1
|
Ling IC, Niu DM, Yang CF, Lee CY, Liang SB, Chen YJ. Correlation between toxic organic acid fluctuations and neurodevelopment in patients with methylmalonic acidemia. Orphanet J Rare Dis 2025; 20:179. [PMID: 40234872 PMCID: PMC11998238 DOI: 10.1186/s13023-025-03687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/19/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Methylmalonic acidemia (MMA) is a rare autosomal recessive disorder, that causes multisystem damage by accumulating toxic metabolites. These metabolites, particularly affecting nerve cells, contribute to suboptimal neurodevelopment in MMA patients. While fluctuations in these toxic metabolites are common in MMA patients, their precise impact on neurodevelopment remains unclear. RESULTS This study enrolled 20 MMA patients, comprising 14 vitamin B12 non-responsive (B12-NR) type and 6 vitamin B12 responsive (B12-R) type. Diverse parameters were assessed, including methylmalonic acid (MA), methylcitric acid (MCA), propionylcarnitine (C3), acetylcarnitine (C2), ammonia, glycine, and lactate. Cognitive function was evaluated using the Bayley-III and Wechsler intelligence scale, and brain imaging was conducted through magnetic resonance spectroscopy (MRS). The frequency and extent of fluctuations in toxic organic acids were computed based on blood test results. B12-NR type patients exhibited elevated levels of MA, MCA, C3, C3/C2 ratio and lactate, with more frequent and significant MA, MCA and C3 fluctuation than B12-R type patients. Brain imaging revealed central nervous system demyelination in B12-NR type patients, while B12-R type patients displayed normal MRS results. B12-R type patients exhibited significantly better neurocognitive outcomes, with higher scores in all domains. CONCLUSION Patients with B12-NR type MMA exhibit worse neurodevelopmental outcomes and more pronounced biochemical imbalances compared to those with B12-R type. Significant correlations were observed between higher fluctuation frequencies of toxic metabolites and lower developmental and IQ scores. These findings emphasize the importance of targeted strategies to manage organic acid fluctuations for improving neurodevelopmental outcomes in MMA.
Collapse
Affiliation(s)
- I-Chih Ling
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Dau-Ming Niu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Feng Yang
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Yu Lee
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sheng-Bin Liang
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Pediatrics, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Yann-Jang Chen
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming Chiao Tung University, 155 Linon Street, Sec 2, Beitou, Taipei, 11221, Taiwan.
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Wang Y, Zhu S, He W, Marchuk H, Richard E, Desviat LR, Young SP, Koeberl D, Kasumov T, Chen X, Zhang GF. The attenuated hepatic clearance of propionate increases cardiac oxidative stress in propionic acidemia. Basic Res Cardiol 2024; 119:1045-1062. [PMID: 38992300 PMCID: PMC11702364 DOI: 10.1007/s00395-024-01066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Propionic acidemia (PA), arising from PCCA or PCCB variants, manifests as life-threatening cardiomyopathy and arrhythmias, with unclear pathophysiology. In this work, propionyl-CoA metabolism in rodent hearts and human pluripotent stem cell-derived cardiomyocytes was investigated with stable isotope tracing analysis. Surprisingly, gut microbiome-derived propionate rather than the propiogenic amino acids (valine, isoleucine, threonine, and methionine) or odd-chain fatty acids was found to be the primary cardiac propionyl-CoA source. In a Pcca-/-(A138T) mouse model and PA patients, accumulated propionyl-CoA and diminished acyl-CoA synthetase short-chain family member 3 impede hepatic propionate disposal, elevating circulating propionate. Prolonged propionate exposure induced significant oxidative stress in PCCA knockdown HL-1 cells and the hearts of Pcca-/-(A138T) mice. Additionally, Pcca-/-(A138T) mice exhibited mild diastolic dysfunction after the propionate challenge. These findings suggest that elevated circulating propionate may cause oxidative damage and functional impairment in the hearts of patients with PA.
