1
|
Atienza-Navarro I, Del Marco A, Alves-Martinez P, Garcia-Perez MDLA, Raya-Marin A, Benavente-Fernandez I, Gil C, Martinez A, Lubian-Lopez S, Garcia-Alloza M. Glycogen Synthase Kinase-3β Inhibitor VP3.15 Ameliorates Neurogenesis, Neuronal Loss and Cognitive Impairment in a Model of Germinal Matrix-intraventricular Hemorrhage of the Preterm Newborn. Transl Stroke Res 2025; 16:467-483. [PMID: 38231413 PMCID: PMC11976767 DOI: 10.1007/s12975-023-01229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024]
Abstract
Advances in neonatology have significantly reduced mortality rates due to prematurity. However, complications of prematurity have barely changed in recent decades. Germinal matrix-intraventricular hemorrhage (GM-IVH) is one of the most severe complications of prematurity, and these children are prone to suffer short- and long-term sequelae, including cerebral palsy, cognitive and motor impairments, or neuropsychiatric disorders. Nevertheless, GM-IVH has no successful treatment. VP3.15 is a small, heterocyclic molecule of the 5-imino-1,2,4-thiadiazole family with a dual action as a phosphodiesterase 7 and glycogen synthase kinase-3β (GSK-3β) inhibitor. VP3.15 reduces neuroinflammation and neuronal loss in other neurodegenerative disorders and might ameliorate complications associated with GM-IVH. We administered VP3.15 to a mouse model of GM-IVH. VP3.15 reduces the presence of hemorrhages and microglia in the short (P14) and long (P110) term. It ameliorates brain atrophy and ventricle enlargement while limiting tau hyperphosphorylation and neuronal and myelin basic protein loss. VP3.15 also improves proliferation and neurogenesis as well as cognition after the insult. Interestingly, plasma gelsolin levels, a feasible biomarker of brain damage, improved after VP3.15 treatment. Altogether, our data support the beneficial effects of VP3.15 in GM-IVH by ameliorating brain neuroinflammatory, vascular and white matter damage, ultimately improving cognitive impairment associated with GM-IVH.
Collapse
Affiliation(s)
- Isabel Atienza-Navarro
- Division of Physiology, School of Medicine, University of Cadiz, C/Dr. Marañon 3, 3rd Floor, 11002, Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Angel Del Marco
- Division of Physiology, School of Medicine, University of Cadiz, C/Dr. Marañon 3, 3rd Floor, 11002, Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Pilar Alves-Martinez
- Division of Physiology, School of Medicine, University of Cadiz, C/Dr. Marañon 3, 3rd Floor, 11002, Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | | | - Alvaro Raya-Marin
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Isabel Benavente-Fernandez
- Area of Pediatrics, Department of Child and Mother Health and Radiology, School of Medicine, University of Cadiz, Cadiz, Spain
- Section of Neonatology, Division of Pediatrics, Puerta del Mar University Hospital, Avda. Ana de Viya sn, 11007, Cadiz, Spain
| | - Carmen Gil
- Centro de Investigaciones, Biologicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones, Biologicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
- Centro de Investigaciones Biomedicas en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Avda. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Simon Lubian-Lopez
- Area of Pediatrics, Department of Child and Mother Health and Radiology, School of Medicine, University of Cadiz, Cadiz, Spain.
- Section of Neonatology, Division of Pediatrics, Puerta del Mar University Hospital, Avda. Ana de Viya sn, 11007, Cadiz, Spain.
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, University of Cadiz, C/Dr. Marañon 3, 3rd Floor, 11002, Cadiz, Spain.
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cadiz, Spain.
| |
Collapse
|
2
|
Hochstetler A, Hehnly C, Dawes W, Harris D, Sadegh C, Mangano FT, Lanjewar SN, Chau MJ. Research priorities for non-invasive therapies to improve hydrocephalus outcomes. Fluids Barriers CNS 2025; 22:24. [PMID: 40033423 DOI: 10.1186/s12987-025-00632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
The Hydrocephalus Association organized two workshops with the support of the Rudi Schulte Research Institute and Cincinnati Children's Hospital Medical Center entitled "Developing Non-Invasive Hydrocephalus Therapies: Molecular and Cellular Targets", held September 27-29, 2023, in Dallas, TX, and "Developing Non-Invasive Hydrocephalus Therapies: Advancing Towards Clinical Trials", held April 12-13, 2024, in Cincinnati, OH. The goal of these workshops was to explore the frontiers of ongoing research for non-invasive therapies for the treatment of hydrocephalus across all etiologies and to improve patient outcomes at all stages of diagnosis and management. During the consensus-building discussions throughout the research workshops, basic, translational, and clinical scientists aimed to identify the next steps to develop novel treatments for hydrocephalus. This detailed report discusses the research priorities that emerged from these workshops to inspire researchers and guide studies towards better treatment for people living with hydrocephalus.
