1
|
Wu A, Xu L, Zhang Y, Zhu Y, Wu Y, Wu J, Wen L, Yuan Z, Wang J. Tannic acid mitigates salmonella-induced lung injury via gut-lung axis in broilers. Poult Sci 2025; 104:104973. [PMID: 40058006 PMCID: PMC11930585 DOI: 10.1016/j.psj.2025.104973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Tannic acid (TA), a polyphenolic compound derived from plants, exhibits anti-inflammatory, antibacterial, antiviral, and antioxidant biological activities. Salmonella, a prevalent foodborne pathogen, poses a significant threat to poultry, resulting in considerable economic losses for the animal husbandry industry. In this study, we investigated the protective effects of TA against lung and intestinal injuries induced by a transient Salmonella infection in broilers. After a ten-day infection period, although Salmonella was not detected in the intestinal content of broilers, the infected broilers exhibited reduced body weight and compromised intestinal barrier function. Salmonella infection facilitated the growth of detrimental bacteria in the lungs and ileums, triggering an inflammatory response. TA inhibited the pathogen's colonization in the lungs and reduced serum levels of lipopolysaccharide (LPS) as well as lung levels of myeloperoxidase (MPO). Moreover, TA down-regulated the expression of pro-inflammatory cytokines and hindered the polarization of M1 macrophages in the lungs. In summary, TA mitigates Salmonella-induced lung inflammation and immune imbalance by its anti-inflammatory, antioxidant and antibacterial properties in broilers.
Collapse
Affiliation(s)
- Aoao Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Liu Xu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yinzhu Zhang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yuanyuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China; Changsha Luye Biotechnology Co., Ltd, Changsha 410100, PR China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China.
| | - Ji Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China; Changsha Luye Biotechnology Co., Ltd, Changsha 410100, PR China.
| |
Collapse
|
2
|
Ji J, Li Y, Xu T, Shao Q, Sun Z, Chen S, Zhang D, Wang Q, Wang X, Ma C, Cheng F. Protective effects of berberine on MASLD: regulation of glucose and lipid metabolism through PI3K/Akt and STING pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04077-z. [PMID: 40146248 DOI: 10.1007/s00210-025-04077-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025]
Abstract
This study is aimed at exploring the therapeutic potential of berberine (BBR) in mitigating metabolic dysfunction-associated steatotic liver disease (MASLD) and at elucidating its mechanisms of action, with a focus on the modulation of glucose and lipid metabolism via the PI3K/Akt and STING signaling pathways. Male C57BL/6 J mice were fed a high-fat diet (HFD) to induce MASLD and subsequently treated with BBR or metformin. HepG2 cells were cultured in vitro, and palmitic acid (PA) was used to construct the cell model. Comprehensive analyses, including network pharmacology, transcriptome sequencing, and Western blotting, were conducted to identify critical pathways and molecular targets. Biochemical, histological, and molecular assays were performed to evaluate metabolic and inflammatory responses. BBR significantly attenuated HFD-induced hepatic steatosis, inflammation, and glucose intolerance. It effectively reduced lipid accumulation, enhanced insulin sensitivity, and modulated the expression of genes involved in lipid metabolism. Network pharmacology and transcriptome analysis highlighted the involvement of the PI3K/Akt and STING pathways. BBR activated PI3K/Akt signaling while suppressing the STING pathway, thereby reducing lipid accumulation in both in vivo and in vitro models. The inhibition of AKT negated the beneficial effects of BBR, underscoring the pivotal role of PI3K/Akt in regulating STING signaling. BBR ameliorates MASLD by activating the PI3K/Akt pathway and inhibiting the STING pathway, leading to improved glucose and lipid metabolism. These findings position BBR as a promising therapeutic candidate for the treatment of MASLD.