Collapse
Affiliation(s)
- You Wang
- School of Basic Medicine, Jining Medical University, Shandong, 272067, China
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Carmichael Building 48-203, 300 North Duke Street, Durham, NC, 27701, USA
| | - Suhong Zhu
- School of Basic Medicine, Jining Medical University, Shandong, 272067, China
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Carmichael Building 48-203, 300 North Duke Street, Durham, NC, 27701, USA
| | - Wentao He
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Carmichael Building 48-203, 300 North Duke Street, Durham, NC, 27701, USA
| | - Hannah Marchuk
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Carmichael Building 48-203, 300 North Duke Street, Durham, NC, 27701, USA
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, CIBERER, IdiPaz, IUBM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, CIBERER, IdiPaz, IUBM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sarah P Young
- Biochemical Genetics Laboratory, Duke University Health System, Durham, NC, USA
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Dwight Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Takhar Kasumov
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Xiaoxin Chen
- Surgical Research Lab, Department of Surgery, Cooper University Hospital and Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
- Coriell Institute for Medical Research, Camden, NJ, 08103, USA
- MD Anderson Cancer Center at Cooper, Camden, NJ, 08103, USA
| | - Guo-Fang Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Carmichael Building 48-203, 300 North Duke Street, Durham, NC, 27701, USA.
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University Medical Center, Durham, NC, 27701, USA.
| |
Collapse
|
3
|
Sikirica V, Schwartz EJ, Vockley J, Stagni K, Bellenger MA, Banerjee G, Durgam N, Moshkovich O. Development of a signs and symptoms outcome measure for caregivers of patients with methylmalonic acidemia and propionic acidemia (MMAPAQ). Mol Genet Metab 2024; 143:108577. [PMID: 39303317 DOI: 10.1016/j.ymgme.2024.108577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND AND OBJECTIVE Methylmalonic acidemia (MMA) and propionic acidemia (PA) are rare inborn errors of metabolism with shared signs and symptoms that are associated with significant morbidity and mortality. No disease-specific clinical outcomes assessment instruments for MMA and/or PA currently exist to capture the patient perspective in clinical trials. Because patients with these conditions are generally young and have cognitive impairments, an observer-reported outcome (ObsRO) instrument is crucial. We report results from qualitative research supporting development of the Methylmalonic Acidemia and Propionic Acidemia Questionnaire (MMAPAQ), a signs and symptoms ObsRO measure for caregivers of patients with MMA and/or PA. METHODS Concept elicitation (CE) interviews were conducted with 35 participants across 2 studies who were aged ≥18 years and caregivers of patients with a confirmed diagnosis of MMA or PA, and an additional 5 patients aged ≥6 years with MMA or PA in Study 1, to identify core signs/symptoms for inclusion in the MMAPAQ. All interviews were conducted in English. Study 2 included cognitive interviews (CI) with caregivers and clinical experts to further assess content validity. CE and a conceptual framework review were also conducted with clinical experts to further support findings. RESULTS A consistent set of signs/symptoms of MMA and PA were reported by eligible caregivers interviewed in study 1 (n = 21) and study 2 (n = 14), representing 11 patients with MMA and 20 with PA. Based on concepts reported in study 1, a draft instrument was constructed and compared with the Pediatric Quality of Life Inventory™ (PedsQL™) and Family Impact module, demonstrating face validity for measuring key signs/symptoms important to patients and caregivers. The PedsQL™ and Family Impact modules were preferred to assess patient and caregiver impacts. Two waves of CE and CIs were conducted in study 2, with wave 1 resulting in removal of 7 items and other revisions to improve clarity, and wave 2 resulting in modification of examples used for 2 items. The final instrument consisted of the following 7 items assessed over the past 7 days using a Likert-type response scale ranging from "never" to "very often": uncontrollable or involuntary movements, dehydration, rapid breathing at rest, appearing lethargic, appearing disinterested in eating, refusing to eat, and vomiting. CONCLUSIONS This study establishes the content validity of the MMAPAQ as the first ObsRO questionnaire for measuring core signs and symptoms of MMA and PA in clinical trials and community research. Scoring and psychometric measurement properties of the MMAPAQ will be established in future studies. The PedsQL™ was found to have face validity in measuring concepts that affect the MMA and PA patient populations and should also be considered for use in clinical trials in MMA and PA.
