1
|
Lu Y, Zhu F, Zhou X, Li Y, Rong G, Liu N, Hong J, Cheng Y. A Supramolecular Deferoxamine-Crisaborole Nanoparticle Targets Ferroptosis, Inflammation, and Oxidative Stress in the Treatment of Retinal Ischemia/Reperfusion Injury. NANO LETTERS 2025; 25:1058-1066. [PMID: 39670541 DOI: 10.1021/acs.nanolett.4c05012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Retinal ischemia-reperfusion (IR) injury is a major cause of vision loss worldwide, with ferroptosis, oxidative stress, and inflammation playing key roles in its pathogenesis. Currently, treatments targeting multiple aspects of this condition are limited. This study introduces a supramolecular nanoparticle combining the phosphodiesterase 4 (PDE4) inhibitor crisaborole and the ferroptosis inhibitor deferoxamine to address these pathological processes. Crisaborole forms a dynamic bond with deferoxamine via benzoxaborole-catechol chemistry, creating an amphiphilic molecule that assembles into nanoparticles. Treatment with these nanoparticles enhances glutathione peroxidase 4 (GPX4) levels, downregulates ferroptosis-related genes [Acyl-CoA synthetase long chain family member 4 (Acsl4), heme oxygenase 1 (Hmox1)], reduces inflammatory markers (interleukin-1 beta, interleukin-6, tumor necrosis factor alpha), and decreases reactive oxygen species. Electroretinogram and histochemical analysis confirm the nanoparticles' superior protective effects compared to control treatments. This study proposes a novel nanoparticle approach for retinal IR injury by simultaneously targeting multiple pathogenic pathways.
Collapse
Affiliation(s)
- Yiteng Lu
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, China
| | - Fang Zhu
- Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xujiao Zhou
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, China
| | - Yuhan Li
- Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Guangyu Rong
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, China
- Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Nan Liu
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, China
- Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiaxu Hong
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, China
- NHC Key laboratory of Myopia and Related Eye Diseases, Shanghai, 200031, China
- Shanghai Engineering Research Center of Synthetic Immunology, Shanghai, 200032, China
- Department of Ophthalmology, Children's Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, 201102, China
| | - Yiyun Cheng
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, China
- Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
2
|
Hao XD, Xu WH, Zhang X, Xue J. Targeting ferroptosis: a novel therapeutic strategy for the treatment of retinal diseases. Front Pharmacol 2024; 15:1489877. [PMID: 39539617 PMCID: PMC11557320 DOI: 10.3389/fphar.2024.1489877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Ferroptosis plays a vital role in the progression of various retinal diseases. The analysis of the mechanism of retinal cell ferroptosis has brought new targeted strategies for treating retinal vascular diseases, retinal degeneration and retinal nerve diseases, and is also a major scientific issue in the field of ferroptosis. In this review, we summarized results from currently available in vivo and in vitro studies of multiple eye disease models, clarified the pathological role and molecular mechanism of ferroptosis in retinal diseases, summed up the existing pharmacological agents targeting ferroptosis in retinal diseases as well as highlighting where future research efforts should be directed for the application of ferroptosis targeting agents. This review indicates that ferroptosis of retinal cells is involved in the progression of age-related/inherited macular degeneration, blue light-induced retinal degeneration, glaucoma, diabetic retinopathy, and retinal damage caused by retinal ischemia-reperfusion via multiple molecular mechanisms. Nearly 20 agents or extracts, including iron chelators and transporters, antioxidants, pharmacodynamic elements from traditional Chinese medicine, ferroptosis-related protein inhibitors, and neuroprotective agents, have a remissioning effect on retinal disease in animal models via ferroptosis inhibition. However, just a limited number of agents have received approval or are undergoing clinical trials for conditions such as iron overload-related diseases. The application of most ferroptosis-targeting agents in retinal diseases is still in the preclinical stage, and there are no clinical trials yet. Future research should focus on the development of more potent ferroptosis inhibitors, improved drug properties, and ideally clinical testing related to retinal diseases.