Collapse
Affiliation(s)
- Jing Ji
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tian Xu
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Shao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zijin Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Simin Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Di Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Chongyang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
3
|
Zhou Y, Wang M, Wang Z, Qiu J, Wang Y, Li J, Dong F, Huang X, Zhao J, Xu T. Polysaccharides from hawthorn fruit alleviate high-fat diet-induced NAFLD in mice by improving gut microbiota dysbiosis and hepatic metabolic disorder. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156458. [PMID: 39919328 DOI: 10.1016/j.phymed.2025.156458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/20/2025] [Accepted: 02/01/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND Hawthorn fruit, renowned as both a functional food and herbal medicine with lipid-lowering effects, is abundant in polysaccharides. However, there is limited research on the effects and mechanisms of hawthorn fruit polysaccharides (HP) in addressing non-alcoholic fatty liver disease (NAFLD). PURPOSE This study aims to investigate the effects of HP on NAFLD both in vivo and in vitro, and to elucidate the underlying mechanisms by which HP exerts its anti-NAFLD activity. METHODS NAFLD mice induced by a high-fat diet were employed as the in vivo model, while oleate/palmitate-induced HepG2 cells served as the in vitro model. H&E and Oil Red O staining were employed to examine fat accumulation in hepatocytes. Serum aminotransferase (ALT), aspartate aminotransferase (AST), hepatic malondialdehyde (MDA), superoxide dismutase (SOD), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) were measured using corresponding ELISA kits. Hepatic metabolomics analysis based on UHPLC-QTOF/MS was utilized to examine the role of HP in improving hepatic metabolic disorders. 16S rRNA sequencing was conducted to explore the effect of HP in alleviating gut microbiota dysbiosis. GC-MS was applied to detect short-chain fatty acids (SCFAs) to clarify the impact of HP in NAFLD mice. RESULTS HP significantly inhibited weight gain and hepatic fat accumulation in NAFLD mice. The reduction in serum ALT and AST levels indicated that HP mitigated liver function damage, while the decreased MDA levels and increased SOD activity suggested that HP alleviated hepatic oxidative stress. Furthermore, HP diminished the release of inflammatory cytokines such as IL-1β and IL-6 in the liver. HP significantly regulated metabolic pathways related to amino acids, lipids, and vitamins. Key metabolites such as l-tyrosine, urocanic acid, undecanedioic acid, oleamide, vitamin A, and vitamin B7 were restored to near-normal levels under the regulatory effects of HP. Gut microbiota dysbiosis in NAFLD mice was also ameliorated by HP, with genera such as unclassified_f__Lachnospiraceae and Dubosiella being notably affected. Correlation analysis indicated a significant correlation between the regulatory effects of HP on liver metabolism and gut microbiota. Additionally, HP showed no effect in vitro but increased acetic acid level in the gut of NAFLD mice. CONCLUSIONS These findings demonstrate that HP exhibits its anti-NAFLD effects, including alleviating lipid accumulation, liver dysfunction, oxidative stress, and inflammation. Mechanistically, HP primarily improves gut microbiota dysbiosis, thereby elevating intestinal SCFA levels and restoring hepatic metabolic disorders in NAFLD mice.
Collapse
Affiliation(s)
- Yuan Zhou
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mengyao Wang
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zichuan Wang
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junjie Qiu
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yichen Wang
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianbiao Li
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
| | - Fengqi Dong
- Department of Pharmacy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
| | - Xianzhe Huang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing 314400, China
| | - Jiahui Zhao
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Tengfei Xu
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Luo Y, Sheikh TMM, Li X, Yuan Y, Yao F, Wang M, Guo X, Wu J, Shafiq M, Xie Q, Jiao X. Exploring the dynamics of gut microbiota, antibiotic resistance, and chemotherapy impact in acute leukemia patients: A comprehensive metagenomic analysis. Virulence 2024; 15:2428843. [PMID: 39620486 PMCID: PMC11622590 DOI: 10.1080/21505594.2024.2428843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/24/2024] [Accepted: 11/06/2024] [Indexed: 12/08/2024] Open
Abstract
Leukemia poses significant challenges to its treatment, and understanding its complex pathogenesis is crucial. This study used metagenomic sequencing to investigate the interplay between chemotherapy, gut microbiota, and antibiotic resistance in patients with acute leukemia (AL). Pre- and post-chemotherapy stool samples from patients revealed alterations in microbial richness, taxa, and antibiotic resistance genes (ARGs). The analysis revealed a decreased alpha diversity, increased dispersion in post-chemotherapy samples, and changes in the abundance of specific bacteria. Key bacteria such as Enterococcus, Klebsiella, and Escherichia coli have been identified as prevalent ARG carriers. Correlation analysis between gut microbiota and blood indicators revealed potential links between microbial species and inflammatory biomarkers, including C-reactive protein (CRP) and adenosine deaminase (ADA). This study investigated the impact of antibiotic dosage on microbiota and ARGs, revealing networks connecting co-occurring ARGs