Collapse
Affiliation(s)
- Alexandra Hochstetler
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Christine Hehnly
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - William Dawes
- Department of Paediatric Neurosurgery, Oxford University Hospital, Oxford, UK
| | | | - Cameron Sadegh
- Department of Neurosurgery, University of California-Davis, Sacramento, CA, 95817, USA
| | - Francesco T Mangano
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | | | - Monica J Chau
- Research Department, Hydrocephalus Association, Bethesda, MD, 20814, USA.
| |
Collapse
|
3
|
Wu W, Li Q. Mechanisms of hydrocephalus after intraventricular haemorrhage: a review. Childs Nerv Syst 2024; 41:49. [PMID: 39674974 DOI: 10.1007/s00381-024-06711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Intraventricular haemorrhage (IVH) is bleeding within the ventricular system, which in adults is usually mainly secondary to cerebral haemorrhage and subarachnoid haemorrhage. Hydrocephalus is one of the most common complications of intraventricular haemorrhage, which is characterised by an increase in intracranial pressure due to an increased accumulation of cerebrospinal fluid within the ventricular system, and is closely related to the patient's prognosis. Surgical methods such as shunt surgery have been used to treat secondary hydrocephalus in recent years and have been effective in improving the survival and prognosis of patients with hydrocephalus. However, complications such as shunt blockage and intracranial infection are often faced after surgery. Moreover, little is known about the mechanism of hydrocephalus secondary to intraventricular haemorrhage. This review discusses the mechanisms regarding the occurrence of secondary hydrocephalus after intraventricular haemorrhage in adults in terms of blood clot obstruction, altered cerebrospinal fluid dynamics, inflammation, and blood composition.
Collapse
Affiliation(s)
- Wenchao Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No. 157, Health Care RoadHeilongjiang Province, Harbin City, Harbin, China
| | - Qingsong Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No. 157, Health Care RoadHeilongjiang Province, Harbin City, Harbin, China.
| |
Collapse
|
4
|
Zemlin M, Härtel C. Neonatal Immunology. Int J Mol Sci 2024; 25:9395. [PMID: 39273342 PMCID: PMC11395510 DOI: 10.3390/ijms25179395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
"There can be no keener revelation of a society's soul than the way in which it treats its children [...].
Collapse
Affiliation(s)
- Michael Zemlin
- Department for General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany
- Center for Digital Neurotechnologies Saar (CDNS), 66421 Homburg, Germany
- Center for Genderspecific Biology and Medicine (CGBM), 66421 Homburg, Germany
| | - Christoph Härtel
- Department of Pediatrics, University of Wuerzburg, 97080 Würzburg, Germany
- International Research Training Group 1911, University of Lübeck, 23538 Lübeck, Germany
- German Center of Infection Research, Hamburg-Lübeck-Borstel-Riems, 23538 Lübeck, Germany
- Interdisciplinary Center of Clinical Research, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
5
|
Zhang T, Xia F, Wan Y, Xi G, Ya H, Keep RF. Complement Inhibition Reduces Early Erythrolysis, Attenuates Brain Injury, Hydrocephalus, and Iron Accumulation after Intraventricular Hemorrhage in Aged Rats. Transl Stroke Res 2024:10.1007/s12975-024-01273-6. [PMID: 38943026 DOI: 10.1007/s12975-024-01273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Blood components released by erythrolysis play an important role in secondary brain injury and posthemorrhagic hydrocephalus (PHH) after intraventricular hemorrhage (IVH). The current study examined the impact of N-acetylheparin (NAH), a complement inhibitor, on early erythrolysis, PHH and iron accumulation in aged rats following IVH. This study, on 18-months-old male Fischer 344 rats, was in 3 parts. First, rats had an intracerebroventricular injection of autologous blood (IVH) mixed with NAH or saline, or saline alone. After MRI at four hours, Western blot and immunohistochemistry examined complement activation and electron microscopy choroid plexus and periventricular damage. Second, rats had an IVH with NAH or vehicle, or saline. Rats underwent serial MRI at 4 h and 1 day to assess ventricular volume and erythrolysis. Immunohistochemistry and H&E staining examined secondary brain injury. Third, rats had an IVH with NAH or vehicle. Serial MRIs on day 1 and 28 assessed ventricular volume and iron accumulation. H&E staining and immunofluorescence evaluated choroid plexus phagocytes. Complement activation was found 4 h after IVH, and co-injection of NAH inhibited that activation. NAH administration attenuated erythrolysis, reduced ventricular volume, alleviated periventricular and choroid plexus injury at 4 h and 1 day after IVH. NAH decreased iron accumulation, the number of choroid plexus phagocytes, and attenuated hydrocephalus at 28 days after IVH. Inhibiting complement can reduce early erythrolysis, attenuates hydrocephalus and iron accumulation after IVH in aged animals.
Collapse
Affiliation(s)
- Tianjie Zhang
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Xia
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yingfeng Wan
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Hua Ya
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
| |
Collapse
|