1
|
Wyllie MK, Morris CK, Moeller NH, Schares HAM, Moorthy R, Belica CA, Grillo MJ, Demir Ö, Ayoub AM, Carpenter MA, Aihara H, Harris RS, Amaro RE, Harki DA. The Impact of Sugar Conformation on the Single-Stranded DNA Selectivity of APOBEC3A and APOBEC3B Enzymes. ACS Chem Biol 2025; 20:117-127. [PMID: 39680033 DOI: 10.1021/acschembio.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The APOBEC3 family of polynucleotide cytidine deaminases has diverse roles as viral restriction factors and oncogenic mutators. These enzymes convert cytidine to uridine in single-stranded (ss)DNA, inducing genomic mutations that promote drug resistance and tumor heterogeneity. Of the seven human APOBEC3 members, APOBEC3A (A3A) and APOBEC3B (A3B) are most implicated in driving pro-tumorigenic mutations. How these enzymes engage and selectively deaminate ssDNA over RNA is not well understood. We previously conducted molecular dynamics (MD) simulations that support the role of sugar conformation as a key molecular determinant in nucleic acid recognition by A3B. We hypothesize that A3A and A3B selectively deaminate substrates in the 2'-endo (DNA) conformation and show reduced activity for 3'-endo (RNA) conformation substrates. Consequently, we have characterized A3A- and A3B-binding and deaminase activity with chimeric oligonucleotides containing cytidine analogues that promote either the 2'-endo or 3'-endo conformation. Using fluorescence polarization and gel-based deamination assays, we determined that sugar conformation preferentially impacts the ability of these enzymes to deaminate substrates and less so binding to substrates. Using MD simulations, we identify specific active site interactions that promote selectivity based on the 2'-endo conformation. These findings help inform the biological functions of A3A and A3B in providing antiviral innate immunity and pathogenic functions in cancer.
Collapse
Affiliation(s)
- Mackenzie K Wyllie
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis 55455, United States
| | - Clare K Morris
- Department of Chemistry and Biochemistry, University of California, San Diego 92103, United States
| | - Nicholas H Moeller
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis 55455, United States
| | - Henry A M Schares
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis 55455, United States
| | - Ramkumar Moorthy
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis 55455, United States
| | - Christopher A Belica
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis 55455, United States
| | - Michael J Grillo
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis 55455, United States
| | - Özlem Demir
- Department of Chemistry and Biochemistry, University of California, San Diego 92103, United States
| | - Alex M Ayoub
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis 55455, United States
| | - Michael A Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78249, United States
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas 78249, United States
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis 55455, United States
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78249, United States
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas 78249, United States
| | - Rommie E Amaro
- Department of Molecular Biology, University of California, San Diego 92103, United States
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis 55455, United States
| |
Collapse
|
2
|
Smith NJ, Reddin I, Policelli P, Oh S, Zainal N, Howes E, Jenkins B, Tracy I, Edmond M, Sharpe B, Amendra D, Zheng K, Egawa N, Doorbar J, Rao A, Mahadevan S, Carpenter MA, Harris RS, Ali S, Hanley C, Buisson R, King E, Thomas GJ, Fenton TR. Differentiation signals induce APOBEC3A expression via GRHL3 in squamous epithelia and squamous cell carcinoma. EMBO J 2025; 44:1-29. [PMID: 39548236 PMCID: PMC11696371 DOI: 10.1038/s44318-024-00298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024] Open
Abstract
Two APOBEC DNA cytosine deaminase enzymes, APOBEC3A and APOBEC3B, generate somatic mutations in cancer, thereby driving tumour development and drug resistance. Here, we used single-cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires grainyhead-like transcription factor 3 (GRHL3). Thus, in normal tissue, neither deaminase appears to be expressed at high levels during DNA replication, the cell-cycle stage associated with APOBEC-mediated mutagenesis. In contrast, in squamous cell carcinoma we find that, there is expansion of GRHL3expression and activity to a subset of cells undergoing DNA replication and concomitant extension of APOBEC3A expression to proliferating cells. These findings suggest that APOBEC3A may play a functional role during keratinocyte differentiation, and offer a mechanism for acquisition of APOBEC3A mutagenic activity in tumours.
