast cancer, renal cell carcinoma, and other solid tumors. These trials employed diverse drug combinations, incorporating agents such as ponatinib, bicalutamide, dalotuzumab, MK-2206, MK-0752, and taxanes. The outcomes of these trials unveiled the diverse potential applications of ridaforolimus in disease treatment. Our review encompassed analyses of signaling pathways, ridaforolimus as a single therapeutic agent, its compatibility in combination with other drugs, and an assessment of adverse events (AEs). We conclude by recommending further research to advance our understanding of ridaforolimus's clinical applications.
Collapse
Affiliation(s)
- Lumin Wang
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
| | - Qining Qiu
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dawei Yang
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chang Cao
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
| | - Yanqin Lu
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
| | - Yulan Zeng
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
| | - Weiwen Jiang
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Shen
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanrong Ye
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China
- Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Lv Q, Shi J, Miao D, Tan D, Zhao C, Xiong Z, Zhang X. miR-1182-mediated ALDH3A2 inhibition affects lipid metabolism and progression in ccRCC by activating the PI3K-AKT pathway. Transl Oncol 2024; 40:101835. [PMID: 38039946 PMCID: PMC10730858 DOI: 10.1016/j.tranon.2023.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
In clear cell renal cell carcinoma (ccRCC), dysregulated lipid metabolism plays a pivotal role in tumor initiation and progression. This study delves into the unexplored landscape of Dysregulated Aldehyde Dehydrogenase 3 Family Member A2 (ALDH3A2) in ccRCC. Using a combination of "fatty acid metabolism" dataset analysis and differentially expressed genes (DEGs) derived from Gene Expression Omnibus (GEO) database, potential metabolic regulators in ccRCC were identified. Subsequent investigations utilizing public databases, clinical samples, and in vitro experiments revealed that ALDH3A2 was down-regulated in ccRCC, mediated by miR-1182, highlighting its role as an independent prognostic factor for patient survival. Functionally, ALDH3A2 exhibited tumor-suppressive properties, impacting ccRCC cell phenotypes and influencing epithelial-mesenchymal transition. Mechanistically, silencing ALDH3A2 promoted lipid accumulation in ccRCC cells by activating the PI3K-AKT pathway, thereby promoting tumor progression. These findings shed light on the critical role of the miR-1182/ALDH3A2 axis in ccRCC tumorigenesis, emphasizing the potential for targeting lipid metabolism as a promising anti-cancer strategy.
Collapse
Affiliation(s)
- Qingyang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Daojia Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Diaoyi Tan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chuanyi Zhao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
26
|
Soares JP, Cardoso R, Almeida V, Pereira AF, Silva AM, Mota MP. The Impact of 8 Weeks of Combined Physical Exercise Training on SIRT3 and mTOR in Lymphocytes, and on Lipid Peroxidation. Healthcare (Basel) 2024; 12:350. [PMID: 38338233 PMCID: PMC10855888 DOI: 10.3390/healthcare12030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The sirtuins (SIRT) protein family and the mechanistic/mammalian target of rapamycin (mTOR) are intracellular molecules that have been involved in the regulation of several biological processes, as well as in various aging-related processes. This pilot study, in small scale, aimed to analyze the effects of an 8-week physical exercise program on SIRT3 and mTOR levels in lymphocytes, as well as on lipid peroxidation in middle aged and older men. A total of 9 participants aged between 56 and 73 years were enrolled in an 8-week physical exercise program comprising cardiovascular and high-intensity interval training. The program involved three sessions per week, each lasting 45-60 min, conducted on non-consecutive days. Tests were conducted before and after the experimental period (pre- and post-training). Assessments included a vertical jump, 20 m velocity, ball throwing, and an aerobic capacity test. Lipid peroxidation (MDA) was measured in plasma as an oxidative stress biomarker. Additionally, sirtuin 3 (SIRT3/β-actin) and mTOR (mTOR/β-actin) levels were measured in isolated lymphocytes extracted from venous blood. Following the exercise training period, our results demonstrated a significant improvement in aerobic capacity (pre-training: 615.4 ± 45.3 m; post-training: 687.2 ± 34.6 m; t = -2.521; p = 0.012) and 20 m velocity (pre-training: 4.6 ± 0.5 s; post-training: 4.3 ± 0.3 s; t = -2.023; p = 0.04). Concerning blood variables, there was a significant decrease in mTOR levels (pre-training: 0.857 ± 0.593; post-training: 0.214 ± 0.097; t = -2.547; p = 0.011), while no changes were observed in SIRT3 (pre-training: 0.608 ± 0.404; post-training: 0.516 ± 0.390; t = 0.533; p = 0.594) and MDA (pre-training: 8420 ± 4615; post-training: 8800 ± 3163; t = -0.533; p = 0.594). The notable reduction in mTOR levels in lymphocytes following the 8-week physical exercise program suggests a potential role of exercise in modulating immune cell dynamics, particularly in middle-aged and older individuals. Furthermore, the exercise regimen resulted in improvements in physical function, including enhanced aerobic capacity and walking velocity.
