1
|
Rustin P, Jacobs HT, Terzioglu M, Bénit P. Mitochondrial heat production: the elephant in the lab…. Trends Biochem Sci 2025:S0968-0004(25)00051-9. [PMID: 40169300 DOI: 10.1016/j.tibs.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
It has long been established that heat represents a major part of the energy released during the oxidation of mitochondrial substrates. However, with a few exceptions, the release of heat is rarely mentioned other than as being produced at the expense of ATP, without having any specific function. Here, after briefly surveying the literature on mitochondrial heat production, we argue for its cellular and organismal importance, sharing our opinions as to what could account for this unbalanced portrayal of mitochondrial energy transactions.
Collapse
Affiliation(s)
- Pierre Rustin
- Université Paris Cité, Inserm, Centre de Recherche des Cordeliers, 75006 Paris, France.
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere University FI-33014 Tampere, Finland
| | - Mügen Terzioglu
- Faculty of Medicine and Health Technology, Tampere University FI-33014 Tampere, Finland
| | - Paule Bénit
- Université Paris Cité, Inserm, Centre de Recherche des Cordeliers, 75006 Paris, France
| |
Collapse
|
2
|
Khoso MA, Liu H, Zhao T, Zhao W, Huang Q, Sun Z, Dinislam K, Chen C, Kong L, Zhang Y, Liu X. Impact of plant-derived antioxidants on heart aging: a mechanistic outlook. Front Pharmacol 2025; 16:1524584. [PMID: 40191425 PMCID: PMC11969199 DOI: 10.3389/fphar.2025.1524584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Heart aging involves a complex interplay of genetic and environmental influences, leading to a gradual deterioration of cardiovascular integrity and function. Age-related physiological changes, including ventricular hypertrophy, diastolic dysfunction, myocardial fibrosis, increased arterial stiffness, and endothelial dysfunction, are influenced by key mechanisms like autophagy, inflammation, and oxidative stress. This review aims to explore the therapeutic potential of plant-derived bioactive antioxidants in mitigating heart aging. These compounds, often rich in polyphenols, flavonoids, and other phytochemicals, exhibit notable antioxidant, anti-inflammatory, and cardioprotective properties. These substances have intricate cardioprotective properties, including the ability to scavenge ROS, enhance endogenous antioxidant defenses, regulate signaling pathways, and impede fibrosis and inflammation-promoting processes. By focusing on key molecular mechanisms linked to cardiac aging, antioxidants produced from plants provide significant promise to reduce age-related cardiovascular decline and improve general heart health. Through a comprehensive analysis of preclinical and clinical studies, this work highlights the mechanisms associated with heart aging and the promising effects of plant-derived antioxidants. The findings may helpful for researchers in identifying specific molecules with therapeutic and preventive potential for aging heart.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Heng Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Tong Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Wenjie Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Qiang Huang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Zeqi Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Khuzin Dinislam
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Chen Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Lingyi Kong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| | - Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, China
| |
Collapse
|
3
|
Fan X, Song Y, Liu Y, Song J, Zeng J, Li Z, Xu J, Xue C. Effects of mitochondrial lipidome alterations on quality deterioration of Larimichthys crocea postmortem storage: New insight from the perspective of mediating mitochondria-dependent apoptosis. Food Chem 2025; 468:142461. [PMID: 39693887 DOI: 10.1016/j.foodchem.2024.142461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Apoptosis occurs in the myocyte of fish postmortem storage. Based on the important role of mitochondrial lipid molecules in regulating apoptosis, the study aims to investigate the potential impact of mitochondrial lipids on apoptosis and quality deterioration of large yellow croaker. A total of 1079 lipid molecule species in 13 classes were identified in mitochondria. PC and PE decreased by 17.40 % and 28.31 % at 24 h, which induces mitochondrial damage and induces oxidative stress. Cytochrome c induced CL oxidation mediated by ROS (Oxidized CL increased by 30.65 %), resulting in cytochrome c release and activates caspase-3. The cytochrome c of cytoplasm and caspase-3 activity increased by 79.32 % and 82.72 % from 0 to 24 h, which led to significant apoptosis. Accumulation of ROS and activated caspase-3 during apoptosis induced muscle oxidation and softening. These findings provide new insights into the relationship between mitochondrial lipid changes and apoptosis and quality deterioration in fish postmortem storage.