Collapse
Affiliation(s)
- Nicola J Smith
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- School of Biosciences, University of Kent, Canterbury, UK
| | - Ian Reddin
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Bio-R Bioinformatics Research Facility, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paige Policelli
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Cell, Gene and RNA Therapies, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Nur Zainal
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Emma Howes
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin Jenkins
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ian Tracy
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mark Edmond
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin Sharpe
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Damian Amendra
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ke Zheng
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Nagayasu Egawa
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Anjali Rao
- Gilead Sciences, Research Department, 324 Lakeside Dr, Foster City, CA, 94404, USA
| | - Sangeetha Mahadevan
- Gilead Sciences, Research Department, 324 Lakeside Dr, Foster City, CA, 94404, USA
| | - Michael A Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Christopher Hanley
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Emma King
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Gareth J Thomas
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Tim R Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
3
|
Yang Y, Liu N, Gong L. An overview of the functions and mechanisms of APOBEC3A in tumorigenesis. Acta Pharm Sin B 2024; 14:4637-4648. [PMID: 39664421 PMCID: PMC11628810 DOI: 10.1016/j.apsb.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/06/2024] [Accepted: 07/26/2024] [Indexed: 12/13/2024] Open
Abstract
The APOBEC3 (A3) family plays a pivotal role in the immune system by performing DNA/RNA single-strand deamination. Cancers mostly arise from the accumulation of chronic mutations in somatic cells, and recent research has highlighted the A3 family as a major contributor to tumor-associated mutations, with A3A being a key driver gene leading to cancer-related mutations. A3A helps to defend the host against virus-induced tumors by editing the genome of cancer-associated viruses that invade the host. However, when it is abnormally expressed, it leads to persistent, chronic mutations in the genome, thereby fueling tumorigenesis. Notably, A3A is prominently expressed in innate immune cells, particularly macrophages, thereby affecting the functional state of tumor-infiltrating immune cells and tumor growth. Furthermore, the expression of A3A in tumor cells may directly affect their proliferation and migration. A growing body of research has unveiled that A3A is closely related to various cancers, which signifies the potential significance of A3A in cancer therapy. This paper mainly classifies and summarizes the evidence of the relationship between A3A and tumorigenesis based on the potential mechanisms, aiming to provide valuable references for further research on the functions of A3A and its development in the area of cancer therapy.
Collapse
Affiliation(s)
- Yuqi Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Belica CA, Hernandez PC, Carpenter MA, Chen Y, Brown WL, Harris RS, Aihara H. RADD: A real-time FRET-based biochemical assay for DNA deaminase studies. Methods Enzymol 2024; 705:311-345. [PMID: 39389668 PMCID: PMC11483159 DOI: 10.1016/bs.mie.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
In recent years, the connection between APOBEC3 cytosine deaminases and cancer mutagenesis has become ever more apparent. This growing awareness and lack of inhibitory drugs has created a distinct need for biochemical tools that can be used to identify and characterize potential inhibitors of this family of enzymes. In response to this challenge, we have developed a Real-time APOBEC3-mediated DNA Deamination (RADD) assay. The RADD assay provides a rapid, real-time fluorescence readout of APOBEC3 DNA deamination and serves as a crucial addition to the existing APOBEC3 biochemical and cellular toolkit. This method improves upon contemporary DNA deamination assays by offering a more rapid and quantifiable readout as well as providing a platform that is readily adaptable to a high-throughput format for inhibitor discovery. In this chapter we provide a detailed guide for the usage of the RADD assay for the characterization of APOBEC3 enzymes and potential inhibitors.
Collapse
Affiliation(s)
- Christopher A Belica
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.
| | - Patricia C Hernandez
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Michael A Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, United States; Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Yanjun Chen
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, United States; Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
5
|
Belica CA, Carpenter MA, Chen Y, Brown WL, Moeller NH, Boylan IT, Harris RS, Aihara H. A real-time biochemical assay for quantitative analyses of APOBEC-catalyzed DNA deamination. J Biol Chem 2024; 300:107410. [PMID: 38796062 PMCID: PMC11234013 DOI: 10.1016/j.jbc.2024.107410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/28/2024] Open
Abstract
Over the past decade, the connection between APOBEC3 cytosine deaminases and cancer mutagenesis has become increasingly apparent. This growing awareness has created a need for biochemical tools that can be used to identify and characterize potential inhibitors of this enzyme family. In response to this challenge, we have developed a Real-time APOBEC3-mediated DNA Deamination assay. This assay offers a single-step set-up and real-time fluorescent read-out, and it is capable of providing insights into enzyme kinetics. The assay also offers a high-sensitivity and easily scalable method for identifying APOBEC3 inhibitors. This assay serves as a crucial addition to the existing APOBEC3 biochemical and cellular toolkit and possesses the versatility to be readily adapted into a high-throughput format for inhibitor discovery.