Collapse
Affiliation(s)
- Jorge Pinto Soares
- Research Centre in Sports Sciences, Health, and Human Development (CIDESD), 5001-801 Vila Real, Portugal;
- Department of Sport of Science Exercise and Health, School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Ricardo Cardoso
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (R.C.); (V.A.)
| | - Vanessa Almeida
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (R.C.); (V.A.)
| | | | - Amélia M. Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (R.C.); (V.A.)
- Department of Biology and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Maria Paula Mota
- Research Centre in Sports Sciences, Health, and Human Development (CIDESD), 5001-801 Vila Real, Portugal;
- Department of Sport of Science Exercise and Health, School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
27
|
Li X, Yang X, Yang X, Xie X, Rui W, He H. Machine Learning-Based Pathomics Model to Predict the Prognosis in Clear Cell Renal Cell Carcinoma. Technol Cancer Res Treat 2024; 23:15330338241307686. [PMID: 39703069 DOI: 10.1177/15330338241307686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a highly lethal urinary malignancy with poor overall survival (OS) rates. Integrating computer vision and machine learning in pathomics analysis offers potential for enhancing classification, prognosis, and treatment strategies for ccRCC. This study aims to create a pathomics model to predict OS in ccRCC patients. In this study, data from ccRCC patients in the TCGA database were used as a training set, with clinical data serving as a validation set. Pathological features were extracted from H&E-stained slides using PyRadiomics, and a pathomics model was constructed using the non-negative matrix factorization (NMF) algorithm. The model's predictive performance was assessed through Kaplan-Meier (KM) survival curves and Cox regression analysis. Additionally, differential gene expression, gene ontology (GO) enrichment analysis, immune infiltration, and mutational analysis were conducted to investigate the underlying biological mechanisms. A total of 368 pathomics features were extracted from H&E-stained slides of ccRCC patients, and a pathomics model comprising two subtypes (Cluster 1 and Cluster 2) was successfully constructed using the NMF algorithm. KM survival curves and Cox regression analysis revealed that Cluster 2 was associated with worse OS. A total of 76 differential genes were identified between the two subtypes, primarily involving extracellular matrix organization and structure. Immune-related genes, including CTLA4, CD80, and TIGIT, were highly expressed in Cluster 2, while the VHL and PBRM1 genes, along with mutations in the PI3K-Akt, HIF-1, and MAPK signaling pathways, exhibited mutation rates exceeding 40% in both subtypes. The machine learning-based pathomics model effectively predicts the OS of ccRCC patients and differentiates between subtypes. The critical roles of the immune-related gene CTLA4 and the PI3K-Akt, HIF-1, and MAPK signaling pathways offer new insights for further research on the molecular mechanisms, diagnosis, and treatment strategies for ccRCC.
Collapse
Affiliation(s)
- Xiangyun Li
- Department of Pathology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqun Yang
- Department of Pathology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xianwei Yang
- Department of Pathology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin Xie
- Department of Urology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenbin Rui
- Department of Urology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongchao He
- Department of Urology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
28
|
De SK. Novel Pyrazino[2,3-b] Pyrazines as mTOR Kinase Inhibitors for Treating Cancer and other Diseases. Curr Med Chem 2024; 31:5657-5659. [PMID: 37493157 DOI: 10.2174/0929867331666230726112328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/18/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023]
Abstract
This paper describes the synthesis of some heteroaryl compounds and compositions comprising an effective amount of one or more such compounds and methods for treating or preventing cancer, inflammatory conditions, immunological conditions, metabolic conditions and conditions treatable or preventable by inhibition of a kinase pathway, comprising administering an adequate amount of a heteroaryl compound to a patient in need thereof. These compounds are mTOR/PI3K/Akt pathway inhibitors.