Collapse
Affiliation(s)
| | | | - Jerry Vockley
- University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.
| | - Kathy Stagni
- Organic Acidemia Association, Golden Valley, MN, USA
| | | | | | | | | |
Collapse
|
4
|
Hu Z, Hu L, Zhang C, Yin X, Zhang Y, Fang K, Wu B, Huang X. Simultaneous determination of total homocysteine, methionine, methylmalonic acid and 2-methylcitric acid in dried blood spots by ultra-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1244:124253. [PMID: 39089063 DOI: 10.1016/j.jchromb.2024.124253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/10/2024] [Accepted: 07/20/2024] [Indexed: 08/03/2024]
Abstract
Homocysteine, methionine, methylmalonic acid and 2-methylcitric acid are clinically relevant markers in the methionine, propionate, and cobalamin metabolism. This study aimed to develop and validate an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for simultaneously determining total homocysteine, methionine, methylmalonic acid and 2-methylcitric acid in dried blood spots. Three 3.2 mm discs were punched from each calibrator, quality control, and sample dried blood spot into a 96-well U-plate. Each sample was spiked with internal standards and extracted. Then the supernatant was transferred to another 96-well U-plate. After nitrogen drying, the dried residues were reconstituted, centrifuged, and the resulting supernatant was transferred to another 96-well plate for analysis. The method was performed using UPLC-MS/MS within 3 min, validated according to guidance documents, and applied to 72 samples from confirmed patients with methionine, propionate, and cobalamin metabolism disorders. The UPLC-MS/MS method provided satisfactory separation of the four analytes. The R2 values were ≥ 0.9937 for all analytes. The recoveries ranged from 94.17 to 114.29 %, and the coefficients of variation for intraday and interday precision were 0.19 % to 5.23 % and 1.02 % to 6.89 %, respectively. No significant carry-over was detected for the four analytes, and most of confirmed samples exhibited biomarker patterns characteristic of the relevant disorders. A simple and fast UPLC-MS/MS method was successfully developed, validated, and applied to clinical samples for the simultaneous determination of total homocysteine, methionine, methylmalonic acid, and 2-methylcitric acid in dried blood spots.
Collapse
Affiliation(s)
- Zhenzhen Hu
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lingwei Hu
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chao Zhang
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaoshan Yin
- School of Health in Social Science, The University of Edinburg, United Kingdom
| | - Yu Zhang
- Zhejiang BiosanBiochemical Technologies Co., Ltd., Hangzhou, China
| | - Kexin Fang
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Benqing Wu
- Department of Neonatology, Children's Medical Center, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
5
|
Reischl-Hajiabadi AT, Schnabel E, Gleich F, Mengler K, Lindner M, Burgard P, Posset R, Lommer-Steinhoff S, Grünert SC, Thimm E, Freisinger P, Hennermann JB, Krämer J, Gramer G, Lenz D, Christ S, Hörster F, Hoffmann GF, Garbade SF, Kölker S, Mütze U. Outcomes after newborn screening for propionic and methylmalonic acidemia and homocystinurias. J Inherit Metab Dis 2024; 47:674-689. [PMID: 38563533 DOI: 10.1002/jimd.12731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
The current German newborn screening (NBS) panel includes 13 inherited metabolic diseases (IMDs). In addition, a NBS pilot study in Southwest Germany identifies individuals with propionic acidemia (PA), methylmalonic acidemia (MMA), combined and isolated remethylation disorders (e.g., cobalamin [cbl] C and methylenetetrahydrofolate reductase [MTHFR] deficiency), cystathionine β-synthase (CBS) deficiency, and neonatal cbl deficiency through one multiple-tier algorithm. The long-term health benefits of screened individuals are evaluated in a multicenter observational study. Twenty seven screened individuals with IMDs (PA [N = 13], MMA [N = 6], cblC deficiency [N = 5], MTHFR deficiency [N = 2] and CBS deficiency [N = 1]), and 42 with neonatal cbl deficiency were followed for a median of 3.6 years. Seventeen screened IMD patients (63%) experienced at least one metabolic decompensation, 14 of them neonatally and six even before the NBS report (PA, cbl-nonresponsive MMA). Three PA patients died despite NBS and immediate treatment. Fifteen individuals (79%) with PA or MMA and all with cblC deficiency developed permanent, mostly neurological symptoms, while individuals with MTHFR, CBS, and neonatal cbl deficiency had a favorable clinical outcome. Utilizing a combined multiple-tier algorithm, we demonstrate that NBS and specialized metabolic care result in substantial benefits for individuals with MTHFR deficiency, CBS deficiency, neonatal cbl deficiency, and to some extent, cbl-responsive MMA and cblC deficiency. However, its advantage is less evident for individuals with PA and cbl-nonresponsive MMA. SYNOPSIS: Early detection through newborn screening and subsequent specialized metabolic care improve clinical outcomes and survival in individuals with MTHFR deficiency and cystathionine-β-synthase deficiency, and to some extent in cobalamin-responsive methylmalonic acidemia (MMA) and cblC deficiency while the benefit for individuals with propionic acidemia and cobalamin-nonresponsive MMA is less evident due to the high (neonatal) decompensation rate, mortality, and long-term complications.