Collapse
Affiliation(s)
- Xiaowei Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Yanjun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Junyi Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Junpeng Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China
| | - Zhaojie Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China; Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266235, China.
| |
Collapse
|
4
|
Zou R, Wang L, Zhang X, Dong S, Zhang Z, Chen D, Liu L, Liu A, Amevor FK, Lan X, Cui Z. Multi-omics analyses reveal that sirtuin 5 promotes the development of pre-recruitment follicles by inhibiting the autophagy-lysosome pathway in chicken granulosa cells. Poult Sci 2025; 104:104884. [PMID: 39961169 PMCID: PMC11872079 DOI: 10.1016/j.psj.2025.104884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
The development of pre-recruitment follicles plays a critical role in determining egg-laying performance in poultry. This study combines proteomic and metabolomic analyses to explore changes in proteins and metabolites, to elucidate key regulatory mechanism involved in chicken pre-recruitment follicular development. Histological examination revealed a significant increase in yolk deposition in small yellow follicles (SYF) compared to small white follicles (SWF). Metabolomics analysis identified significantly enriched differential metabolites (DMs) between SWF and SYF in pathways such as Lysosome, Ferroptosis, Biosynthesis of unsaturated fatty acids, and Tryptophan metabolism. Particularly, Adenosine-5'-Diphosphate (ADP) was downregulated during follicular recruitment and was significantly enriched in the lysosome pathway. Proteomic analyses revealed that differentially expressed proteins (DEPs) in SWF and SYF were enriched in pathways including Lysosome, Glutathione metabolism, Cholesterol metabolism, Arginine and proline metabolism, and amino acid biosynthesis. Among these DEPs, NAD-dependent protein deacetylase sirtuin 5 (SIRT5) was significantly upregulated, while lysosomal-associated membrane protein 1 (LAMP1) was down-regulated during the development of pre-recruitment follicles. SIRT5 was linked to the negative regulation of reactive oxygen species metabolism, whereas LAMP1 was associated with lysosome and autophagy pathways. Further validation experiments demonstrated high expression of SIRT5 in SYF, particularly in granulosa cells (GCs). Silencing SIRT5 in GCs resulted in increased ROS production and upregulated expression of autophagy-related proteins LC3Ⅱ and Beclin1, as well as lysosome markers LAMP1. Conversely, lipid droplet deposition and p62 expression were suppressed. inhibited. Taken together, these findings suggest that SIRT5 upregulation promotes the development of pre-recruitment follicles by inhibiting the autophagy-lysosome pathway in chicken GCs.
Collapse
Affiliation(s)
- Ruotong Zou
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, China
| | - Li Wang
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Xi Zhang
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, China
| | - Siyao Dong
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, China
| | - Zhidan Zhang
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, China
| | - Donghong Chen
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, China
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, China
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, China
| | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, China
| |
Collapse
|
5
|
Wang R, He X, Su S, Bai J, Liu H, Zhou F. Methacrylated silk fibroin based composite hydrogel with ROS-scavenging and osteogenic ability to orchestrate diabetic bone regeneration. Int J Biol Macromol 2025; 294:138945. [PMID: 39706404 DOI: 10.1016/j.ijbiomac.2024.138945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The repair of diabetic bone defects is still filled with enormous challenges. Excessive reactive oxygen species (ROS) are regenerated in diabetic bone defect sites which is harmful to bone regeneration. Therefore, it's to a good strategy to scavenge the excess ROS to provide a friendly environment for diabetic bone defects repair. Herein, a novel composite hydrogel with ROS-scavenging and osteogenic ability is constructed. This methacrylated silk fibroin based composite hydrogel is capable of releasing tannin acid and inorganic ion, which can reduce oxidative stress, restore homeostasis and enhance osteogenesis. In vitro results indicated that the composite hydrogel could promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) under oxidative stress condition. Furthermore, in vivo results suggested that it can significantly promote bone regeneration in diabetic bone defects. In conclusion, this study provides critical insight into the biological mechanism and potential therapy for diabetic bone regeneration.
