1
|
Kringel D, Lötsch J. Knowledge of the genetics of human pain gained over the last decade from next-generation sequencing. Pharmacol Res 2025; 214:107667. [PMID: 39988004 DOI: 10.1016/j.phrs.2025.107667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Next-generation sequencing (NGS) technologies have revolutionized pain research by providing comprehensive insights into genetic variation across the genome. Recent studies have expanded the known spectrum of mutations in genes such as SCN9A and NTRK1, which are commonly mutated in hereditary sensory neuropathies. NGS has uncovered critical alternative splicing events and facilitated single-cell transcriptomics, revealing cellular heterogeneity within tissues. An NGS-based classifier predicted extremely high opioid requirements with 80 % accuracy, highlighting the importance of tailoring opioid therapy based on genetic profiles. Key genes such as GDF5, COL11A1, and TRPV1 have been linked to osteoarthritis risk and pain sensitivity, while HLA-DRB1, TNF, and P2X7 play critical roles in inflammation and pain modulation in rheumatoid arthritis. Innovative tools, such as an atlas of the somatosensory system in neuropathic pain, have been developed based on NGS data, focusing on the dorsal root and trigeminal ganglia. This approach allows the analysis of cellular changes during the development of chronic pain. In the study of rare variants, NGS outperforms single nucleotide variant candidate studies and classical genome-wide association approaches. The complex data generated by NGS enables integrated multi-omics approaches, allowing deeper exploration of the molecular and cellular basis of pain perception. In addition, the characterization of non-coding RNAs has opened new therapeutic avenues. NGS-based pain research faces challenges related to complex data analysis and interpretation of rare genetic variants with unknown biological functions. Nevertheless, NGS offers significant potential for improving personalized pain management and highlights the need for interdisciplinary collaboration to translate findings into clinical practice.
Collapse
Affiliation(s)
- Dario Kringel
- Goethe - University, Institute of Clinical Pharmacology, Theodor Stern Kai 7, Frankfurt am Main 60590, Germany
| | - Jörn Lötsch
- Goethe - University, Institute of Clinical Pharmacology, Theodor Stern Kai 7, Frankfurt am Main 60590, Germany; University of Helsinki, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, 00014, Finland; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany.
| |
Collapse
|
2
|
Ghafari S, Moqadami A, Khalaj-Kondori M. The regulatory role and mechanism of TRPV3 on apoptosis and inflammation in osteoarthritis. EXCLI JOURNAL 2025; 24:325-338. [PMID: 40166423 PMCID: PMC11956525 DOI: 10.17179/excli2024-8109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025]
Abstract
Osteoarthritis (OA) is one of the most common forms of degenerative joint disease characterized by persistent pain, inflammation of the joints, and restricted range of motion among the elderly worldwide. Interleukin-1 beta (IL-1β) is increased in the injured joints and contributes to the OA pathobiology by inducing chondrocyte apoptosis and inflammation. Transient receptor potential (TRP) ion channels have recently been reported as potential players in the modulation of apoptosis and inflammation. Here, we aimed to understand the regulatory role and effect of TRPV3 on apoptosis and inflammation in osteoarthritis by using C28/I2 chondrocyte cells as a model. Chondrocytes were transfected with TRPV3-specific siRNA for 24 hours and then stimulated with IL-1β in vitro. Cell cycle progression and apoptosis were evaluated with flow cytometry. The levels of TRPV3, apoptotic (Bax, Caspase-3, and Bcl-2), and inflammatory (iNOS, COX-2) genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and confirmed with western blot. Treatment of the C28/I2 chondrocyte cells with IL-1β resulted in the over-expression of TRPV3, induction of apoptosis, and over-expression of inflammation indices. Knockdown of TRPV3 significantly reduced the expression of Bax and Caspase 3 proapoptotic factors while increasing the expression of the Bcl-2 antiapoptotic factor in the mRNA and protein levels in the IL-1β-stimulated cells. Its knockdown also decreased the expression of the inflammatory factors iNOS and COX-2 in mRNA and protein levels, confirming that TRPV3 knockdown hinders apoptosis and inflammation in IL-1β-stimulated chondrocytes. In conclusion, we demonstrated that si-TRPV3 treatment significantly mitigates IL-1β-related effects on the C28/I2 chondrocyte cells. These findings suggested that TRPV3 could be an effective target for the treatment of OA. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Sahar Ghafari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Amin Moqadami
