1
|
Godos J, Guglielmetti M, Ferraris C, Frias-Toral E, Domínguez Azpíroz I, Lipari V, Di Mauro A, Furnari F, Castellano S, Galvano F, Iacoviello L, Bonaccio M, Grosso G. Mediterranean Diet and Quality of Life in Adults: A Systematic Review. Nutrients 2025; 17:577. [PMID: 39940436 PMCID: PMC11819740 DOI: 10.3390/nu17030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES With the increasing life expectancy and, as a result, the aging of the global population, there has been a rise in the prevalence of chronic conditions, which can significantly impact individuals' health-related quality of life, a multidimensional concept that comprises an individual's physical, mental, and social wellbeing. While a balanced, nutrient-dense diet, such as Mediterranean diet, is widely recognized for its role in chronic disease prevention, particularly in reducing the risk of cardiovascular diseases and certain cancers, its potential benefits extend beyond these well-known effects, showing promise in improving physical and mental wellbeing, and promoting health-related quality of life. METHODS A systematic search of the scientific literature in electronic databases (Pubmed/Medline) was performed to identify potentially eligible studies reporting on the relation between adherence to the Mediterranean diet and health-related quality of life, published up to December 2024. RESULTS A total of 28 studies were included in this systematic review, comprising 13 studies conducted among the general population and 15 studies involving various types of patients. Overall, most studies showed a significant association between adherence to the Mediterranean diet and HRQoL, with the most significant results retrieved for physical domains of quality of life, suggesting that diet seems to play a relevant role in both the general population and people affected by chronic conditions with an inflammatory basis. CONCLUSIONS Adherence to the Mediterranean diet provides significant benefits in preventing and managing various chronic diseases commonly associated with aging populations. Furthermore, it enhances the overall health and quality of life of aging individuals, ultimately supporting more effective and less invasive treatment approaches for chronic diseases.
Collapse
Affiliation(s)
- Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| | - Monica Guglielmetti
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
- Laboratory of Food Education and Sport Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Cinzia Ferraris
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
- Laboratory of Food Education and Sport Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Espíritu Santo, Samborondón 0901952, Ecuador
| | - Irma Domínguez Azpíroz
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Universidade Internacional do Cuanza, Cuito EN250, Angola
- Universidad de La Romana, La Romana 22000, Dominican Republic
| | - Vivian Lipari
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Universidad de La Romana, La Romana 22000, Dominican Republic
- Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Andrea Di Mauro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Fabrizio Furnari
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| | - Licia Iacoviello
- Research Unit of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo NEUROMED, 86077 Pozzilli, Italy
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | - Marialaura Bonaccio
- Research Unit of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo NEUROMED, 86077 Pozzilli, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| |
Collapse
|
2
|
Chen M, Chen D, Xiao R, Zheng X, Liu B, Wang J. Bacillus lipopeptides inhibit lipase activity and promote 3T3-L1 preadipocyte differentiation. J Enzyme Inhib Med Chem 2024; 39:2417915. [PMID: 39434248 PMCID: PMC11497581 DOI: 10.1080/14756366.2024.2417915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
Bacillus lipopeptides have been reported to display anti-obesity effects. In the present study, Lipopeptides from Bacillus velezensis FJAT-45028 that consisted of iturin, fengycin and surfactin were reported. The lipopeptides exhibited a strong lipase inhibition activity in a concentration-dependent manner with a half maximal inhibitory concentration of 0.012 mg/mL, and the inhibition mechanism and type were reversible and competitive, respectively. Results of CCK8 assay showed that 3T3-L1 preadipocyte cells were completely viable under treatment of 0.050-0.2 mg/mL lipopeptides for 24 or 48 h. It was found that the lipopeptides could increase lipid droplets in the differentiated 3T3-L1 adipocytes in tested concentration and suppress the expression of peroxisome proliferator-activated receptor gamma (PPARγ). These results indicated the potential anti-obesity mechanism of the tested lipopeptides might be to inhibit lipase activity but not to suppress lipid accumulation in the adipocytes. Moreover, the lipopeptides could elevate glucose utilisation by 14.43%-33.81% in the differentiated 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Meichun Chen