Collapse
Affiliation(s)
- Xiao-Dan Hao
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Wen-Hua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, China
| | - Xiaoping Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Junqiang Xue
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Wan Y, Li J, Pu J, Yang J, Pei C, Qi Y. Role of caspase-11 non-canonical inflammasomes in retinal ischemia/reperfusion injury. Mol Med 2024; 30:159. [PMID: 39333859 PMCID: PMC11429960 DOI: 10.1186/s10020-024-00938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Retinal ischemia/reperfusion (IR) injury is a common pathological process in many ophthalmic diseases. Interleukin-1β (IL-1β) is an important inflammatory factor involved in the pathology of retinal IR injury, but the mechanism by which IL-1β is regulated in such injury remains unclear. Caspase-11 non-canonical inflammasomes can regulate the synthesis and secretion of IL-1β, but its role in retinal IR injury has not been elucidated. This study aimed to evaluate the role of caspase-11 non-canonical inflammasomes in retinal IR injury. METHODS Retinal IR injury was induced in C57BL/6J mice by increasing the intraocular pressure to 110 mmHg for 60 min. The post-injury changes in retinal morphology and function and in IL-1β expression were compared between caspase-11 gene knockout (caspase-11-/-) mice and wild-type (WT) mice. Morphological and functional changes were evaluated using hematoxylin-eosin staining and retinal whole mount staining and using electroretinography (ERG), respectively. IL-1β expression in the retina was measured using enzyme-linked immunosorbent assay (ELISA). The levels of caspase-11-related protein were measured using western blot analysis. The location of caspase-11 in the retina was determined via immunofluorescence staining. Mouse type I astrocytes C8-D1A cells were used to validate the effects of caspase-11 simulation via hypoxia in vitro. Small-interfering RNA targeting caspase-11 was constructed. Cell viability was evaluated using the MTT assay. IL-1β expression in supernatant and cell lysate was measured using ELISA. The levels of caspase-11-related protein were measured using western blot analysis. RESULTS Retinal ganglion cell death and retinal edema were more ameliorated, and the ERG b-wave amplitude was better after retinal IR injury in caspase-11-/- mice than in WT mice. Further, caspase-11-/- mice showed lower protein expressions of IL-1β, cleaved caspase-1, and gasdermin D (GSDMD) in the retina after retinal IR injury. Caspase-11 protein was expressed in retinal glial cells, and caspase-11 knockdown played a protective role against hypoxia in C8-D1A cells. The expression levels of IL-1β, cleaved caspase-1, and GSDMD were inhibited after hypoxia in the si-caspase-11 constructed cells. CONCLUSIONS Retinal IR injury activates caspase-11 non-canonical inflammasomes in glial cells of the retina. This results in increased protein levels of GSDMD and IL-1β and leads to damage in the inner layer of the retina.
Collapse
Affiliation(s)
- Yong Wan
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jiayu Li
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jialei Pu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jing Yang
- Department of Health Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Cheng Pei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yun Qi
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
4
|
Chen D, Miao S, Chen X, Wang Z, Lin P, Zhang N, Yang N. Regulated Necrosis in Glaucoma: Focus on Ferroptosis and Pyroptosis. Mol Neurobiol 2024; 61:2542-2555. [PMID: 37910286 DOI: 10.1007/s12035-023-03732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Glaucoma is one of the most common causes of irreversible blindness worldwide. This neurodegenerative disease is characterized by progressive and irreversible damage to retinal ganglion cells (RGCs) and optic nerves, which can lead to permanent loss of peripheral and central vision. To date, maintaining long-term survival of RGCs using traditional treatments, such as medication and surgery, remains challenging, as these do not promote optic nerve regeneration. Therefore, it is of great clinical and social significance to investigate the mechanisms of optic nerve degeneration in depth and find reliable targets to provide pioneering methods for the prevention and treatment of glaucoma. Regulated necrosis is a form of genetically programmed cell death associated with the maintenance of homeostasis and disease progression in vivo. An increasing body of innovative evidence has recognized that aberrant activation of regulated necrosis pathways is a common feature in neurodegenerative diseases, such as Alzheimer's, Parkinson's, and glaucoma, resulting in unwanted loss of neuronal cells and function. Among them, ferroptosis and pyroptosis are newly discovered forms of regulated cell death actively involved in the pathophysiological processes of RGCs loss and optic nerve injury. This was shown by a series of in vivo and in vitro studies, and these mechanisms have been emerging as a key new area of scientific research in ophthalmic diseases. In this review, we focus on the molecular mechanisms of ferroptosis and pyroptosis and their regulatory roles in the pathogenesis of glaucoma, with the aim of exploring their implications as potential therapeutic targets and providing new perspectives for better clinical decision-making in glaucoma treatment.
Collapse
Affiliation(s)
- Duan Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Sen Miao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Xuemei Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Zhiyi Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Pei Lin
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| |
Collapse
|
5
|
Yoshida T, Yokoi T, Tanaka T, Matsuzaka E, Saida Y, Nishina S, Takada S, Shimizu S, Azuma N. Modeling of Retina and Optic Nerve Ischemia-Reperfusion Injury through Hypoxia-Reoxygenation in Human Induced Pluripotent Stem Cell-Derived Retinal Ganglion Cells. Cells 2024; 13:130. [PMID: 38247823 PMCID: PMC10814087 DOI: 10.3390/cells13020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Retinal ganglion cells (RGCs) are specialized projection neurons that constitute part of the retina, and the death of RGCs causes various eye diseases, but the mechanism of RGC death is still unclear. Here, we induced cell death in human induced pluripotent stem cell (hiPSC)-derived RGC-rich retinal tissues using hypoxia-reoxygenation in vitro. Flow cytometry, immunochemistry, and Western blotting showed the apoptosis and necrosis of RGCs under hypoxia-reoxygenation, and they were rescued by an apoptosis inhibitor but not by a necrosis inhibitor. This revealed that the cell death induced in our model was mainly due to apoptosis. To our knowledge, this is the first model to reproduce ischemia-reperfusion in hiPSC-derived RGCs. Thus, the efficacy of apoptosis inhibitors and neuroprotective agents can be evaluated using this model, bringing us closer to clinical applications.