with microbial species (179 nodes, 206 edges), and networks associated with ARGs and antibiotic dosages (50 nodes, 50 edges). Antibiotics such as cephamycin and sulfonamide led to multidrug-resistant Klebsiella colonization. Our analyses revealed distinct microbial profiles with Salmonella enterica elevated post-chemotherapy in NF patients and Akkermansia muciniphila elevated pre-chemotherapy. These microbial signatures could inform strategies to modulate the gut microbiome, potentially mitigating the risk of neutropenic fever in patients undergoing chemotherapy. Finally, a comprehensive analysis of KEGG modules shed light on disrupted metabolic pathways after chemotherapy, providing insights into potential targets for managing side effects. Overall, this study revealed intricate relationships between gut microbiota, chemotherapy, and antibiotic resistance, providing new insights into improving therapy and enhancing patient outcomes.
Collapse
Affiliation(s)
- Ying Luo
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | | | - Xin Li
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - YuMeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Fen Yao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Meimei Wang
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Xiaoling Guo
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Jilong Wu
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Shantou University Medical College, Shantou, China
| | - Qingdong Xie
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| |
Collapse
|
5
|
Song J, Fang Y, Rao X, Wu L, Zhang C, Ying J, Hua F, Lin Y, Wei G. Beyond conventional treatment: ASGR1 Leading the new era of hypercholesterolemia management. Biomed Pharmacother 2024; 180:117488. [PMID: 39316974 DOI: 10.1016/j.biopha.2024.117488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/01/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of mortality worldwide, with hypercholesterolemia being a major risk factor. Although various lipid-lowering therapies exist, many patients fail to achieve optimal cholesterol control, highlighting the need for novel therapeutic approaches. ASGR1 (asialoglycoprotein receptor 1), predominantly expressed on hepatocytes, has emerged as a key regulator of cholesterol metabolism and low-density lipoprotein (LDL) clearance. This receptor's ability to regulate lipid homeostasis positions it as a promising target for therapeutic intervention in hypercholesterolemia and related cardiovascular diseases. This review critically examines the biological functions and regulatory mechanisms of ASGR1 in cholesterol metabolism, with a focus on its potential as a therapeutic target for hypercholesterolemia and related cardiovascular diseases. By analyzing recent advances in ASGR1 research, this article explores its role in liver-specific pathways, the implications of ASGR1 variants in CVD risk, and the prospects for developing ASGR1-targeted therapies. This review aims to provide a foundation for future research and clinical applications in hypercholesterolemia management.
Collapse
Affiliation(s)
- Jiali Song
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Yang Fang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Xiuqin Rao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Luojia Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Chenxi Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China.
| | - Gen Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
6
|
Zhao M, Zhang Q, Lin Y, Zhang D, Cao H. The association between dietary carbohydrate intake and the risk of hyperlipidemia among reproductive-aged women in the US: A cross-sectional study. PLoS One 2024; 19:e0310184. [PMID: 39413081 PMCID: PMC11482686 DOI: 10.1371/journal.pone.0310184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/27/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The association between dietary carbohydrate intake and hyperlipidemia remained incompletely understood. This study aimed to explore the association between dietary carbohydrate intake and the risk of hyperlipidemia among reproductive-aged women in the US. METHODS The study utilized data from the National Health and Nutrition Examination Survey (NHANES) conducted from 2005 to 2020. Dietary intake information was assessed via interviews using 24-hour dietary recall interviews, and hyperlipidemia diagnosis adhered to the National Cholesterol Education Program guidelines. Univariate and multivariate logistic regression analyses, along with restricted cubic splines (RCS) and stratified analyses, were conducted to investigate the association between dietary carbohydrate intake and the risk of hyperlipidemia. RESULTS A total of 6,791 women of reproductive age, with a mean age of 34.87 (±8.57) years, were included in the final analysis. In the multivariate logistic regression model adjusting for covariates, a higher percentage of energy from carbohydrate was positively correlated with the risk of hyperlipidemia (adjusted odds ratio (AOR): 1.014, 95% CI: 1.004-1.024). Analyzing the percentage of energy from carbohydrate as a categorical variable, compared to the lowest quartile, the third quartile (AOR: 1.263, 95% CI: 1.031-1.546) and the highest quartile (AOR: 1.411, 95% CI: 1.083-1.839) were associated with increased hyperlipidemia risk. Additionally, a linear relationship (P for nonlinearity = 0.088) existed between the percentage of energy from carbohydrate and the risk of hyperlipidemia, with an inflection point identified at 49.64. CONCLUSIONS This study found that elevated dietary carbohydrate intake was associated with an increased the risk of hyperlipidemia in reproductive-aged women. These findings implied that reproductive-aged women should pay closer attention to reducing their carbohydrate intake.