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Deju Chen
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Rongfeng Xiao
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xuefang Zheng
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Bo Liu
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jieping Wang
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
3
|
Mandal AK, Sahoo A, Almalki WH, Almujri SS, Alhamyani A, Aodah A, Alruwaili NK, Abdul Kadir SZBS, Mandal RK, Almalki RA, Lal JA, Rahman M. Phytoactives for Obesity Management: Integrating Nanomedicine for Its Effective Delivery. Nutr Rev 2024:nuae136. [PMID: 39331591 DOI: 10.1093/nutrit/nuae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Obesity is a global health concern that requires urgent investigation and management. While synthetic anti-obesity medications are available, they come with a high risk of side-effects and variability in their efficacy. Therefore, natural compounds are increasingly being used to treat obesity worldwide. The proposition that naturally occurring compounds, mainly polyphenols, can be effective and safer for obesity management through food and nutrient fortification is strongly supported by extensive experimental research. This review focuses on the pathogenesis of obesity while reviewing the efficacy of an array of phytoactives used for obesity treatment. It details mechanisms such as enzyme inhibition, energy expenditure, appetite suppression, adipocyte differentiation, lipid metabolism, and modulation of gut microbiota. Comprehensive in vitro, in vivo, and preclinical studies underscore the promise of phytoactives in combating obesity, which have been thoroughly reviewed. However, challenges, such as poor bioavailability and metabolism, limit their potential. Advances in nanomedicines may overcome these constraints, offering a new avenue for enhancing the efficacy of phytoactives. Nonetheless, rigorous and targeted clinical trials are essential before applying phytoactives as a primary treatment for obesity.
Collapse
Affiliation(s)
- Ashok Kumar Mandal
- Department of Pharmacology, Faculty of Medicine, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Ankit Sahoo
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Abdulrahman Alhamyani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Alhussain Aodah
- College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia
| | | | | | - Rami A Almalki
- Clinical Pharmacy Unit, Pharmaceutical Care Department, King Faisal Hospital, Makkah Health Cluster, Makkah 24382, Saudi Arabia
| | - Jonathan A Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology, and Sciences, Prayagraj, Uttar Pradesh 211007, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| |
Collapse
|
4
|
Díez-Sainz E, Milagro FI, Aranaz P, Riezu-Boj JI, Lorente-Cebrián S. Plant miR6262 Modulates the Expression of Metabolic and Thermogenic Genes in Human Hepatocytes and Adipocytes. Nutrients 2024; 16:3146. [PMID: 39339747 PMCID: PMC11435339 DOI: 10.3390/nu16183146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Edible plants have been linked to the mitigation of metabolic disturbances in liver and adipose tissue, including the decrease of lipogenesis and the enhancement of lipolysis and adipocyte browning. In this context, plant microRNAs could be key bioactive molecules underlying the cross-kingdom beneficial effects of plants. This study sought to explore the impact of plant-derived microRNAs on the modulation of adipocyte and hepatocyte genes involved in metabolism and thermogenesis. METHODS Plant miR6262 was selected as a candidate from miRBase for the predicted effect on the regulation of human metabolic genes. Functional validation was conducted after transfection with plant miRNA mimics in HepG2 hepatocytes exposed to free fatty acids to mimic liver steatosis and hMADs cells differentiated into brown-like adipocytes. RESULTS miR6262 decreases the expression of the predicted target RXRA in the fatty acids-treated hepatocytes and in brown-like adipocytes and affects the expression profile of critical genes involved in metabolism and thermogenesis, including PPARA, G6PC, SREBF1 (hepatocytes) and CIDEA, CPT1M and PLIN1 (adipocytes). Nevertheless, plant miR6262 mimic transfections did not decrease hepatocyte lipid accumulation or stimulate adipocyte browning. CONCLUSIONS these findings suggest that plant miR6262 could have a cross-kingdom regulation relevance through the modulation of human genes involved in lipid and glucose metabolism and thermogenesis in adipocytes and hepatocytes.