Collapse
Affiliation(s)
- Tomoyo Yoshida
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
- Department of Pathological Cell Biology, Tokyo Medical and Dental University, 1-5-4, Yushima, Bunkyo-ku, Tokyo 1138510, Japan;
| | - Tadashi Yokoi
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
- Department of ophthalmology, Kyorin University, 6-20-2, Arakawa, Mitaka, Tokyo 1818611, Japan
| | - Taku Tanaka
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
| | - Emiko Matsuzaka
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
| | - Yuki Saida
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
| | - Sachiko Nishina
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
| | - Shuji Takada
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Tokyo Medical and Dental University, 1-5-4, Yushima, Bunkyo-ku, Tokyo 1138510, Japan;
| | - Noriyuki Azuma
- National Center for Child Health and Development, 2-10-1, O-kura, Setagaya-ku, Tokyo 1578535, Japan; (T.Y.); (T.Y.); (E.M.); (S.N.)
- Department of Developmental and Regenerative Biology, Tokyo Medical and Dental University, 1-5-4, Yushima, Bunkyo-ku, Tokyo 1138510, Japan
| |
Collapse
|
6
|
Zhang D, Jia X, Lin D, Ma J. Melatonin and ferroptosis: Mechanisms and therapeutic implications. Biochem Pharmacol 2023; 218:115909. [PMID: 37931663 DOI: 10.1016/j.bcp.2023.115909] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron-dependent lipid peroxidation leading to oxidative damage to cell membranes. Cell sensitivity to ferroptosis is influenced by factors such as iron overload, lipid metabolism, and the regulation of the antioxidant system. Melatonin, with its demonstrated capacity to chelate iron, modulate iron metabolism proteins, regulate lipid peroxidation, and regulate antioxidant systems, has promise as a potential therapeutic agent in mediating ferroptosis. The availability of approved drugs targeting ferroptosis is limited; therefore, melatonin is a candidate for broad application due to its safety and efficacy in attenuating ferroptosis in noncancerous diseases. Melatonin has been demonstrated to attenuate ferroptosis in cellular and animal models of noncancerous diseases, showcasing effectiveness in organs such as the heart, brain, lung, liver, kidney, and bone. This review outlines the molecular mechanisms of ferroptosis, investigates melatonin's potential effects on ferroptosis, and discusses melatonin's therapeutic potential as a promising intervention against diseases associated with ferroptosis. Through this discourse, we aim to lay a strong foundation for developing melatonin as a therapeutic strategy to modulate ferroptosis in a variety of disease contexts.
Collapse
Affiliation(s)
- Dongni Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiaotong Jia
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
7
|
Dvoriantchikova G, Fleishaker M, Ivanov D. Molecular mechanisms of NMDA excitotoxicity in the retina. Sci Rep 2023; 13:18471. [PMID: 37891222 PMCID: PMC10611720 DOI: 10.1038/s41598-023-45855-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023] Open
Abstract
NMDA excitotoxicity, as a part of glutamate excitotoxicity, has been proposed to contribute significantly to many retinal diseases. Therefore, understanding mechanisms of NMDA excitotoxicity will provide further insight into the mechanisms of many retinal diseases. To study mechanisms of NMDA excitotoxicity in vivo, we used an animal model in which NMDA (20 mM, 2 µL) was injected into the vitreous of mice. We also used high-throughput expression profiling, various animals with reduced expression of target genes, and animals treated with the oral iron chelator deferiprone. We found that the expression of many genes involved in inflammation, programmed cell death, free radical production, oxidative stress, and iron and calcium signaling was significantly increased 24 h after NMDA treatment. Meanwhile, decreased activity of the pro-inflammatory TNF signaling cascade and decreased levels of ferrous iron (Fe2+, required for free radical production) led to significant neuroprotection in NMDA-treated retinas. Since increased TNF signaling activity and high Fe2+ levels trigger regulated necrosis, which, in turn, lead to inflammation, we proposed an important role in NMDA excitotoxicity of a positive feedback loop in which regulated necrosis promotes inflammation, which subsequently triggers regulated necrosis.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Miami, FL, 33136, USA
| | - Michelle Fleishaker
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Miami, FL, 33136, USA
| | - Dmitry Ivanov
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Miami, FL, 33136, USA.
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|