Collapse
Affiliation(s)
- Anna T Reischl-Hajiabadi
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Elena Schnabel
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Florian Gleich
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Katharina Mengler
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | | | - Peter Burgard
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Roland Posset
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Svenja Lommer-Steinhoff
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Sarah C Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Eva Thimm
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Freisinger
- Children's Hospital Reutlingen, Klinikum am Steinenberg Reutlingen, Reutlingen, Germany
| | - Julia B Hennermann
- Villa Metabolica, Department of Pediatric and Adolescent Medicine, University Medical Center Mainz, Mainz, Germany
| | - Johannes Krämer
- Department of Pediatric and Adolescent Medicine, Medical School, Ulm University, Ulm, Germany
| | - Gwendolyn Gramer
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
- Department for Inborn Metabolic Diseases, University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominic Lenz
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Stine Christ
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Friederike Hörster
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Georg F Hoffmann
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Sven F Garbade
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Stefan Kölker
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Ulrike Mütze
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| |
Collapse
|
6
|
Gupta N, Endrakanti M, Bhat M, Rao N, Kaur R, Kabra M. Clinical and Molecular Spectrum of Patients with Methylmalonic Acidemia. Indian J Pediatr 2024; 91:675-681. [PMID: 37420116 DOI: 10.1007/s12098-023-04651-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/17/2023] [Indexed: 07/09/2023]
Abstract
OBJECTIVES To study the clinical and molecular spectrum of Methylmalonic acidemia (MMA). METHODS In this retrospective study, the records of 30 MMA patients were evaluated for their phenotype, biochemical abnormalities, genotype, and outcomes. RESULTS Thirty patients with MMA (age range 0-21 y) from 27 unrelated families were enrolled. Family history and consanguinity were noted in 10/27 (37%) and 11/27 (41%) families respectively. Acute metabolic decompensation was more common (57%) than chronic presentation. Biochemical work-up was suggestive of isolated MMA (n = 18) and MMA with homocystinuria (n = 9) respectively. Molecular testing in 24 families showed 21 pathogenic or likely pathogenic variants with MMA cblC as the commonest molecular subtype (n = 8). B12 responsiveness, an important determinant of long-term outcome, was observed in eight patients [MMAA (n = 3) and MMACHC (n = 5)]. Mortality was 30% (n = 9/30) with a high proportion of early-onset severe disease and fatal outcome in isolated MMA mut0 (4/4) and MMA cblB (3/3), as compared to MMA cblA (1/5) and MMA cblC (1/10). CONCLUSIONS This study cohort had MMA cblC subtype as the most common type of MMA followed by the MMA mutase defect. Outcomes in MMA are influenced by the type of molecular defect, age, and severity of presentation. Early detection and management is likely to result in better outcomes.
Collapse
Affiliation(s)
- Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, Room 840, 8th floor, Mother and Child Block, Ansari Nagar, New Delhi, 110029, India.