Collapse
Affiliation(s)
- Ester Díez-Sainz
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula Aranaz
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - José I. Riezu-Boj
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Silvia Lorente-Cebrián
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, 50009 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza- Centro de Investigación y Tecnología Agroalimentaria (CITA), 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS-Aragon), 50009 Zaragoza, Spain
| |
Collapse
|
5
|
Aguiar AJFC, de Medeiros WF, da Silva-Maia JK, Bezerra IWL, Piuvezam G, Morais AHDA. Peptides Evaluated In Silico, In Vitro, and In Vivo as Therapeutic Tools for Obesity: A Systematic Review. Int J Mol Sci 2024; 25:9646. [PMID: 39273592 PMCID: PMC11395041 DOI: 10.3390/ijms25179646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Bioinformatics has emerged as a valuable tool for screening drugs and understanding their effects. This systematic review aimed to evaluate whether in silico studies using anti-obesity peptides targeting therapeutic pathways for obesity, when subsequently evaluated in vitro and in vivo, demonstrated effects consistent with those predicted in the computational analysis. The review was framed by the question: "What peptides or proteins have been used to treat obesity in in silico studies?" and structured according to the acronym PECo. The systematic review protocol was developed and registered in PROSPERO (CRD42022355540) in accordance with the PRISMA-P, and all stages of the review adhered to these guidelines. Studies were sourced from the following databases: PubMed, ScienceDirect, Scopus, Web of Science, Virtual Heath Library, and EMBASE. The search strategies resulted in 1015 articles, of which, based on the exclusion and inclusion criteria, 7 were included in this systematic review. The anti-obesity peptides identified originated from various sources including bovine alpha-lactalbumin from cocoa seed (Theobroma cacao L.), chia seed (Salvia hispanica L.), rice bran (Oryza sativa), sesame (Sesamum indicum L.), sea buckthorn seed flour (Hippophae rhamnoides), and adzuki beans (Vigna angularis). All articles underwent in vitro and in vivo reassessment and used molecular docking methodology in their in silico studies. Among the studies included in the review, 46.15% were classified as having an "uncertain risk of bias" in six of the thirteen criteria evaluated. The primary target investigated was pancreatic lipase (n = 5), with all peptides targeting this enzyme demonstrating inhibition, a finding supported both in vitro and in vivo. Additionally, other peptides were identified as PPARγ and PPARα agonists (n = 2). Notably, all peptides exhibited different mechanisms of action in lipid metabolism and adipogenesis. The findings of this systematic review underscore the effectiveness of computational simulation as a screening tool, providing crucial insights and guiding in vitro and in vivo investigations for the discovery of novel anti-obesity peptides.