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Ponce A, Jimenez L, Roldan ML, Shoshani L. Ion Currents Mediated by TRPA1 Channels in Freshly Dissociated Rat Articular Chondrocytes: Biophysical Properties and Regulation by Inflammatory Processes. Pharmaceuticals (Basel) 2025; 18:332. [PMID: 40143111 PMCID: PMC11944639 DOI: 10.3390/ph18030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Articular chondrocytes are specialized cells in synovial joint cartilage, responsible for maintaining and regenerating the extracellular matrix. Inflammation disrupts the balance between matrix synthesis and degradation, leading to cartilage breakdown. This process, commonly observed in conditions such as osteoarthritis, results in chondrocyte dysfunction and accelerates joint degeneration. Since TRPA1 channels are implicated in inflammatory processes, this study investigates the expression of TRPA1 channels in freshly dissociated rat articular chondrocytes and their modulation by anti-inflammatory agents. Methods: We used the whole-cell patch-clamp method to assess TRPA1 channel expression and modulation. Results: Freshly dissociated chondrocytes exhibit ion currents attributable to TRPA1 channel expression, with higher magnitudes observed in medium-sized cells. These currents decrease over time in primary culture. Treatment with pro-inflammatory agents (IL-1α, IL-1β, and LPS) increases TRPA1's current magnitude. IL-1β treatment directly induces transient TRPA1 currents. Several signaling components activated during inflammation contribute to the IL-1β-induced enhancement of TRPA1 current density, including IL-1 R1, the adaptor protein MyD88, and the downstream kinases IRAK1 and IRAK4. Conclusions: Our findings demonstrate that healthy rat chondrocytes express functional TRPA1 channels and that inflammatory processes modulate their expression.
Collapse
Affiliation(s)
- Arturo Ponce
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City 07360, Mexico; (L.J.); (M.L.R.); (L.S.)
| | | | | | | |
Collapse
|
4
|
Jie L, Zhang L, Fu H, Kang J, Huang Z, Zhu Z, Yin S, Wu P, Wang P, Mei W, Li X. Xibining inhibition of the PI3K-AKT pathway reduces M1 macrophage polarization to ameliorate KOA synovial inflammation and nociceptive sensitization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156281. [PMID: 39615215 DOI: 10.1016/j.phymed.2024.156281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/25/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Pain is the most critical symptom of knee osteoarthritis(KOA), which seriously affects the quality of life of patients. Xibining (XBN), a traditional herbal compound, has achieved good results in the clinical treatment of KOA, and its mechanism of action is worth exploring in depth. OBJECTIVE In vivo and in vitro models of KOA were constructed, and the potential drug action mechanism of XBN in improving osteoarthritis pain was explored in combination with transcriptomics. METHODS In vitro experiments were also conducted to explore the effects of different treatments of BMDMs on TRP channels in DRG neurons by constructing a coculture system of BMDMs and DRG neurons. The specific mechanism by which XBN affects BMDMs was explored via participatory transcriptomics. RESULTS Our results showed that KOA aggravated macrophage infiltration in synovial tissues and DRG tissues and increased the transcriptional and translational levels of TRPA1, TRPV1, and TRPM8 in synovial tissues and DRG tissues; XBN treatment improved inflammation in synovial tissues and macrophage infiltration in DRG tissues, and it decreased the transcriptional and translational levels of TRPA1, TRPV1, and TRPM8, consistent with the results of behavioral tests to improve nociceptive sensitization induced by KOA. The results from in vitro experiments showed that promoting macrophage M1-type polarization exacerbated TRP channel activation in DRG neurons and that XBN acted by inhibiting macrophage M1-type polarization. A reference transcriptome study showed that XBN may play a role in inhibiting M1 macrophage-type polarization in KOA by suppressing the PI3K-AKT pathway in BMDMs. We verified the conclusions obtained from transcriptomics via in vitro experiments. We place greater emphasis on the role that the intrinsic immune system plays in the area of pain control in osteoarthritis. CONCLUSION XBN improve KOA nociceptive sensitization by modulating the PI3K/Akt signaling pathway, attenuating the level of synovial inflammation and inhibiting M1-type macrophage polarization in synovial and DRG tissues in KOA mice.