| | - Mounika Endrakanti
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, Room 840, 8th floor, Mother and Child Block, Ansari Nagar, New Delhi, 110029, India
| | - Meenakshi Bhat
- Centre for Human Genetics, Bangalore, Karnataka, 560100, India
| | - Nivedita Rao
- Centre for Human Genetics, Bangalore, Karnataka, 560100, India
| | - Ravneet Kaur
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, Room 840, 8th floor, Mother and Child Block, Ansari Nagar, New Delhi, 110029, India
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, Room 840, 8th floor, Mother and Child Block, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
7
|
Ashenden AJ, Chowdhury A, Anastasi LT, Lam K, Rozek T, Ranieri E, Siu CWK, King J, Mas E, Kassahn KS. The Multi-Omic Approach to Newborn Screening: Opportunities and Challenges. Int J Neonatal Screen 2024; 10:42. [PMID: 39051398 PMCID: PMC11270328 DOI: 10.3390/ijns10030042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Newborn screening programs have seen significant evolution since their initial implementation more than 60 years ago, with the primary goal of detecting treatable conditions within the earliest possible timeframe to ensure the optimal treatment and outcomes for the newborn. New technologies have driven the expansion of screening programs to cover additional conditions. In the current era, the breadth of screened conditions could be further expanded by integrating omic technologies such as untargeted metabolomics and genomics. Genomic screening could offer opportunities for lifelong care beyond the newborn period. For genomic newborn screening to be effective and ready for routine adoption, it must overcome barriers such as implementation cost, public acceptability, and scalability. Metabolomics approaches, on the other hand, can offer insight into disease phenotypes and could be used to identify known and novel biomarkers of disease. Given recent advances in metabolomic technologies, alongside advances in genomics including whole-genome sequencing, the combination of complementary multi-omic approaches may provide an exciting opportunity to leverage the best of both approaches and overcome their respective limitations. These techniques are described, along with the current outlook on multi-omic-based NBS research.
Collapse
Affiliation(s)
- Alex J. Ashenden
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
| | - Ayesha Chowdhury
- Department of Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia; (A.C.); (L.T.A.)
| | - Lucy T. Anastasi
- Department of Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia; (A.C.); (L.T.A.)
| | - Khoa Lam
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Tomas Rozek
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
| | - Enzo Ranieri
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
| | - Carol Wai-Kwan Siu
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Jovanka King
- Immunology Directorate, SA Pathology, Adelaide, SA 5000, Australia
- Department of Allergy and Clinical Immunology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia
- Discipline of Paediatrics, Women’s and Children’s Hospital, The University of Adelaide, Adelaide, SA 5006, Australia
| | - Emilie Mas
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Karin S. Kassahn
- Department of Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia; (A.C.); (L.T.A.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
8
|
Baek R, Coughlan K, Jiang L, Liang M, Ci L, Singh H, Zhang H, Kaushal N, Rajlic IL, Van L, Dimen R, Cavedon A, Yin L, Rice L, Frassetto A, Guey L, Finn P, Martini PGV. Characterizing the mechanism of action for mRNA therapeutics for the treatment of propionic acidemia, methylmalonic acidemia, and phenylketonuria. Nat Commun 2024; 15:3804. [PMID: 38714648 PMCID: PMC11076592 DOI: 10.1038/s41467-024-47460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/28/2024] [Indexed: 05/10/2024] Open
Abstract
Messenger RNA (mRNA) therapeutics delivered via lipid nanoparticles hold the potential to treat metabolic diseases caused by protein deficiency, including propionic acidemia (PA), methylmalonic acidemia (MMA), and phenylketonuria (PKU). Herein we report results from multiple independent preclinical studies of mRNA-3927 (an investigational treatment for PA), mRNA-3705 (an investigational treatment for MMA), and mRNA-3210 (an investigational treatment for PKU) in murine models of each disease. All 3 mRNA therapeutics exhibited pharmacokinetic/pharmacodynamic (PK/PD) responses in their respective murine model by driving mRNA, protein, and/or protein activity responses, as well as by decreasing levels of the relevant biomarker(s) when compared to control-treated animals. These preclinical data were then used to develop translational PK/PD models, which were scaled allometrically to humans to predict starting doses for first-in-human clinical studies for each disease. The predicted first-in-human doses for mRNA-3927, mRNA-3705, and mRNA-3210 were determined to be 0.3, 0.1, and 0.4 mg/kg, respectively.