Collapse
Affiliation(s)
- Ana Júlia Felipe Camelo Aguiar
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Wendjilla Fortunato de Medeiros
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - Juliana Kelly da Silva-Maia
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - Ingrid Wilza Leal Bezerra
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - Grasiela Piuvezam
- Health Sciences Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
- Public Health Department, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Ana Heloneida de Araújo Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
| |
Collapse
|
6
|
Wang M, Chao M, Han H, Zhao T, Yan W, Yang G, Pang W, Cai R. Hinokiflavone resists HFD-induced obesity by promoting apoptosis in an IGF2BP2-mediated Bim m 6A modification dependent manner. J Biol Chem 2024; 300:107721. [PMID: 39214307 PMCID: PMC11465056 DOI: 10.1016/j.jbc.2024.107721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Obesity has emerged as a major health risk on a global scale. Hinokiflavone (HF), a natural small molecule, extracted from plants like cypress, exhibits diverse chemical structures and low synthesis costs. Using high-fat diet-induced obese mice models, we found that HF suppresses obesity by inducing apoptosis in adipose tissue. Adipocyte apoptosis helps maintain tissue health by removing aging, damaged, or excess cells in adipose tissue, which is crucial in preventing obesity and metabolic diseases. We found that HF can specifically bind to insulin-like growth factor 2 mRNA binding protein 2 to promote the stability of N6-methyladenosine-modified Bim, inducing mitochondrial outer membrane permeabilization. Mitochondrial outer membrane permeabilization leads to Caspase9/3-mediated adipocyte mitochondrial apoptosis, alleviating obesity induced by a high-fat diet. The proapoptotic effect of HF offers a controlled means for weight loss. This study reveals the potential of small molecule HF in developing new therapeutic approaches in drug development and biomedical research.
Collapse
Affiliation(s)
- Mingyu Wang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingkun Chao
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Haozhe Han
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tiantian Zhao
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenyong Yan
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Weijun Pang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Rui Cai
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
7
|
Rodriguez-Muñoz A, Motahari-Rad H, Martin-Chaves L, Benitez-Porres J, Rodriguez-Capitan J, Gonzalez-Jimenez A, Insenser M, Tinahones FJ, Murri M. A Systematic Review of Proteomics in Obesity: Unpacking the Molecular Puzzle. Curr Obes Rep 2024; 13:403-438. [PMID: 38703299 PMCID: PMC11306592 DOI: 10.1007/s13679-024-00561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE OF REVIEW The present study aims to review the existing literature to identify pathophysiological proteins in obesity by conducting a systematic review of proteomics studies. Proteomics may reveal the mechanisms of obesity development and clarify the links between obesity and related diseases, improving our comprehension of obesity and its clinical implications. RECENT FINDINGS Most of the molecular events implicated in obesity development remain incomplete. Proteomics stands as a powerful tool for elucidating the intricate interactions among proteins in the context of obesity. This methodology has the potential to identify proteins involved in pathological processes and to evaluate changes in protein abundance during obesity development, contributing to the identification of early disease predisposition, monitoring the effectiveness of interventions and improving disease management overall. Despite many non-targeted proteomic studies exploring obesity, a comprehensive and up-to-date systematic review of the molecular events implicated in obesity development is lacking. The lack of such a review presents a significant challenge for researchers trying to interpret the existing literature. This systematic review was conducted following the PRISMA guidelines and included sixteen human proteomic studies, each of which delineated proteins exhibiting significant alterations in obesity. A total of 41 proteins were reported to be altered in obesity by at least two or more studies. These proteins were involved in metabolic pathways, oxidative stress responses, inflammatory processes, protein folding, coagulation, as well as structure/cytoskeleton. Many of the identified proteomic biomarkers of obesity have also been reported to be dysregulated in obesity-related disease. Among them, seven proteins, which belong to metabolic pathways (aldehyde dehydrogenase and apolipoprotein A1), the chaperone family (albumin, heat shock protein beta 1, protein disulfide-isomerase A3) and oxidative stress and inflammation proteins (catalase and complement C3), could potentially serve as biomarkers for the progression of obesity and the development of comorbidities, contributing to personalized medicine in the field of obesity. Our systematic review in proteomics represents a substantial step forward in unravelling the complexities of protein alterations associated with obesity. It provides valuable insights into the pathophysiological mechanisms underlying obesity, thereby opening avenues for the discovery of potential biomarkers and the development of personalized medicine in obesity.
Collapse
Affiliation(s)
- Alba Rodriguez-Muñoz
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
| | - Hanieh Motahari-Rad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Laura Martin-Chaves
- Heart Area, Hospital Universitario Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Javier Benitez-Porres
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- Department of Human Physiology, Physical Education and Sport, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Jorge Rodriguez-Capitan
- Heart Area, Hospital Universitario Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | | | - Maria Insenser
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| | - Francisco J Tinahones
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Mora Murri
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain.