Collapse
Affiliation(s)
- Minli Zhao
- Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Qiuping Zhang
- Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Yuan Lin
- Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Danwei Zhang
- Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Hua Cao
- Fujian Children’s Hospital (Fujian Branch of Shanghai Children’s Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Holt D, Contu L, Wood A, Chadwick H, Alborelli I, Insilla AC, Crea F, Hawkes CA. Both Maternal High-Fat and Post-Weaning High-Carbohydrate Diets Increase Rates of Spontaneous Hepatocellular Carcinoma in Aged-Mouse Offspring. Nutrients 2024; 16:2805. [PMID: 39203941 PMCID: PMC11357072 DOI: 10.3390/nu16162805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Both maternal obesity and postnatal consumption of obesogenic diets contribute to the development of metabolic dysfunction-associated steatotic liver disease (MASLD) and hepatocellular carcinoma (HCC). However, there is no consensus as to whether diets that are high in fat or carbohydrates/sugars differentially influence the development of HCC. Moreover, the long-term effects of prenatal HF exposure on HCC and whether this is influenced by postnatal diet has not yet been evaluated. C57BL/6 dams were fed either a low-fat, high-carbohydrate control (C) or low-carbohydrate, high-fat (HF) diet. At weaning, male and female offspring were fed the C or HF diet, generating four diet groups: C/C, C/HF, HF/C and HF/HF. Tissues were collected at 16 months of age and livers were assessed for MASLD and HCC. Glucose regulation and pancreatic morphology were also evaluated. Liver tissues were assessed for markers of glycolysis and fatty acid metabolism and validated using a human HCC bioinformatic database. Both C/HF and HF/HF mice developed obesity, hyperinsulinemia and a greater degree of MASLD than C/C and HF/C offspring. However, despite significant liver and pancreas pathology, C/HF mice had the lowest incidence of HCC while tumour burden was highest in HF/C male offspring. The molecular profile of HCC mouse samples suggested an upregulation of the pentose phosphate pathway and a downregulation of fatty acid synthesis and oxidation, which was largely validated in the human dataset. Both pre-weaning HF diet exposure and post-weaning consumption of a high-carbohydrate diet increased the risk of developing spontaneous HCC in aged mice. However, the influence of pre-weaning HF feeding on HCC development appeared to be stronger in the context of post-weaning obesity. As rates of maternal obesity continue to rise, this has implications for the future incidence of HCC and possible dietary manipulation of offspring carbohydrate intake to counteract this risk.
Collapse
Affiliation(s)
- Daniel Holt
- Biomedical and Life Sciences, Lancaster University, Lancaster LA4 1YW, UK (A.W.); (H.C.)
| | - Laura Contu
- School of Psychological Sciences, Bristol University, Bristol BS8 1QU, UK;
| | - Alice Wood
- Biomedical and Life Sciences, Lancaster University, Lancaster LA4 1YW, UK (A.W.); (H.C.)
| | - Hannah Chadwick
- Biomedical and Life Sciences, Lancaster University, Lancaster LA4 1YW, UK (A.W.); (H.C.)
