1
|
Zhou W, Hu J, Nie J. Identification of Hub Genes and Analysis of their Regulatory miRNAs in Patients with Thymoma Associated Myasthenia Gravis Based on TCGA Database. Microrna 2025; 14:49-58. [PMID: 39192657 DOI: 10.2174/0122115366299210240823062457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/03/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Myasthenia gravis is an autoimmune disease, and 30% of patients with thymoma often have myasthenia gravis. Patients with thymoma-associated MG (TAMG) have many different clinical presentations compared to non-MG thymoma (NMG), yet their gene expression differences remain unclear. OBJECTIVE In this study, we analyzed the Differentially Expressed Genes (DEGs) and analyzed their regulatory microRNAs (miRNAs) in TAMG, which will further clarify the possible pathogenesis of TAMG. METHODS DEGs were calculated using the RNA-sequencing data of TAMG and NMG downloaded from The Cancer Genome Atlas (TCGA) database. R software was then used to analyze the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of DEGs, while STRING was applied to build the protein-protein interaction (PPI) network and Cytoscape to identify and visualize the hub genes. Immune infiltration significances of hub genes were also explored by using the TIMER database and TCGA database. Upstream microRNAs (miRNAs) of the hub genes were predicted by online software. RESULTS We comparatively analyzed the gene expression differences between TAMG and NMG groups. A total of 977 DEGs were identified between the two groups (|log fold change (FC)| >2, adjusted P value <0.050), with 555 down-regulated genes and 422 up-regulated genes. Five top hub genes (CTNNB1, EGFR, SOX2, ERBB2, and EGF) were recognized in the PPI network. Analysis based on the TIMER and TCGA databases suggested that 5 hub genes were correlated with multiple immune cell infiltrations and immune checkpoint-related markers, such as PDCD1, CTLA-4, and CD274, in TAMG patients. Lastly, 5 miRNAs were identified to have the potential function of regulating the hub gene expression. CONCLUSION Our study identified 5 hub genes (CTNNB1, EGFR, SOX2, ERBB2, and EGF) and their 5 regulatory miRNAs in TAMG, and the hub genes were correlated with multiple immune cell infiltrations and immune checkpoint-related markers. Our findings could help partially clarify the pathophysiology of TAMG, which could be new potential targets for subsequent clinical immunotherapy.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jia Hu
- Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jun Nie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
2
|
Soureas K, Papadimitriou MA, Malandrakis P, Papanota AM, Adamopoulos PG, Ntanasis-Stathopoulos I, Liacos CI, Gavriatopoulou M, Sideris DC, Kastritis E, Dimopoulos MA, Scorilas A, Terpos E, Avgeris M. Small RNA-seq and clinical evaluation of tRNA-derived fragments in multiple myeloma: Loss of mitochondrial i-tRF HisGTG results in patients' poor treatment outcome. Br J Haematol 2024; 204:1790-1800. [PMID: 38414235 DOI: 10.1111/bjh.19332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/29/2024]
Abstract
Despite the substantial progress in multiple myeloma (MM) therapy nowadays, treatment resistance and disease relapse remain major clinical hindrances. Herein, we have investigated tRNA-derived fragment (tRF) profiles in MM and precursor stages (smoldering MM/sMM; monoclonal gammopathy of undetermined significance/MGUS), aiming to unveil potential MM-related tRFs in ameliorating MM prognosis and risk stratification. Small RNA-seq was performed to profile tRFs in bone marrow CD138+ plasma cells, revealing the significant deregulation of the mitochondrial internal tRFHisGTG (mt-i-tRFHisGTG) in MM versus sMM/MGUS. The screening cohort of the study consisted of 147 MM patients, and mt-i-tRFHisGTG levels were quantified by RT-qPCR. Disease progression was assessed as clinical end-point for survival analysis, while internal validation was performed by bootstrap and decision curve analyses. Screening cohort analysis highlighted the potent association of reduced mt-i-tRFHisGTG levels with patients' bone disease (p = 0.010), osteolysis (p = 0.023) and with significantly higher risk for short-term disease progression following first-line chemotherapy, independently of patients' clinical data (HR = 1.954; p = 0.036). Additionally, mt-i-tRFHisGTG-fitted multivariate models led to superior risk stratification of MM patients' treatment outcome and prognosis compared to disease-established markers. Notably, our study highlighted mt-i-tRFHisGTG loss as a powerful independent indicator of post-treatment progression of MM patients, leading to superior risk stratification of patients' treatment outcome.