Collapse
Affiliation(s)
- Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Xi He
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Shilong Su
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Jinwu Bai
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Haifeng Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China.
| |
Collapse
|
6
|
Rondeau JD, Lipari S, Mathieu B, Beckers C, Van de Velde JA, Mignion L, Da Silva Morais M, Kreuzer M, Colauzzi I, Capeloa T, Pruschy M, Gallez B, Sonveaux P. Mitochondria-targeted antioxidant MitoQ radiosensitizes tumors by decreasing mitochondrial oxygen consumption. Cell Death Discov 2024; 10:514. [PMID: 39730333 DOI: 10.1038/s41420-024-02277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024] Open
Abstract
Hypoxic tumors are radioresistant stemming from the fact that oxygen promotes reactive oxygen species (ROS) propagation after water radiolysis and stabilizes irradiation-induced DNA damage. Therefore, an attractive strategy to radiosensitize solid tumors is to increase tumor oxygenation at the time of irradiation, ideally above a partial pressure of 10 mm-Hg at which full radiosensitization can be reached. Historically, the many attempts to increase vascular O2 delivery have had limited efficacy, but mathematical models predicted that inhibiting cancer cell respiration would be more effective. Here, we report that mitochondria-targeted antioxidant MitoQ can radiosensitize human breast tumors in mice. This was not a class effect, as neither MitoTEMPO nor SKQ1 shared this property. At clinically relevant nanomolar concentrations, MitoQ completely abrogated the oxygen consumption of several human cancer cell lines of different origins, which was associated with a glycolytic switch. Using orthotopic breast cancer models in mice, we observed that pretreating hypoxic MDA-MB-231 tumors with MitoQ delayed tumor growth with both single dose irradiation and clinically relevant fractionated radiotherapy. Oxygenated MCF7 tumors were not radiosensitized, suggesting an oxygen enhancement effect of MitoQ. Because MitoQ already successfully passed Phase I clinical trials, our findings foster its clinical evaluation in combination with radiotherapy.
Collapse
Affiliation(s)
- Justin D Rondeau
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Sara Lipari
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Barbara Mathieu
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Brussels, Belgium
| | - Claire Beckers
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Justine A Van de Velde
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Lionel Mignion
- Nuclear and Electron Spin Technologies (NEST) Platform, LDRI, UCLouvain, Brussels, Belgium
| | - Mauricio Da Silva Morais
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Marvin Kreuzer
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ilaria Colauzzi
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Tania Capeloa
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
- WEL Research Institute, WELBIO Department, Wavre, Belgium.
| |
Collapse
|
7
|
Xu L, Ren W, Long Y, Yang B, Chen L, Chen W, Chen S, Cao Y, Wu D, Qu J, Li H, Yu Y, Zhang A, Wang S, Wang H, Chen T, Fan G, Li Q, Chen Z. Antisenescence Expansion of Mesenchymal Stem Cells Using Piezoelectric β-Poly(vinylidene fluoride) Film-Based Culture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63207-63224. [PMID: 39503875 DOI: 10.1021/acsami.4c12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Regenerative therapies based on mesenchymal stem cells (MSCs) show promise in treating a wide range of disorders. However, the replicative senescence of MSCs during in vitro expansion poses a challenge to obtaining a substantial quantity of high-quality MSCs. In this investigation, a piezoelectric β-poly(vinylidene fluoride) film-based culture plate (β-CP) was developed with an antisenescence effect on cultured human umbilical cord-derived MSCs. Compared to traditional tissue culture plates (TCPs) and α-poly(vinylidene fluoride) film-based culture plates, the senescence markers of p21, p53, interleukin-6 and insulin-like growth factor-binding protein-7, stemness markers of OCT4 and NANOG, and telomere length of MSCs cultured on β-CPs were significantly improved. Additionally, MSCs at passage 18 cultured on β-CPs showed significantly better multipotency and pro-angiogenic capacities in vitro, and higher wound healing abilities in a mouse model. Mechanistically, β-CPs rejuvenated senescent MSCs by improving mitochondrial functions and mitigating oxidative and glycoxidative stresses. Overall, this study presents β-CPs as a promising approach for efficient and straightforward antisenescence expansion of MSCs while preserving their stemness, thereby holding great potential for large-scale production of MSCs for clinical application in cell therapies.