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain.
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Uprety LP, Lee CG, Oh KI, Jeong H, Yeo S, Yong Y, Seong JK, Kim IY, Go H, Park E, Jeong SY. Anti-obesity effects of Celosia cristata flower extract in vitro and in vivo. Biomed Pharmacother 2024; 176:116799. [PMID: 38805969 DOI: 10.1016/j.biopha.2024.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND The overstoring of surplus calories in mature adipocytes causes obesity and abnormal metabolic activity. The anti-obesity effect of a Celosia cristata (CC) total flower extract was assessed in vitro, using 3T3-L1 pre-adipocytes and mouse adipose-derived stem cells (ADSCs), and in vivo, using high-fat diet (HFD)-treated C57BL/6 male mice. METHODS CC extract was co-incubated during adipogenesis in both 3T3-L1 cells and ADSCs. After differentiation, lipid droplets were assessed by oil red O staining, adipogenesis and lipolytic factors were evaluated, and intracellular triglyceride and glycerol concentrations were analyzed. For in vivo experiments, histomorphological analysis, mRNA expression levels of adipogenic and lipolytic factors in adipose tissue, blood plasma analysis, metabolic profiles were investigated. RESULTS CC treatment significantly prevented adipocyte differentiation and lipid droplet accumulation, reducing adipogenesis-related factors and increasing lipolysis-related factors. Consequently, the intracellular triacylglycerol content was diminished, whereas the glycerol concentration in the cell supernatant increased. Mice fed an HFD supplemented with the CC extract exhibited decreased HFD-induced weight gain with metabolic abnormalities such as intrahepatic lipid accumulation and adipocyte hypertrophy. Improved glucose utilization and insulin sensitivity were observed, accompanied by the amelioration of metabolic disturbances, including alterations in liver enzymes and lipid profiles, in CC-treated mice. Moreover, the CC extract helped restore the disrupted energy metabolism induced by the HFD, based on a metabolic animal monitoring system. CONCLUSION This study suggests that CC total flower extract is a potential natural herbal supplement for the prevention and management of obesity.
Collapse
Affiliation(s)
- Laxmi Prasad Uprety
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, South Korea
| | - Chang-Gun Lee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, South Korea
| | - Kang-Il Oh
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, South Korea
| | | | - Subin Yeo
- Nine B Co., Ltd., Daejeon 34121, South Korea
| | | | - Je Kyung Seong
- College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, South Korea
| | - Il Yong Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, South Korea
| | - Hyesun Go
- College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, South Korea
| | - Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, South Korea.
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, South Korea.
| |
Collapse
|
9
|
Gulisano M, Consoli V, Sorrenti V, Vanella L. Red Oranges and Olive Leaf Waste-Derived Bioactive Extracts Promote Adipocyte Functionality In Vitro. Nutrients 2024; 16:1959. [PMID: 38931313 PMCID: PMC11206959 DOI: 10.3390/nu16121959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity is increasingly prevalent worldwide and is linked to metabolic diseases, such as insulin resistance (IR) and type 2 diabetes mellitus (T2DM), due to excessive free fatty acids (FFAs). Although lifestyle changes are effective, they often prove to be insufficient as initial treatments for obesity. Additionally, while surgical and pharmacological interventions are available, they are not entirely safe or effective. Recently, interest has grown in utilizing food waste and plant-derived phenolic compounds for their health benefits, presenting a promising avenue for managing obesity and its related disorders. Indeed, many studies have examined the potential inhibitory effects of the natural extract on adipocyte differentiation and lipid accumulation. This study focused on the evaluation of the effects of standardized extracts obtained from red oranges and olive leaf waste on 3T3-L1 murine pre-adipocyte and adipocyte functionality. Red orange extract (ROE) and olive leaf extract (OLE), alone and in combination, were tested to assess their anti-obesity and anti-inflammatory effects, as well as their potential therapeutic benefits. Three in vitro models were established to investigate the effects of the extracts on (I) adipocyte differentiation; (II) mature and hypertrophic adipocytes challenged with palmitic acid (PA) and erastin (ER), respectively; and (III) erastin-induced cytotoxicity on pre-adipocytes.