Collapse
Affiliation(s)
- Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Malandrakis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Aristea-Maria Papanota
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Christine-Ivy Liacos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra General Hospital, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| |
Collapse
|
3
|
Kim JW, Lee HJ, Lee JY, Park SR, Kim YJ, Hwang IG, Kyun Bae W, Byun JH, Kim JS, Kang EJ, Lee J, Shin SJ, Chang WJ, Kim EO, Sa JK, Park KH. Phase II study of nivolumab in patients with genetic alterations in DNA damage repair and response who progressed after standard treatment for metastatic solid cancers (KM-06). J Immunother Cancer 2024; 12:e008638. [PMID: 38485184 PMCID: PMC10941126 DOI: 10.1136/jitc-2023-008638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Immune-modulating antibodies targeting programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) have demonstrated promising antitumor efficacy in various types of cancers, especially highly mutated ones. Genetic alterations in DNA damage response and repair (DDR) genes can lead to genetic instability, often accompanied by a high tumor mutation burden (TMB). However, few studies have validated the aberration of DDR genes as a predictive biomarker for response to immune-modulating antibodies. METHODS The KM-06 open-label, multicenter, single-arm, phase II trial evaluated the safety and efficacy of nivolumab in refractory solid cancers with DDR gene mutations assessed by clinically targeted sequencing. Nivolumab (3 mg/kg) was administered every 2 weeks until disease progression, unacceptable toxicity, or for 24 months. The primary endpoint was the objective response rate (ORR) as per RECIST V.1.1 criteria. RESULTS A total of 48 patients were enrolled in the study (median age 61, 58.3% male). The most common cancer type was colorectal cancer (41.7%), followed by prostate and biliary tract cancer (8.3% each). Eight patients achieved a partial response as their best overall response, resulting in an ORR of 17.8%. The disease control rate was 60.0%. The median progression-free survival was 2.9 months. Treatment-related adverse events of any grade and grade ≥3 occurred in 44 (91.7%) and 4 (8.3%) patients, respectively. Clinically targeted sequencing data inferred both TMB and microsatellite instability (MSI). Using a TMB cut-off of 12 mut/Mb, there were significant differences in overall survival (p=0.00035), progression-free survival (p=0.0061), and the best overall response (p=0.05). In the RNA sequencing analysis, nivolumab responders showed activation of the interleukin signaling pathway. Patients who experienced early progression presented high epithelial-mesenchymal transition signaling pathway activation. The responders exhibited a marked increase in PD-1-/Ki67+CD8 T cells at the early stage of treatment (C3D1) compared with non-responders (p=0.03). CONCLUSIONS In this phase II trial, nivolumab demonstrated moderate efficacy and manageable toxicity in patients with solid cancer harboring DDR gene mutations. A high TMB (>12 mut/Mb) and MSI score (>2.5) determined through clinically target sequencing presented significant discriminatory power for the nivolumab response. TRIAL REGISTRATION NUMBER NCT04761744.
Collapse
Affiliation(s)
- Ju Won Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Hyo Jin Lee
- Division of Hemato-Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Ji Yoon Lee
- Department of Biomedical Informatics and Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sook Ryun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yu Jung Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - In Gyu Hwang
- Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine and Graduate School of Medicine, Dongjak-gu, Republic of Korea
| | - Woo Kyun Bae
- Division of Hemato-Oncology, Department of Internal Medicine, Chonnam National University Medical School & Hwasun Hospital, Hwasun, Republic of Korea
| | - Jae Ho Byun
- Division of Oncology, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Jung Sun Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Eun Joo Kang
- Division of Hemato-Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jeeyun Lee
- Division of Hemato-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Sang Joon Shin
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seodaemun-gu, Republic of Korea
| | - Won Jin Chang
- Division of Hemato-Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Eun-Ok Kim
- Medical Science Research Center, College of Medicine, Korea University, Seongbuk-gu, Republic of Korea
| | - Jason K Sa
- Department of Biomedical Informatics and Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyong Hwa Park
- Division of Hemato-Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| |
Collapse
|