Collapse
Affiliation(s)
- Lishi Jie
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210023, PR China.; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210023, PR China
| | - Li Zhang
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210023, PR China
| | - Houyu Fu
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210023, PR China.; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210023, PR China
| | - Junfeng Kang
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210023, PR China.; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210023, PR China.; The Affiliated Hospital of Shanxi University of Traditional Chinese Medicine, Taiyuan 030002, PR China
| | - Zeling Huang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210023, PR China.; Department of Orthopaedics and Traumatology, Suzhou Hospital of Traditional Chinese medicine, Suzhou, PR China
| | - Zaishi Zhu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210023, PR China.; Department of Orthopaedics and Traumatology, Suzhou Hospital of Traditional Chinese medicine, Suzhou, PR China
| | - Songjiang Yin
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210023, PR China
| | - Peng Wu
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210023, PR China
| | - Peimin Wang
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210023, PR China.; Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing, PR China
| | - Wei Mei
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210023, PR China..
| | - Xiaochen Li
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210023, PR China..
| |
Collapse
|
5
|
Xing L, Li H, Miao D, Wei H, Zhang S, Xue Q, Wang H, Li J. Intermittent and mild cold stimulation enhances immune function of broilers via co-regulation of CIRP and TRPM8 on NF-κB and MAPK signaling pathways. Poult Sci 2024; 103:103984. [PMID: 38986357 PMCID: PMC11296020 DOI: 10.1016/j.psj.2024.103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Improving immune function is an important indicator for establishing cold adaptation in broilers. In the study, to explore the effects and molecular mechanisms of intermittent and mild cold stimulation (IMCS) on the immune function of broilers, CIRP and TRPM8, induced by cold stimulation, as well as the NF-κB and MAPK pathways which play an important role in immune response, were selected to investigate. A total of 192 one-day-old broilers (Ross 308) were selected and randomly divided into the control group (CC) and the cold stimulation group (CS). The broilers in CC were raised at normal feeding temperature from d 1 to 43, while the broilers in CS were subjected to cold stimulation from day 15 to 35, with a temperature 3 °C below that of the CC group for 5 h, at 1 d intervals. The results showed that IMCS had little effect on the broiler hearts, and the myocardial structure was not damaged. On d 22, IMCS significantly increased the mRNA levels of CIRP, TRPM8, P65, P38, COX-2, TNF-α, IFN- γ, IL-6, IL-10, and the protein levels of CIRP, P65, P38, IL-1β and iNOS in the hearts, and the levels of CIRP and all cytokines in the serum (P ≤ 0.05). The mRNA and protein levels of IκB-α were significantly reduced (P ≤ 0.05). On d 36, the mRNA levels of TRPM8, P65, ERK, and IL-10 in the hearts and the content of COX-2 in the serum in CS were increased significantly (P ≤ 0.05), while the mRNA levels of IκB-α, P38, and IL-1β were decreased significantly (P ≤ 0.05). On d 43, IMCS significantly upregulated the mRNA levels of TRPM8, IFN- γ, IL-4, IL-6, IL-10, and the protein levels of IκB-α, P38, and the levels of iNOS, TNF-α, IL6 and IL10 in the serum (P ≤ 0.05); whereas it significantly downregulated CIRP, JNK, P38, iNOS, TNF-α mRNA levels, and CIRP, P65, ERK, JNK, IL1β and iNOS protein levels (P ≤ 0.05). Therefore, IMCS can enhance broiler immune function through co-regulation of CIRP and TRPM8 on the NF-κB and MAPK pathways, which facilitate the cold adaptation in broilers.