Collapse
Affiliation(s)
- Maria Gulisano
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (V.C.); (L.V.)
| | - Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (V.C.); (L.V.)
- CERNUT—Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (V.C.); (L.V.)
- CERNUT—Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (V.C.); (L.V.)
- CERNUT—Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| |
Collapse
|
10
|
Babenko AN, Krepkova LV, Borovkova MV, Kuzina OS, Mkhitarov VA, Job KM, Enioutina EY. Effects of Chicory ( Cichorium intybus L.) Extract on Male Rat Reproductive System, Pregnancy and Offspring Development. Pharmaceuticals (Basel) 2024; 17:700. [PMID: 38931367 PMCID: PMC11206608 DOI: 10.3390/ph17060700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND We recently reported that extract prepared from the aerial part of Cichorium intybus L. (CE) possesses hepatoprotective, hypolipidemic, and hypoglycemic properties. This paper focuses on the effects of CE on the male rat reproductive system and the effects of this treatment on pregnancy and offspring development. METHODS The experimental male rats received 100 mg/kg bw/day, 500 mg/kg bw/day, and 1000 mg/kg bw/day of CE orally for 60 consecutive days. Rats that received tap water were used as controls. After treatment, we evaluated the effects of CE on the male reproductive system, fertility, and offspring development. RESULTS For CE-treated male rats, there was a significant increase in the (1) diameter of seminiferous tubules, (2) spermatogenic index, (3) number of total and motile spermatozoa, and (4) testosterone levels. Additionally, there was a decrease in the pre- and post-implantation death of the embryos in the CE-treated group. All pups born from CE-treated males demonstrated normal development. CONCLUSIONS CE treatment significantly improved male reproductive functions. No adverse effects on pregnancy and offspring development were observed when males were treated with CE. Further clinical evaluation of CE should lead to the development of a safe and effective phytodrug for treating male infertility.
Collapse
Affiliation(s)
- Alexandra N. Babenko
- All-Russian Institute of Medicinal and Aromatic Plants (VILAR), Moscow 113628, Russia; (A.N.B.); (L.V.K.); (M.V.B.); (O.S.K.)
| | - Lubov V. Krepkova
- All-Russian Institute of Medicinal and Aromatic Plants (VILAR), Moscow 113628, Russia; (A.N.B.); (L.V.K.); (M.V.B.); (O.S.K.)
| | - Marina V. Borovkova
- All-Russian Institute of Medicinal and Aromatic Plants (VILAR), Moscow 113628, Russia; (A.N.B.); (L.V.K.); (M.V.B.); (O.S.K.)
| | - Olga S. Kuzina
- All-Russian Institute of Medicinal and Aromatic Plants (VILAR), Moscow 113628, Russia; (A.N.B.); (L.V.K.); (M.V.B.); (O.S.K.)