Collapse
Affiliation(s)
- Liuyue Xu
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenxiang Ren
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yaoying Long
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bianlei Yang
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Chen
- Department of Hematology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Wenlan Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Siyi Chen
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yulin Cao
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Wu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiao Qu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - He Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yali Yu
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anyuan Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shan Wang
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongxiang Wang
- Department of Hematology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Ting Chen
- Hubei Engineering Research Center for Application of Extracellular Vesicles, Hubei University of Science and Technology, Xianning 437100, China
| | - Guifen Fan
- School of Optical and Electronic Information, Key Lab of Functional Materials for Electronic Information(B), MOE, Huazhong University of Science and Technology, Wuhan 430074, China
- Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou 325035, China
| | - Qiubai Li
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Application of Extracellular Vesicles, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhichao Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
8
|
Yuan Y, Li R, Zhang Y, Zhao Y, Liu Q, Wang J, Yan X, Su J. Attenuating mitochondrial dysfunction-derived reactive oxygen species and reducing inflammation: the potential of Daphnetin in the viral pneumonia crisis. Front Pharmacol 2024; 15:1477680. [PMID: 39494349 PMCID: PMC11527716 DOI: 10.3389/fphar.2024.1477680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Amidst the global burden of viral pneumonia, mitigating the excessive inflammatory response induced by viral pneumonia has emerged as a significant challenge. Pneumovirus infections can lead to the persistent activation of M1 macrophages, culminating in cytokine storms that exacerbate pulmonary inflammation and contribute to the development of pulmonary fibrosis. Mitochondria, beyond their role as cellular powerhouses, are pivotal in integrating inflammatory signals and regulating macrophage polarization. Mitochondrial damage in alveolar macrophages is postulated to trigger excessive release of reactive oxygen species (ROS), thereby amplifying macrophage-mediated inflammatory pathways. Recent investigations have highlighted the anti-inflammatory potential of Daphnetin, particularly in the context of cardiovascular and renal disorders. This review elucidates the mechanisms by which viral infection-induced mitochondrial damage promotes ROS generation, leading to the phenotypic shift of alveolar macrophages towards a pro-inflammatory state. Furthermore, we propose a mechanism whereby Daphnetin attenuates inflammatory signaling by inhibiting excessive release of mitochondrial ROS, thus offering mitochondrial protection. Daphnetin may represent a promising pharmacological intervention for viral pneumonia and could play a crucial role in addressing future pandemics.
Collapse
Affiliation(s)
- Yuan Yuan
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Runyuan Li
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yinji Zhang
- Jilin Province Xidian Pharmaceutical Sci-Tech Development Co.,Ltd, Panshi, Jilin, China
| | - Yuanxin Zhao
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qingqing Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jian Wang
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoyu Yan
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
9
|
Zhang Z, Wu H, Zhang A, Tan M, Yan S, Jiang D. Transfer of heavy metals along the food chain: A review on the pest control performance of insect natural enemies under heavy metal stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135587. [PMID: 39186843 DOI: 10.1016/j.jhazmat.2024.135587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Heavy metal contamination represents a critical global environmental concern. The movement of heavy metals through the food chain inevitably subjects insect natural enemies to heavy metal stress, leading to various adverse effects. This review assesses the risks posed by heavy metal exposure to insect natural enemies, evaluates how such exposure impacts their pest control efficacy, and investigates the mechanisms affecting their fitness. Heavy metals transfer and accumulate from soil to plants, then to herbivorous insects, and ultimately to their natural enemies, impeding growth, development, and reproduction of insect natural enemies. Typically, diminished growth and reproduction directly compromise the pest control efficacy of these natural enemies. Nonetheless, within tolerable limits, increased feeding may occur as these natural enemies strive to meet the energy demands for detoxification, potentially enhancing their pest control capabilities. The production of reactive oxygen species and oxidative damage caused by heavy metals in insect natural enemies, combined with disrupted energy metabolism in host insects, are key factors contributing to the reduced fitness of insect natural enemies. In summary, heavy metal pollution emerges as a significant abiotic factor adversely impacting the pest control performance of these beneficial insects.