Collapse
Affiliation(s)
- Lu Xing
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Haochen Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Deyang Miao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Shijie Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Qiang Xue
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Hongyu Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| |
Collapse
|
6
|
Zhou R, Fu W, Vasylyev D, Waxman SG, Liu CJ. Ion channels in osteoarthritis: emerging roles and potential targets. Nat Rev Rheumatol 2024; 20:545-564. [PMID: 39122910 DOI: 10.1038/s41584-024-01146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Osteoarthritis (OA) is a highly prevalent joint disease that causes substantial disability, yet effective approaches to disease prevention or to the delay of OA progression are lacking. Emerging evidence has pinpointed ion channels as pivotal mediators in OA pathogenesis and as promising targets for disease-modifying treatments. Preclinical studies have assessed the potential of a variety of ion channel modulators to modify disease pathways involved in cartilage degeneration, synovial inflammation, bone hyperplasia and pain, and to provide symptomatic relief in models of OA. Some of these modulators are currently being evaluated in clinical trials. This review explores the structures and functions of ion channels, including transient receptor potential channels, Piezo channels, voltage-gated sodium channels, voltage-dependent calcium channels, potassium channels, acid-sensing ion channels, chloride channels and the ATP-dependent P2XR channels in the osteoarthritic joint. The discussion spans channel-targeting drug discovery and potential clinical applications, emphasizing opportunities for further research, and underscoring the growing clinical impact of ion channel biology in OA.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Wenyu Fu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Dmytro Vasylyev
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Yongming L, Yizhe X, Zhikai Q, Yupeng W, Xiang W, Mengyuan Y, Guoqing D, Hongsheng Z. Identification of ion channel-related genes as diagnostic markers and potential therapeutic targets for osteoarthritis through bioinformatics and machine learning-based approaches. Biomarkers 2024; 29:285-297. [PMID: 38767974 DOI: 10.1080/1354750x.2024.2358316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a debilitating joint disorder characterized by the progressive degeneration of articular cartilage. Although the role of ion channels in OA pathogenesis is increasingly recognized, diagnostic markers and targeted therapies remain limited. METHODS In this study, we analyzed the GSE48556 dataset to identify differentially expressed ion channel-related genes (DEGs) in OA and normal controls. We employed machine learning algorithms, least absolute shrinkage and selection operator(LASSO), and support vector machine recursive feature elimination(SVM-RFE) to select potential diagnostic markers. Then the gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were performed to explore the potential diagnostic markers' involvement in biological pathways. Finally, weighted gene co-expression network analysis (WGCNA) was used to identify key genes associated with OA. RESULTS We identified a total of 47 DEGs, with the majority involved in transient receptor potential (TRP) pathways. Seven genes (CHRNA4, GABRE, HTR3B, KCNG2, KCNJ2, LRRC8C, and TRPM5) were identified as the best characteristic genes for distinguishing OA from healthy samples. We performed clustering analysis and identified two distinct subtypes of OA, C1, and C2, with differential gene expression and immune cell infiltration profiles. Then we identified three key genes (PPP1R3D, ZNF101, and LOC651309) associated with OA. We constructed a prediction model using these genes and validated it using the GSE46750 dataset, demonstrating reasonable accuracy and specificity. CONCLUSIONS Our findings provide novel insights into the role of ion channel-related genes in OA pathogenesis and offer potential diagnostic markers and therapeutic targets for the treatment of OA.
Collapse
Affiliation(s)
- Liu Yongming
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiong Yizhe
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Qian Zhikai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wang Yupeng
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Wang Xiang
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yin Mengyuan
- Department of Traditional Chinese Orthopedics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Du Guoqing
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Zhan Hongsheng
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Mobasheri A, Matta C, Giles W, Choi H, Ivanavicius S. The interplay between inflammatory mediators and mechanotransduction is mediated by ion channels in articular chondrocytes: Functional consequences in osteoarthritis. Phys Life Rev 2024; 49:123-126. [PMID: 38692123 DOI: 10.1016/j.plrev.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Affiliation(s)
- Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China; World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Wayne Giles
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Heonsik Choi
- Healthcare Research Institute, Kolon Advanced Research Cluster, Magok-dong, Gangseo-gu, Seoul, South Korea
| | | |
Collapse
|
9
|
Koivisto AP, Szallasi A. Targeting TRP Channels for Pain, Itch and Neurogenic Inflammation. Int J Mol Sci 2023; 25:320. [PMID: 38203491 PMCID: PMC10779384 DOI: 10.3390/ijms25010320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Transient receptor potential (TRP) channels are multifunctional signaling molecules with important roles in health and disease [...].