| | | | - Kathleen M. Job
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT 84108, USA;
| | - Elena Y. Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT 84108, USA;
| |
Collapse
|
11
|
Kmail A. Mitigating digestive disorders: Action mechanisms of Mediterranean herbal active compounds. Open Life Sci 2024; 19:20220857. [PMID: 38645751 PMCID: PMC11032100 DOI: 10.1515/biol-2022-0857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/23/2024] Open
Abstract
This study explores the effects of the Mediterranean diet, herbal remedies, and their phytochemicals on various gastrointestinal conditions and reviews the global use of medicinal plants for common digestive problems. The review highlights key plants and their mechanisms of action and summarizes the latest findings on how plant-based products influence the digestive system and how they work. We searched various sources of literature and databases, including Google Scholar, PubMed, Science Direct, and MedlinePlus. Our focus was on gathering relevant papers published between 2013 and August 2023. Certain plants exhibit potential in preventing or treating digestive diseases and cancers. Notable examples include Curcuma longa, Zingiber officinale, Aloe vera, Calendula officinalis, Lavandula angustifolia, Thymus vulgaris, Rosmarinus officinalis, Ginkgo biloba, Cynodon dactylon, and Vaccinium myrtillus. The phytochemical analysis of the plants showed that compounds such as quercetin, anthocyanins, curcumin, phenolics, isoflavones glycosides, flavonoids, and saponins constitute the main active substances within these plants. These natural remedies have the potential to enhance the digestive system and alleviate pain and discomfort in patients. However, further research is imperative to comprehensively evaluate the benefits and safety of herbal medicines to use their active ingredients for the development of natural and effective drugs.
Collapse
Affiliation(s)
- Abdalsalam Kmail
- Faculty of Sciences, Arab American University Jenin, P. O. Box 240, Jenin, Palestine
| |
Collapse
|
12
|
Barbagallo F, Cucinella L, Tiranini L, Chedraui P, Calogero AE, Nappi RE. Obesity and sexual health: focus on postmenopausal women. Climacteric 2024; 27:122-136. [PMID: 38251874 DOI: 10.1080/13697137.2024.2302429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Menopause is a cardiometabolic transition with many women experiencing weight gain and redistribution of body fat. Hormonal changes may affect also several dimensions of well-being, including sexual function, with a high rate of female sexual dysfunction (FSD), which displays a multifactorial etiology. The most important biological factors range from chronic low-grade inflammation, associated with hypertrophic adipocytes that may translate into endothelial dysfunction and compromised blood flow through the genitourinary system, to insulin resistance and other neuroendocrine mechanisms targeting the sexual response. Psychosocial factors include poor body image, mood disorders, low self-esteem and life satisfaction, as well as partner's health and quality of relationship, and social stigma. Even unhealthy lifestyle, chronic conditions and putative weight-promoting medications may play a role. The aim of the present narrative review is to update and summarize the state of the art on the link between obesity and FSD in postmenopausal women, pointing to the paucity of high-quality studies and the need for further research with validated end points to assess both biomarkers of obesity and FSD. In addition, we provide general information on the diagnosis and treatment of FSD at menopause with a focus on dietary interventions, physical activity, anti-obesity drugs and bariatric surgery.
Collapse
Affiliation(s)
- F Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - L Cucinella
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, Pavia, Italy
| | - L Tiranini
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - P Chedraui
- Escuela de Posgrados en Salud, Universidad Espíritu Santo, Samborondón, Ecuador
| | - A E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - R E Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, Pavia, Italy
| |
Collapse
|
13
|
de Oliveira NM, Machado J, Chéu MH, Lopes L, Barroso MF, Silva A, Sousa S, Domingues VF, Grosso C. Potential Therapeutic Properties of Olea europaea Leaves from Selected Cultivars Based on Their Mineral and Organic Profiles. Pharmaceuticals (Basel) 2024; 17:274. [PMID: 38543060 PMCID: PMC10975974 DOI: 10.3390/ph17030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 01/04/2025] Open
Abstract
Olive leaves are consumed as an extract or as a whole herbal powder with several potential therapeutic benefits attributed to polyphenols, tocopherol's isomers, and flavonoids, among others. This study assessed the potential variance in the functional features presented by olive leaves from three different Portuguese cultivars-Cobrançosa, Madural, and Verdeal-randomly mix-cultivated in the geographical area of Vale de Salgueiros. Inorganic analysis determined their mineral profiles while an organic analysis measured their total phenolic and flavonoid content, and scanned their phenolic and tocopherol and fatty acid composition. The extracts' biological activity was tested by determining their antimicrobial and antioxidant power as well as their ability to inhibit acetylcholinesterase, butyrylcholinesterase, MAO-A/B, and angiotensin-I-converting enzyme. The inorganic profiles showed them to be an inexpensive source able to address different mineral deficiencies. All cultivars appear to have potential for use as possible antioxidants and future alternative antibiotics against some multidrug-resistant microorganisms, with caution regarding the arsenic content in the Verdeal cultivar. Madural's extract displayed properties to be considered a natural multitarget treatment for Alzheimer's and Parkinson's diseases, depression, and cardiometabolic and dual activity for blood pressure modulation. This work indicates that randomly cultivating different cultivars significantly modifies the leaves' composition while keeping their multifaceted therapeutic value.