Collapse
Affiliation(s)
- Zhe Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Hongfei Wu
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China; Forest conservation institute, Chinese Academy of Forestry, Harbin 150040, China
| | - Aoying Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
10
|
Zheng L, Li M, Li Y, Wu L, Naveena K, Zheng M, Yang Z, Pan Y, Zhang Y, Chen S, Qiao Y, Xu Y, Chen L, Shi X. Sestrin2 plays a protective role in age-related hearing loss by inhibiting NLRP3-inflammasome activity. Mech Ageing Dev 2024; 221:111964. [PMID: 39019118 DOI: 10.1016/j.mad.2024.111964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Age-related hearing loss (ARHL) is an auditory disease characterized by gradual loss of high-frequency hearing sensitivity. Excessive reactive oxygen species trigger NLRP3-inflammasome activation that may be crucial for ARHL pathogenesis. The antioxidant factor Sestrin2 (SESN2) has been reported to be involved in the remission of oxidative stress and ARHL. However, the mechanism by which SESN2 protects auditory cells in the aging mouse cochlea remains unknown. Here, we observed that ectopic overexpression of SESN2 delayed ARHL, whereas SESN2 knockdown accelerated it. Importantly, we elucidated that SESN2 exerts a hearing-protective effect by inhibiting the production of NLRP3 by acting as a mitophagy agonist. Our study proposes a new theoretical basis for SESN2 prevention of ARHL and provides a novel therapeutic strategy for maintaining SESN2 activity in the aging cochlea.
Collapse
Affiliation(s)
- Liting Zheng
- Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya, Hainan 572000, China; Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Menghua Li
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Beijing Friendship Hospital, Capital Medical University, Beijing 100000, China
| | - Yalan Li
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Liyuan Wu
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Konduru Naveena
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Mengzhu Zheng
- Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya, Hainan 572000, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zhanqun Yang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100083, China; Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100083, China
| | - Yong Pan
- Department of Infectious Diseases, Xuzhou Infectious Diseases Hospital, Xuzhou 221000, China
| | - Yunshi Zhang
- Department of Infectious Diseases, Xuzhou Infectious Diseases Hospital, Xuzhou 221000, China
| | - Shujin Chen
- ENT Department, The People's Hospital of Rongchang District, Chongqing, China
| | - Yuehua Qiao
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Yice Xu
- Department of Otolaryngology-Head and Neck Surgery, The Central Hospital of Xiaogan, Xiaogan, Hubei 432000, China.
| | - Long Chen
- Department of Pharmacy, Peking University Third Hospital, Beijing 100083, China; Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100083, China.
| | - Xi Shi
- Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya, Hainan 572000, China; Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| |
Collapse
|
11
|
Rubtsova MP, Nikishin DA, Vyssokikh MY, Koriagina MS, Vasiliev AV, Dontsova OA. Telomere Reprogramming and Cellular Metabolism: Is There a Link? Int J Mol Sci 2024; 25:10500. [PMID: 39408829 PMCID: PMC11476947 DOI: 10.3390/ijms251910500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Telomeres-special DNA-protein structures at the ends of linear eukaryotic chromosomes-define the proliferation potential of cells. Extremely short telomeres promote a DNA damage response and cell death to eliminate cells that may have accumulated mutations after multiple divisions. However, telomere elongation is associated with the increased proliferative potential of specific cell types, such as stem and germ cells. This elongation can be permanent in these cells and is activated temporally during immune response activation and regeneration processes. The activation of telomere lengthening mechanisms is coupled with increased proliferation and the cells' need for energy and building resources. To obtain the necessary nutrients, cells are capable of finely regulating energy production and consumption, switching between catabolic and anabolic processes. In this review, we focused on the interconnection between metabolism programs and telomere lengthening mechanisms during programmed activation of proliferation, such as in germ cell maturation, early embryonic development, neoplastic lesion growth, and immune response activation. It is generally accepted that telomere disturbance influences biological processes and promotes dysfunctionality. Here, we propose that metabolic conditions within proliferating cells should be involved in regulating telomere lengthening mechanisms, and telomere length may serve as a marker of defects in cellular functionality. We propose that it is possible to reprogram metabolism in order to regulate the telomere length and proliferative activity of cells, which may be important for the development of approaches to regeneration, immune response modulation, and cancer therapy. However, further investigations in this area are necessary to improve the understanding and manipulation of the molecular mechanisms involved in the regulation of proliferation, metabolism, and aging.