Collapse
Affiliation(s)
- Rena Baek
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | | | - Lei Jiang
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Min Liang
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Lei Ci
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Harkewal Singh
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Hannah Zhang
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Neeraj Kaushal
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | | | - Linh Van
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Rain Dimen
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | | | - Ling Yin
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Lisa Rice
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | | | - Lin Guey
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA.
| | - Patrick Finn
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA.
| | | |
Collapse
|
9
|
Deleanu C, Nicolescu A. NMR Spectroscopy in Diagnosis and Monitoring of Methylmalonic and Propionic Acidemias. Biomolecules 2024; 14:528. [PMID: 38785935 PMCID: PMC11117674 DOI: 10.3390/biom14050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Although both localized nuclear magnetic resonance spectroscopy (MRS) and non-localized nuclear magnetic resonance spectroscopy (NMR) generate the same information, i.e., spectra generated by various groups from the structure of metabolites, they are rarely employed in the same study or by the same research group. As our review reveals, these techniques have never been applied in the same study of methylmalonic acidemia (MMA), propionic acidemia (PA) or vitamin B12 deficiency patients. On the other hand, MRS and NMR provide complementary information which is very valuable in the assessment of the severity of disease and efficiency of its treatment. Thus, MRS provides intracellular metabolic information from localized regions of the brain, while NMR provides extracellular metabolic information from biological fluids like urine, blood or cerebrospinal fluid. This paper presents an up-to-date review of the NMR and MRS studies reported to date for methylmalonic and propionic acidemias. Vitamin B12 deficiency, although in most of its cases not inherited, shares similarities in its metabolic effects with MMA and it is also covered in this review.
Collapse
Affiliation(s)
- Calin Deleanu
- “Costin D. Nenitescu” Institute of Organic and Supramolecular Chemistry, Spl. Independentei 202-B, RO-060023 Bucharest, Romania
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41-A, RO-700487 Iasi, Romania
| | - Alina Nicolescu
- “Costin D. Nenitescu” Institute of Organic and Supramolecular Chemistry, Spl. Independentei 202-B, RO-060023 Bucharest, Romania
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41-A, RO-700487 Iasi, Romania
| |
Collapse
|
10
|
Martínez-Pizarro A, Calmels N, Schalk A, Wicker C, Richard E, Desviat LR. Functional analysis of novel variants identified in cis in the PCCB gene in a patient with propionic acidemia. Gene 2024; 893:147902. [PMID: 37839763 DOI: 10.1016/j.gene.2023.147902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Next-generation sequencing has improved the diagnosis of inborn errors of metabolism, allowing rapid confirmation of cases detected by clinical/biochemical studies or newborn screening. The challenge, however, remains for establishing the pathogenicity of the identified variants, especially for novel missense changes or small in-frame deletions. In this work we report a propionic acidemia patient exhibiting a severe neonatal form with coma and hyperammonaemia. Genetic analysis identified the previously described pathogenic PCCB variant p.R512C in the maternal allele and two novel PCCB variants in cis in the paternal allele, p.G246del and p.S322F. Expression analysis in a eukaryotic system confirmed the deleterious effect of the novel missense variant and of the one amino acid deletion, as they both exhibited reduced protein levels and reduced or null PCC activity compared to the wild-type construct. Accordingly, the double mutant resulted in no residual activity. This study increases the knowledge of the genotype-phenotype correlations in the rare disease propionic acidemia and highlights the necessity of functional analysis of novel variants to understand their contribution to disease severity and to accurately classify their pathogenic status. In conclusion, two novel PCCB pathogenic variants have been identified, expanding the current mutational spectrum of propionic acidemia.
Collapse
Affiliation(s)
- Ainhoa Martínez-Pizarro
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, CIBERER, IdiPaz, IUBM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nadège Calmels
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Audrey Schalk
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Camille Wicker
- Centre de Compétence Maladies Héréditaires du Métabolisme, filière G2M, Service de pédiatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, CIBERER, IdiPaz, IUBM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, CIBERER, IdiPaz, IUBM, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
11
|
Maier EM, Mütze U, Janzen N, Steuerwald U, Nennstiel U, Odenwald B, Schuhmann E, Lotz-Havla AS, Weiss KJ, Hammersen J, Weigel C, Thimm E, Grünert SC, Hennermann JB, Freisinger P, Krämer J, Das AM, Illsinger S, Gramer G, Fang-Hoffmann J, Garbade SF, Okun JG, Hoffmann GF, Kölker S, Röschinger W. Collaborative evaluation study on 18 candidate diseases for newborn screening in 1.77 million samples. J Inherit Metab Dis 2023; 46:1043-1062. [PMID: 37603033 DOI: 10.1002/jimd.12671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Analytical and therapeutic innovations led to a continuous but variable extension of newborn screening (NBS) programmes worldwide. Every extension requires a careful evaluation of feasibility, diagnostic (process) quality and possible health benefits to balance benefits and limitations. The aim of this study was to evaluate the suitability of 18 candidate diseases for inclusion in NBS programmes. Utilising tandem mass spectrometry as well as establishing specific diagnostic pathways with second-tier analyses, three German NBS centres designed and conducted an evaluation study for 18 candidate diseases, all of them inherited metabolic diseases. In total, 1 777 264 NBS samples were analysed. Overall, 441 positive NBS results were reported resulting in 68 confirmed diagnoses, 373 false-positive cases and an estimated cumulative prevalence of approximately 1 in 26 000 newborns. The positive predictive value ranged from 0.07 (carnitine transporter defect) to 0.67 (HMG-CoA lyase deficiency). Three individuals were missed and 14 individuals (21%) developed symptoms before the positive NBS results were reported. The majority of tested candidate diseases were found to be suitable for inclusion in NBS programmes, while multiple acyl-CoA dehydrogenase deficiency, isolated methylmalonic acidurias, propionic acidemia and malonyl-CoA decarboxylase deficiency showed some and carnitine transporter defect significant limitations. Evaluation studies are an important tool to assess the potential benefits and limitations of expanding NBS programmes to new diseases.