| | - Ilaria Alborelli
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4056 Basel, Switzerland;
| | - Andrea Cacciato Insilla
- Morphological Diagnostic and Biomolecular Characterization Area, Complex Unit of Pathological Anatomy Empoli and Prato, Usl Toscana Centro, 50122 Florence, Italy
| | - Francesco Crea
- Cancer Research Group, Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK;
| | - Cheryl A. Hawkes
- Biomedical and Life Sciences, Lancaster University, Lancaster LA4 1YW, UK (A.W.); (H.C.)
| |
Collapse
|
8
|
Wang P, Sun J, Zhao W, Wang D, Ma Y, Zhao Y, Wang Y, Zhao X. Tomato Pectin Ameliorated Hepatic Steatosis in High-Fat-Diet Mice by Modulating Gut Microbiota and Bile Acid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38856079 DOI: 10.1021/acs.jafc.4c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a worldwide public health issue. Changes in the gut microbiota structure and composition are closely related to host pathophysiology processes. Pectin is associated with several beneficial health effects. In the present study, we aimed at investigating the effect of tomato pectin (TP) on hepatic steatosis and exploring the underlying mechanisms by focusing on the regulation of the gut microbiota-bile acid axis. Our results showed that TP attenuated high-fat diet (HFD)-induced liver steatosis and inflammation. TP administration increased the diversity of gut microbiota, enhancing the abundance of beneficial bacteria and suppressing the abundance of harmful or conditional pathogenic bacteria. Further antibiotic-caused microbiome depletion confirmed that the anti-NAFLD activities of TP were dependent on the regulation of gut microbiota. Besides, TP intervention affected feces bile acid metabolism and caused significant changes in functional conjugated bile acids, which in turn inhibited the ileum FXR/FGF15 signaling, leading to stimulation of the hepatic bile acid (BA) production. Furthermore, TP treatment accelerated BA excretion, promoted BA transportation, inhibited BA reabsorption, and facilitated cholesterol efflux to relieve HFD-induced hyperlipidemia. These findings provide a potential dietary intervention strategy for TP against NAFLD via modulation of cross-talk between BAs and gut bacteria.
Collapse
Affiliation(s)
- Pan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Jing Sun
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Wenting Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Dan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yue Ma
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yuanyuan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yubin Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| |
Collapse
|
9
|
Janota B, Adamek B, Szczepańska E, Biernacki K, Janczewska E. Lifestyle and Quality of Life of Women Diagnosed with Hypothyroidism in the Context of Non-Alcoholic Fatty Liver. Metabolites 2023; 13:1174. [PMID: 38132856 PMCID: PMC10745337 DOI: 10.3390/metabo13121174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Interconnections between hypothyroidism and metabolic disturbances manifesting in the liver and body composition have not yet been comprehensively analyzed in the context of lifestyle. This study aimed to assess the selected lifestyle factors and quality of life in the context of the development of NAFL (non-alcoholic fatty liver) in women diagnosed with hypothyroidism. This study included 134 women categorized into three groups: with hypothyroidism and NAFL, with only hypothyroidism, and with only NAFL. We compared the groups concerning the KomPAN and WHOQOL-BREF questionnaires, anthropometric measurements, body composition parameters, and the stage of liver steatosis. The individuals with NAFL most frequently consumed lard, fried dishes, processed meats, red meat, sweets, and sweetened beverages. The individuals with hypothyroidism without coexisting NAFL exhibited the highest satisfaction with health. The NAFL group had the highest average body fat percentage. Selected lifestyle aspects influenced the development of NAFL in women diagnosed with hypothyroidism. Women's overall quality of life did not vary depending on the coexisting medical conditions. Preventive programs should promote the following: the regular consumption of meals, the appropriate energy supply, physical activity, mental health support, and striving for proper body composition parameters.
Collapse
Affiliation(s)
- Barbara Janota
- Department of Basic Medical Sciences, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Brygida Adamek
- Department of Basic Medical Sciences, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Elżbieta Szczepańska
- Department of Human Nutrition, Department of Dietetics, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-808 Zabrze, Poland
| | - Krzysztof Biernacki
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Ewa Janczewska
- Department of Basic Medical Sciences, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| |
Collapse
|