Collapse
Affiliation(s)
- Maria P. Rubtsova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (M.S.K.); (O.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
| | - Denis A. Nikishin
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (D.A.N.); (A.V.V.)
| | - Mikhail Y. Vyssokikh
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Maria S. Koriagina
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (M.S.K.); (O.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
| | - Andrey V. Vasiliev
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (D.A.N.); (A.V.V.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga A. Dontsova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (M.S.K.); (O.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| |
Collapse
|
12
|
Samartsev VN, Belosludtsev KN, Pavlova EK, Pavlova SI, Semenova AA, Dubinin MV. Theoretical and Experimental Study of the Interaction of Protonophore Uncouplers and Decoupling Agents with Functionally Active Mitochondria. Cell Biochem Biophys 2024; 82:2333-2345. [PMID: 38856833 DOI: 10.1007/s12013-024-01343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
The purpose of this work was to quantitatively characterize the effectiveness of oxidative phosphorylation uncouplers and decoupling agents in functionally active mitochondria, taking into account their content in the hydrophobic region of the inner membrane of these organelles. When conducting theoretical studies, it is accepted that uncouplers and decouplers occupy part of the volume of mitochondria to exhibit their activity, which is defined as the effective volume. The following quantities characterizing the action of these reagents are considered: (1) concentrations of reagents that cause double stimulation of mitochondrial respiration in state 4 (C 200 ); (2) effective distribution coefficient (E MW ) - the ratio of the amount of reagents in the effective volume of mitochondria and the water volume; (3) the relative amount of reagents associated with the effective volume of mitochondria (U M / U T ); (4) specific activity of reagents localized in the effective volume of mitochondria (A M ). We have developed methods for determining these values, based on an analysis of the dependence of the rate of mitochondrial respiration on the concentration of uncouplers and decoupling agents at two different concentrations of mitochondrial protein in the incubation medium. During experimental studies, we compared the effects of the classical protonophore uncouplers 2,4-dinitrophenol (DNP) and сarbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), the natural uncouplers lauric and palmitic acids, and the natural decouplers α,ω-tetradecanedioic (TDA) and α,ω-hexadecanedioic (HDA) acids that differ both in the structure of the molecule and in the degree of solubility in lipids. Using the developed methods, we have clarified the dependence of the degree of activity of these uncouplers and decoupling agents on the distribution of their molecules between the effective volume of mitochondria and the water volume.
Collapse
Affiliation(s)
- Victor N Samartsev
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Konstantin N Belosludtsev
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
- Institute of theoretical and experimental biophysics, Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Evgenia K Pavlova
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Svetlana I Pavlova
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Alena A Semenova
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Mikhail V Dubinin
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia.