Collapse
Affiliation(s)
- Natália M. de Oliveira
- ICBAS, Laboratory of Applied Physiology, School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- CBScin, Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - Jorge Machado
- ICBAS, Laboratory of Applied Physiology, School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- CBScin, Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - Maria Helena Chéu
- Insight: Piaget Research Center for Ecological Human Development, Instituto Piaget—ISEIT, Estrada do Alto Gaio, 3515-776 Lordosa Viseu, Portugal
| | - Lara Lopes
- ICBAS, Laboratory of Applied Physiology, School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- CBScin, Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - M. Fátima Barroso
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Aurora Silva
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Sara Sousa
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Valentina F. Domingues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| |
Collapse
|
14
|
Kmail A, Said O, Saad B. How Thymoquinone from Nigella sativa Accelerates Wound Healing through Multiple Mechanisms and Targets. Curr Issues Mol Biol 2023; 45:9039-9059. [PMID: 37998744 PMCID: PMC10670084 DOI: 10.3390/cimb45110567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Wound healing is a multifaceted process necessitating the collaboration of numerous elements to mend damaged tissue. Plant and animal-derived natural compounds have been utilized for wound treatment over the centuries, with many scientific investigations examining these compounds. Those with antioxidant, anti-inflammatory, and antibacterial properties are particularly noteworthy, as they target various wound-healing stages to expedite recovery. Thymoquinone, derived from Nigella sativa (N. sativa)-a medicinal herb with a long history of use in traditional medicine systems such as Unani, Ayurveda, Chinese, and Greco-Arabic and Islamic medicine-has demonstrated a range of therapeutic properties. Thymoquinone exhibits antimicrobial, anti-inflammatory, and antineoplastic activities, positioning it as a potential remedy for skin pathologies. This review examines recent research on how thymoquinone accelerates wound healing and the mechanisms behind its effectiveness. We carried out a comprehensive review of literature and electronic databases, including Google Scholar, PubMed, Science Direct, and MedlinePlus. Our aim was to gather relevant papers published between 2015 and August 2023. The main criteria for inclusion were that the articles had to be peer reviewed, original, written in English, and discuss the wound-healing parameters of thymoquinone in wound repair. Our review focused on the effects of thymoquinone on the cellular and molecular mechanisms involved in wound healing. We also examined the role of cytokines, signal transduction cascades, and clinical trials. We found sufficient evidence to support the effectiveness of thymoquinone in promoting wound healing. However, there is no consensus on the most effective concentrations of these substances. It is therefore essential to determine the optimal treatment doses and the best route of administration. Further research is also needed to investigate potential side effects and the performance of thymoquinone in clinical trials.
Collapse
Affiliation(s)
- Abdalsalam Kmail
- Faculty of Sciences, Arab American University, Jenin P.O. Box 240, Palestine
| | - Omar Said
- Beleaf Pharma, Kfar Kana 16930, Israel;
| | - Bashar Saad
- Qasemi Research Center, Al-Qasemi Academic College, Baqa Algharbiya 30100, Israel
- Department of Biochemistry, Faculty of Medicine, Arab American University, Jenin P.O. Box 240, Palestine
| |
Collapse
|