Collapse
Affiliation(s)
- Christopher A Belica
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael A Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA; Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Yanjun Chen
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nicholas H Moeller
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ian T Boylan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA; Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA.
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
6
|
Kvach MV, Harjes S, Kurup HM, Jameson GB, Harjes E, Filichev VV. Synthesis of 1,4-azaphosphinine nucleosides and evaluation as inhibitors of human cytidine deaminase and APOBEC3A. Beilstein J Org Chem 2024; 20:1088-1098. [PMID: 38774272 PMCID: PMC11106675 DOI: 10.3762/bjoc.20.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/26/2024] [Indexed: 05/24/2024] Open
Abstract
Nucleoside and polynucleotide cytidine deaminases (CDAs), such as CDA and APOBEC3, share a similar mechanism of cytosine to uracil conversion. In 1984, phosphapyrimidine riboside was characterised as the most potent inhibitor of human CDA, but the quick degradation in water limited the applicability as a potential therapeutic. To improve stability in water, we synthesised derivatives of phosphapyrimidine nucleoside having a CH2 group instead of the N3 atom in the nucleobase. A charge-neutral phosphinamide and a negatively charged phosphinic acid derivative had excellent stability in water at pH 7.4, but only the charge-neutral compound inhibited human CDA, similar to previously described 2'-deoxyzebularine (Ki = 8.0 ± 1.9 and 10.7 ± 0.5 µM, respectively). However, under basic conditions, the charge-neutral phosphinamide was unstable, which prevented the incorporation into DNA using conventional DNA chemistry. In contrast, the negatively charged phosphinic acid derivative was incorporated into DNA instead of the target 2'-deoxycytidine using an automated DNA synthesiser, but no inhibition of APOBEC3A was observed for modified DNAs. Although this shows that the negative charge is poorly accommodated in the active site of CDA and APOBEC3, the synthetic route reported here provides opportunities for the synthesis of other derivatives of phosphapyrimidine riboside for potential development of more potent CDA and APOBEC3 inhibitors.
Collapse
Affiliation(s)
- Maksim V Kvach
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Stefan Harjes
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Harikrishnan M Kurup
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Thomas Building of the University of Auckland, Level 2, 3A Symonds Street, Auckland 1142, New Zealand
| | - Geoffrey B Jameson
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Thomas Building of the University of Auckland, Level 2, 3A Symonds Street, Auckland 1142, New Zealand
| | - Elena Harjes
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Thomas Building of the University of Auckland, Level 2, 3A Symonds Street, Auckland 1142, New Zealand
| | - Vyacheslav V Filichev
- School of Food Technology and Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Thomas Building of the University of Auckland, Level 2, 3A Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
7
|
Belica CA, Carpenter MA, Chen Y, Brown WL, Moeller NH, Boylan IT, Harris RS, Aihara H. A real-time biochemical assay for quantitative analyses of APOBEC-catalyzed DNA deamination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593688. [PMID: 38766133 PMCID: PMC11100776 DOI: 10.1101/2024.05.11.593688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Over the past decade, the connection between APOBEC3 cytosine deaminases and cancer mutagenesis has become increasingly apparent. This growing awareness has created a need for biochemical tools that can be used to identify and characterize potential inhibitors of this enzyme family. In response to this challenge, we have developed a Real-time APOBEC3-mediated DNA Deamination (RADD) assay. This assay offers a single-step set-up and real-time fluorescent read-out, and it is capable of providing insights into enzyme kinetics and also offering a high-sensitivity and easily scalable method for identifying APOBEC3 inhibitors. This assay serves as a crucial addition to the existing APOBEC3 biochemical and cellular toolkit and possesses the versatility to be readily adapted into a high-throughput format for inhibitor discovery.