| |
Collapse
|
13
|
Belenichev I, Popazova O, Bukhtiyarova N, Savchenko D, Oksenych V, Kamyshnyi O. Modulating Nitric Oxide: Implications for Cytotoxicity and Cytoprotection. Antioxidants (Basel) 2024; 13:504. [PMID: 38790609 PMCID: PMC11118938 DOI: 10.3390/antiox13050504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the significant progress in the fields of biology, physiology, molecular medicine, and pharmacology; the designation of the properties of nitrogen monoxide in the regulation of life-supporting functions of the organism; and numerous works devoted to this molecule, there are still many open questions in this field. It is widely accepted that nitric oxide (•NO) is a unique molecule that, despite its extremely simple structure, has a wide range of functions in the body, including the cardiovascular system, the central nervous system (CNS), reproduction, the endocrine system, respiration, digestion, etc. Here, we systematize the properties of •NO, contributing in conditions of physiological norms, as well as in various pathological processes, to the mechanisms of cytoprotection and cytodestruction. Current experimental and clinical studies are contradictory in describing the role of •NO in the pathogenesis of many diseases of the cardiovascular system and CNS. We describe the mechanisms of cytoprotective action of •NO associated with the regulation of the expression of antiapoptotic and chaperone proteins and the regulation of mitochondrial function. The most prominent mechanisms of cytodestruction-the initiation of nitrosative and oxidative stresses, the production of reactive oxygen and nitrogen species, and participation in apoptosis and mitosis. The role of •NO in the formation of endothelial and mitochondrial dysfunction is also considered. Moreover, we focus on the various ways of pharmacological modulation in the nitroxidergic system that allow for a decrease in the cytodestructive mechanisms of •NO and increase cytoprotective ones.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Dmytro Savchenko
- Department of Pharmacy and Industrial Drug Technology, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
14
|
Lewandowska J, Kalenik B, Wrzosek A, Szewczyk A. Redox Regulation of Mitochondrial Potassium Channels Activity. Antioxidants (Basel) 2024; 13:434. [PMID: 38671882 PMCID: PMC11047711 DOI: 10.3390/antiox13040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Redox reactions exert a profound influence on numerous cellular functions with mitochondria playing a central role in orchestrating these processes. This pivotal involvement arises from three primary factors: (1) the synthesis of reactive oxygen species (ROS) by mitochondria, (2) the presence of a substantial array of redox enzymes such as respiratory chain, and (3) the responsiveness of mitochondria to the cellular redox state. Within the inner mitochondrial membrane, a group of potassium channels, including ATP-regulated, large conductance calcium-activated, and voltage-regulated channels, is present. These channels play a crucial role in conditions such as cytoprotection, ischemia/reperfusion injury, and inflammation. Notably, the activity of mitochondrial potassium channels is intricately governed by redox reactions. Furthermore, the regulatory influence extends to other proteins, such as kinases, which undergo redox modifications. This review aims to offer a comprehensive exploration of the modulation of mitochondrial potassium channels through diverse redox reactions with a specific focus on the involvement of ROS.
Collapse
Affiliation(s)
| | | | | | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (J.L.); (B.K.); (A.W.)
| |
Collapse
|
15
|
Shilovsky GA, Putyatina TS, Markov AV. Evolution of Longevity in Tetrapods: Safety Is More Important than Metabolism Level. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:322-340. [PMID: 38622099 DOI: 10.1134/s0006297924020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 04/17/2024]
Abstract
Various environmental morphological and behavioral factors can determine the longevity of representatives of various taxa. Long-lived species develop systems aimed at increasing organism stability, defense, and, ultimately, lifespan. Long-lived species to a different extent manifest the factors favoring longevity (gerontological success), such as body size, slow metabolism, activity of body's repair and antioxidant defense systems, resistance to toxic substances and tumorigenesis, and presence of neotenic features. In continuation of our studies of mammals, we investigated the characteristics that distinguish long-lived ectotherms (crocodiles and turtles) and compared them with those of other ectotherms (squamates and amphibians) and endotherms (birds and mammals). We also discussed mathematical indicators used to assess the predisposition to longevity in different species, including standard indicators (mortality rate, maximum lifespan, coefficient of variation of lifespan) and their derivatives. Evolutionary patterns of aging are further explained by the protective phenotypes and life history strategies. We assessed the relationship between the lifespan and various studied factors, such as body size and temperature, encephalization, protection of occupied ecological niches, presence of protective structures (for example, shells and osteoderms), and environmental temperature, and the influence of these factors on the variation of the lifespan as a statistical parameter. Our studies did not confirm the hypothesis on the metabolism level and temperature as the most decisive factors of longevity. It was found that animals protected by shells (e.g., turtles with their exceptional longevity) live longer than species that have poison or lack such protective adaptations. The improvement of defense against external threats in long-lived ectotherms is consistent with the characteristics of long-lived endotherms (for example, naked mole-rats that live in underground tunnels, or bats and birds, whose ability to fly is one of the best defense mechanisms).