Collapse
Affiliation(s)
- Surya K De
- Department of Chemistry, Conju-Probe, San Diego, California, USA
- Bharath University, Chennai, Tamil Nadu, 600126, India
| |
Collapse
|
29
|
Wang X, Yao L, Li Z, Zhang J, Ruan M, Mulati Y, Gan Y, Zhang Q. ZNF471 Interacts with BANP to Reduce Tumour Malignancy by Inactivating PI3K/AKT/mTOR Signalling but is Frequently Silenced by Aberrant Promoter Methylation in Renal Cell Carcinoma. Int J Biol Sci 2024; 20:643-663. [PMID: 38169650 PMCID: PMC10758100 DOI: 10.7150/ijbs.89785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
Background: Renal cell carcinoma (RCC) is one of the most common malignant tumours of the urinary system. However, the aetiology and pathogenesis of RCC remain unclear. The C2H2 zinc finger protein (ZNF) family is the largest transcriptional regulatory factor family found in mammals, and Krüppel-associated box domain-containing zinc finger proteins (KRAB-ZFPs) constitute the largest subfamily of the C2H2 zinc finger protein family and play an important role in the occurrence and development of tumours. The aim of this study was to explore the role of abnormal methylation of ZNF471 in the development of renal carcinoma. Methods: In this study, we first used the TCGA and EWAS Data Hub databases to analyse the expression and methylation levels of ZNF471 in renal carcinoma tissues and adjacent normal tissues. Second, we collected samples of renal cancer and adjacent normal tissues at Peking University First Hospital to investigate the expression and methylation level of ZNF471 in renal cancer tissues and the relationships between these levels and the clinicopathological features and prognosis of patients with renal cancer. Next, we investigated the effects of ZNF471 on the proliferation, metastasis, cell cycle progression, and apoptosis of renal cell carcinoma cells by cell biology experiments. Finally, we elucidated the underlying molecular mechanisms of ZNF471 in renal cell carcinoma by transcriptome sequencing, bioinformatics analysis and molecular biology experiments. Results: The expression of ZNF471 in renal carcinoma tissues and cell lines was significantly lower than that in adjacent normal tissues and cell lines due to abnormal promoter CpG methylation. Furthermore, the expression of ZNF471 in renal carcinoma tissues was negatively correlated with tumour stage and grade in patients with renal carcinoma. The results of the cell biology experiments showed that ZNF471 could significantly inhibit the proliferation, migration and cell cycle progression of renal cell carcinoma cells and promote apoptosis in these cells. In addition, ZNF471 could interact with BANP and suppress the malignant phenotype of RCC by inactivating the PI3K/AKT/mTOR signalling pathway. Conclusions: As an important tumour suppressor, ZNF471 can interact with BANP in renal cancer cells and inhibit the activation of the PI3K/AKT/mTOR signalling pathway, thereby inhibiting the occurrence and development of renal cancer.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Lin Yao
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Zheng Li
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Jiaen Zhang
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Mingjian Ruan
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Yelin Mulati
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Ying Gan
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Qian Zhang
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
- Peking University Binhai Hospital, Tianjin 300450, China
| |
Collapse
|
30
|
Sellner F, Compérat E, Klimpfinger M. Genetic and Epigenetic Characteristics in Isolated Pancreatic Metastases of Clear-Cell Renal Cell Carcinoma. Int J Mol Sci 2023; 24:16292. [PMID: 38003482 PMCID: PMC10671160 DOI: 10.3390/ijms242216292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Isolated pancreatic metastases of renal cell carcinoma (IsPMRCC) are a rare manifestation of metastatic, clear-cell renal cell carcinoma (RCC) in which distant metastases occur exclusively in the pancreas. In addition to the main symptom of the isolated occurrence of pancreatic metastases, the entity surprises with additional clinical peculiarities: (a) the unusually long interval of about 9 years between the primary RCC and the onset of pancreatic metastases; (b) multiple pancreatic metastases occurring in 36% of cases; (c) favourable treatment outcomes with a 75% 5-year survival rate; and (d) volume and growth-rate dependent risk factors generally accepted to be relevant for overall survival in metastatic surgery