Collapse
Affiliation(s)
- Christopher A. Belica
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Michael A. Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yanjun Chen
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - William L. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Nicholas H. Moeller
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Ian T. Boylan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| |
Collapse
|
8
|
Smith NJ, Reddin I, Policelli P, Oh S, Zainal N, Howes E, Jenkins B, Tracy I, Edmond M, Sharpe B, Amendra D, Zheng K, Egawa N, Doorbar J, Rao A, Mahadevan S, Carpenter MA, Harris RS, Ali S, Hanley C, Buisson R, King E, Thomas GJ, Fenton TR. Differentiation signals induce APOBEC3A expression via GRHL3 in squamous epithelia and squamous cell carcinoma. RESEARCH SQUARE 2024:rs.3.rs-3997426. [PMID: 38496447 PMCID: PMC10942551 DOI: 10.21203/rs.3.rs-3997426/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Two APOBEC (apolipoprotein-B mRNA editing enzyme catalytic polypeptide-like) DNA cytosine deaminase enzymes (APOBEC3A and APOBEC3B) generate somatic mutations in cancer, driving tumour development and drug resistance. Here we used single cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires Grainyhead-like transcription factor 3 (GRHL3). Thus, in normal tissue, neither deaminase appears to be expressed at high levels during DNA replication, the cell cycle stage associated with APOBEC-mediated mutagenesis. In contrast, we show that in squamous cell carcinoma tissues, there is expansion of GRHL3 expression and activity to a subset of cells undergoing DNA replication and concomitant extension of APOBEC3A expression to proliferating cells. These findings indicate a mechanism for acquisition of APOBEC3A mutagenic activity in tumours.
Collapse
Affiliation(s)
- Nicola J. Smith
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- School of Biosciences, University of Kent, UK
| | - Ian Reddin
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Bio-R Bioinformatics Research Facility, Faculty of Medicine, University of Southampton, UK
| | - Paige Policelli
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Nur Zainal
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Emma Howes
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Benjamin Jenkins
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Ian Tracy
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Mark Edmond
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Benjamin Sharpe
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Damian Amendra
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Ke Zheng
- Department of Pathology, University of Cambridge, UK
| | | | - John Doorbar
- Department of Pathology, University of Cambridge, UK
| | - Anjali Rao
- Gilead Sciences, Research Department, 324 Lakeside Dr. Foster City, CA 94404, USA
| | - Sangeetha Mahadevan
- Gilead Sciences, Research Department, 324 Lakeside Dr. Foster City, CA 94404, USA
| | - Michael A. Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Christopher Hanley
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Emma King
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Gareth J. Thomas
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
| | - Tim R. Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
| |
Collapse
|
9
|
Durfee C, Temiz NA, Levin-Klein R, Argyris PP, Alsøe L, Carracedo S, Alonso de la Vega A, Proehl J, Holzhauer AM, Seeman ZJ, Liu X, Lin YHT, Vogel RI, Sotillo R, Nilsen H, Harris RS. Human APOBEC3B promotes tumor development in vivo including signature mutations and metastases. Cell Rep Med 2023; 4:101211. [PMID: 37797615 PMCID: PMC10591044 DOI: 10.1016/j.xcrm.2023.101211] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/14/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
The antiviral DNA cytosine deaminase APOBEC3B has been implicated as a source of mutation in many cancers. However, despite years of work, a causal relationship has yet to be established in vivo. Here, we report a murine model that expresses tumor-like levels of human APOBEC3B. Animals expressing full-body APOBEC3B appear to develop normally. However, adult males manifest infertility, and older animals of both sexes show accelerated rates of carcinogenesis, visual and molecular tumor heterogeneity, and metastasis. Both primary and metastatic tumors exhibit increased frequencies of C-to-T mutations in TC dinucleotide motifs consistent with the established biochemical activity of APOBEC3B. Enrichment for APOBEC3B-attributable single base substitution mutations also associates with elevated levels of insertion-deletion mutations and structural variations. APOBEC3B catalytic activity is required for all of these phenotypes. Together, these studies provide a cause-and-effect demonstration that human APOBEC3B is capable of driving both tumor initiation and evolution in vivo.
Collapse
Affiliation(s)
- Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rena Levin-Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Prokopios P Argyris
- Division of Oral and Maxillofacial Pathology, College of Dentistry, Ohio State University, Columbus, OH 43210, USA
| | - Lene Alsøe
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Sergio Carracedo
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Alicia Alonso de la Vega
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Joshua Proehl
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Anna M Holzhauer
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zachary J Seeman
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xingyu Liu
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Yu-Hsiu T Lin
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Rachel I Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Hilde Nilsen
- Department of Microbiology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|