Collapse
Affiliation(s)
- Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, 127051, Russia
| | - Tatyana S Putyatina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Markov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
16
|
Belosludtseva NV, Pavlik LL, Mikheeva IB, Talanov EY, Serov DA, Khurtin DA, Belosludtsev KN, Mironova GD. Protective Effect of Uridine on Structural and Functional Rearrangements in Heart Mitochondria after a High-Dose Isoprenaline Exposure Modelling Stress-Induced Cardiomyopathy in Rats. Int J Mol Sci 2023; 24:17300. [PMID: 38139129 PMCID: PMC10744270 DOI: 10.3390/ijms242417300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The pyrimidine nucleoside uridine and its phosphorylated derivates have been shown to be involved in the systemic regulation of energy and redox balance and promote the regeneration of many tissues, including the myocardium, although the underlying mechanisms are not fully understood. Moreover, rearrangements in mitochondrial structure and function within cardiomyocytes are the predominant signs of myocardial injury. Accordingly, this study aimed to investigate whether uridine could alleviate acute myocardial injury induced by isoprenaline (ISO) exposure, a rat model of stress-induced cardiomyopathy, and to elucidate the mechanisms of its action related to mitochondrial dysfunction. For this purpose, a biochemical analysis of the relevant serum biomarkers and ECG monitoring were performed in combination with transmission electron microscopy and a comprehensive study of cardiac mitochondrial functions. The administration of ISO (150 mg/kg, twice with an interval of 24 h, s.c.) to rats caused myocardial degenerative changes, a sharp increase in the serum cardiospecific markers troponin I and the AST/ALT ratio, and a decline in the ATP level in the left ventricular myocardium. In parallel, alterations in the organization of sarcomeres with focal disorganization of myofibrils, and ultrastructural and morphological defects in mitochondria, including disturbances in the orientation and packing density of crista membranes, were detected. These malfunctions were improved by pretreatment with uridine (30 mg/kg, twice with an interval of 24 h, i.p.). Uridine also led to the normalization of the QT interval. Moreover, uridine effectively inhibited ISO-induced ROS overproduction and lipid peroxidation in rat heart mitochondria. The administration of uridine partially recovered the protein level of the respiratory chain complex V, along with the rates of ATP synthesis and mitochondrial potassium transport, suggesting the activation of the potassium cycle through the mitoKATP channel. Taken together, these results indicate that uridine ameliorates acute ISO-induced myocardial injury and mitochondrial malfunction, which may be due to the activation of mitochondrial potassium recycling and a mild uncoupling leading to decreased ROS generation and oxidative damage.
Collapse
Affiliation(s)
- Natalia V. Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Lubov L. Pavlik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Irina B. Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Eugeny Yu. Talanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov St. 38, 119991 Moscow, Russia;
| | - Dmitriy A. Khurtin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia;
| | - Konstantin N. Belosludtsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia;
| | - Galina D. Mironova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| |
Collapse
|
17
|
Semenov AY, Tikhonov AN. Electrometric and Electron Paramagnetic Resonance Measurements of a Difference in the Transmembrane Electrochemical Potential: Photosynthetic Subcellular Structures and Isolated Pigment-Protein Complexes. MEMBRANES 2023; 13:866. [PMID: 37999352 PMCID: PMC10673362 DOI: 10.3390/membranes13110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
A transmembrane difference in the electrochemical potentials of protons (ΔμH+) serves as a free energy intermediate in energy-transducing organelles of the living cell. The contributions of two components of the ΔμH+ (electrical, Δψ, and concentrational, ΔpH) to the overall ΔμH+ value depend on the nature and lipid composition of the energy-coupling membrane. In this review, we briefly consider several of the most common instrumental (electrometric and EPR) methods for numerical estimations of Δψ and ΔpH. In particular, the kinetics of the flash-induced electrometrical measurements of Δψ in bacterial chromatophores, isolated bacterial reaction centers, and Photosystems I and II of the oxygenic photosynthesis, as well as the use of pH-sensitive molecular indicators and kinetic data regarding pH-dependent electron transport in chloroplasts, have been reviewed. Further perspectives on the application of these methods to solve some fundamental and practical problems of membrane bioenergetics are discussed.
Collapse
Affiliation(s)
- Alexey Yu. Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| | | |
Collapse
|