are insignificant in isPMRCC. The genetic and epigenetic causes of exclusive pancreatic involvement have not yet been investigated and are currently unknown. Conversely, according to the few available data in the literature, the following genetic and epigenetic peculiarities can already be identified as the cause of the protracted course: 1. high genetic stability of the tumour cell clones in both the primary tumour and the pancreatic metastases; 2. a low frequency of copy number variants associated with aggressiveness, such as 9p, 14q and 4q loss; 3. in the chromatin-modifying genes, a decreased rate of PAB1 (3%) and an increased rate of PBRM1 (77%) defects are seen, a profile associated with a favourable course; 4. an increased incidence of KDM5C mutations, which, in common with increased PBRM1 alterations, is also associated with a favourable outcome; and 5. angiogenetic biomarkers are increased in tumour tissue, while inflammatory biomarkers are decreased, which explains the good response to TKI therapy and lack of sensitivity to IT.
Collapse
Affiliation(s)
- Franz Sellner
- Department of General, Visceral and Vascular Surgery, Clinic Favoriten Vienna, Kaiser Franz Josef Hospital, 1100 Vienna, Austria
| | - Eva Compérat
- Clinical Institute of Pathology, Medical University Vienna, 1090 Vienna, Austria
| | - Martin Klimpfinger
- Clinical Institute of Pathology, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
31
|
Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, Kulke MH, Baird RD, Prabhu JS, Carbone D, Pecoraro C, Teh DBL, Sethi G, Cavalieri V, Lin KH, Javidi-Sharifi NR, Toska E, Davids MS, Brown JR, Diana P, Stebbing J, Fruman DA, Kumar AP. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 2023; 22:138. [PMID: 37596643 PMCID: PMC10436543 DOI: 10.1186/s12943-023-01827-6] [Citation(s) in RCA: 593] [Impact Index Per Article: 296.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved signal transduction network in eukaryotic cells that promotes cell survival, cell growth, and cell cycle progression. Growth factor signalling to transcription factors in the PAM axis is highly regulated by multiple cross-interactions with several other signaling pathways, and dysregulation of signal transduction can predispose to cancer development. The PAM axis is the most frequently activated signaling pathway in human cancer and is often implicated in resistance to anticancer therapies. Dysfunction of components of this pathway such as hyperactivity of PI3K, loss of function of PTEN, and gain-of-function of AKT, are notorious drivers of treatment resistance and disease progression in cancer. In this review we highlight the major dysregulations in the PAM signaling pathway in cancer, and discuss the results of PI3K, AKT and mTOR inhibitors as monotherapy and in co-administation with other antineoplastic agents in clinical trials as a strategy for overcoming treatment resistance. Finally, the major mechanisms of resistance to PAM signaling targeted therapies, including PAM signaling in immunology and immunotherapies are also discussed.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Aaron S C Foo
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
| | - Hiu Y Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Kenneth C H Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - William Jacot
- Department of Medical Oncology, Institut du Cancer de Montpellier, Inserm U1194, Montpellier University, Montpellier, France
| | - Robert H Jones
- Cardiff University and Velindre Cancer Centre, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Huiyan Eng
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, 560034, India
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Inserm U1015, Université Paris-Saclay, Paris, France
| | - Matthew H Kulke
- Section of Hematology and Medical Oncology, Boston University and Boston Medical Center, Boston, MA, USA
| | - Richard D Baird
- Cancer Research UK Cambridge Centre, Hills Road, Cambridge, CB2 0QQ, UK
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, 560034, India
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Daniel B L Teh
- Departments of Ophthalmology and Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, and Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kevin H Lin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Eneda Toska
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Justin Stebbing
- Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, 216 Sprague Hall, Irvine, CA, USA
| | - Alan P Kumar
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|