Collapse
Affiliation(s)
| | - Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
10
|
Bourne LE, Hesketh A, Sharma A, Bucca G, Bush PG, Staines KA. The effects of physiological and injurious hydrostatic pressure on murine ex vivo articular and growth plate cartilage explants: an RNAseq study. Front Endocrinol (Lausanne) 2023; 14:1278596. [PMID: 38144567 PMCID: PMC10740163 DOI: 10.3389/fendo.2023.1278596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Chondrocytes are continuously exposed to loads placed upon them. Physiological loads are pivotal to the maintenance of articular cartilage health, while abnormal loads contribute to pathological joint degradation. Similarly, the growth plate cartilage is subject to various loads during growth and development. Due to the high-water content of cartilage, hydrostatic pressure is considered one of the main biomechanical influencers on chondrocytes and has been shown to play an important role in the mechano-regulation of cartilage. Methods Herein, we conducted RNAseq analysis of ex vivo hip cap (articular), and metatarsal (growth plate) cartilage cultures subjected to physiological (5 MPa) and injurious (50 MPa) hydrostatic pressure, using the Illumina platform (n = 4 replicates). Results Several hundreds of genes were shown to be differentially modulated by hydrostatic pressure, with the majority of these changes evidenced in hip cap cartilage cultures (375 significantly upregulated and 322 downregulated in 5 MPa versus control; 1022 upregulated and 724 downregulated in 50 MPa versus control). Conversely, fewer genes were differentially affected by hydrostatic pressure in the metatarsal cultures (5 significantly upregulated and 23 downregulated in 5 MPa versus control; 7 significantly upregulated and 19 downregulated in 50 MPa versus control). Using Gene Ontology annotations for Biological Processes, in the hip cap data we identified a number of pathways that were modulated by both physiological and injurious hydrostatic pressure. Pathways upregulated in response to 50 MPa versus control, included those involved in the generation of precursor metabolites and cellular respiration. Biological processes that were downregulated in this tissue included ossification, connective tissue development, and chondrocyte differentiation. Discussion Collectively our data highlights the divergent chondrocyte phenotypes in articular and growth plate cartilage. Further, we show that the magnitude of hydrostatic pressure application has distinct effects on gene expression and biological processes in hip cap cartilage explants. Finally, we identified differential expression of a number of genes that have previously been identified as osteoarthritis risk genes, including Ctsk, and Chadl. Together these data may provide potential genetic targets for future investigations in osteoarthritis research and novel therapeutics.
Collapse
Affiliation(s)
- Lucie E. Bourne
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Andrew Hesketh
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Aikta Sharma
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Giselda Bucca
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Peter G. Bush
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Katherine A. Staines
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
11
|
Maleeva EE, Palikova YA, Palikov VA, Kazakov VA, Simonova MA, Logashina YA, Tarasova NV, Dyachenko IA, Andreev YA. Potentiating TRPA1 by Sea Anemone Peptide Ms 9a-1 Reduces Pain and Inflammation in a Model of Osteoarthritis. Mar Drugs 2023; 21:617. [PMID: 38132938 PMCID: PMC10744431 DOI: 10.3390/md21120617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Progressive articular surface degradation during arthritis causes ongoing pain and hyperalgesia that lead to the development of functional disability. TRPA1 channel significantly contributes to the activation of sensory neurons that initiate neurogenic inflammation and mediates pain signal transduction to the central nervous system. Peptide Ms 9a-1 from the sea anemone Metridium senile is a positive allosteric modulator of TRPA1 and shows significant anti-inflammatory and analgesic activity in different models of pain. We used a model of monosodium iodoacetate (MIA)-induced osteoarthritis to evaluate the anti-inflammatory properties of Ms 9a-1 in comparison with APHC3 (a polypeptide modulator of TRPV1 channel) and non-steroidal anti-inflammatory drugs (NSAIDs) such as meloxicam and ibuprofen. Administration of Ms 9a-1 (0.1 mg/kg, subcutaneously) significantly reversed joint swelling, disability, thermal and mechanical hypersensitivity, and grip strength impairment. The effect of Ms 9a-1 was equal to or better than that of reference drugs. Post-treatment histological analysis revealed that long-term administration of Ms9a-1 could reduce inflammatory changes in joints and prevent the progression of cartilage and bone destruction at the same level as meloxicam. Peptide Ms 9a-1 showed significant analgesic and anti-inflammatory effects in the model of MIA-induced OA, and therefore positive allosteric modulators could be considered for the alleviation of OA symptoms.
Collapse
Affiliation(s)
- Ekaterina E. Maleeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia (M.A.S.); (Y.A.L.)
| | - Yulia A. Palikova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia; (Y.A.P.); (V.A.P.); (V.A.K.); (I.A.D.)
| | - Viktor A. Palikov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia; (Y.A.P.); (V.A.P.); (V.A.K.); (I.A.D.)
| | - Vitaly A. Kazakov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia; (Y.A.P.); (V.A.P.); (V.A.K.); (I.A.D.)
| | - Maria A. Simonova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia (M.A.S.); (Y.A.L.)
| | - Yulia A. Logashina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia (M.A.S.); (Y.A.L.)
| | - Nadezhda V. Tarasova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, Bld. 2, 119991 Moscow, Russia;
| | - Igor A. Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia; (Y.A.P.); (V.A.P.); (V.A.K.); (I.A.D.)
| | - Yaroslav A. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia (M.A.S.); (Y.A.L.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, Bld. 2, 119991 Moscow, Russia;
| |
Collapse
|