Collapse
Affiliation(s)
- Esther M Maier
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Ulrike Mütze
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Nils Janzen
- Screening-Labor Hanover, Hanover, Germany
- Department of Clinical Chemistry, Hanover Medical School, Hanover, Germany
- Division of Laboratory Medicine, Centre for Children and Adolescents, Kinder- und Jugendkrankenhaus Auf der Bult, Hanover, Germany
| | | | - Uta Nennstiel
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Birgit Odenwald
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | | | - Amelie S Lotz-Havla
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Katharina J Weiss
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Johanna Hammersen
- Department of Pediatrics, Division of Inborn Errors of Metabolism, University Hospital Erlangen, Erlangen, Germany
| | - Corina Weigel
- Department of Pediatrics, Division of Inborn Errors of Metabolism, University Hospital Erlangen, Erlangen, Germany
| | - Eva Thimm
- Department of General Pediatrics, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah C Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Julia B Hennermann
- Villa Metabolica, Center for Pediatric and Adolescent Medicine, Mainz University Medical Center, Mainz, Germany
| | - Peter Freisinger
- Children's Hospital Reutlingen, Klinikum am Steinenberg, Reutlingen, Germany
| | - Johannes Krämer
- Department of Pediatric and Adolescent Medicine, Ulm University Medical School, Ulm, Germany
| | - Anibh M Das
- Hanover Medical School, Clinic for Pediatric Kidney-Liver- and Metabolic Diseases, Hanover, Germany
| | - Sabine Illsinger
- Hanover Medical School, Clinic for Pediatric Kidney-Liver- and Metabolic Diseases, Hanover, Germany
| | - Gwendolyn Gramer
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
- University Medical Center Hamburg-Eppendorf, University Children's Hospital, Hamburg, Germany
| | - Junmin Fang-Hoffmann
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sven F Garbade
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen G Okun
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Wulf Röschinger
- Laboratory Becker MVZ GbR, Newborn Screening Unit, Munich, Germany
| |
Collapse
|
12
|
Kurolap A, Barel D, Shaul Lotan N, Wexler I, Chai Gadot C, Mory A, Barel O, Almashanu S, Baris Feldman H. A common benign intronic deletion masking a pathogenic deep intronic PCCB variant - genome sequencing and RNA studies to the rescue. Mol Genet Metab 2023; 140:107702. [PMID: 37776842 DOI: 10.1016/j.ymgme.2023.107702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
Propionic acidemia (PA) is an autosomal recessive metabolic disorder caused by variants in PCCA or PCCB, both sub-units of the propionyl-CoA carboxylase (PCC) enzyme. PCC is required for the catabolism of certain amino acids and odd-chain fatty acids. In its absence, the accumulated toxic metabolites cause metabolic acidosis, neurologic symptoms, multi-organ dysfunction and possible death. The clinical presentation of PA is highly variable, with typical onset in the neonatal or early infantile period. We encountered two families, whose children were diagnosed with PA. Exome sequencing (ES) failed to identify a pathogenic variant, and we proceeded with genome sequencing (GS), demonstrating homozygosity to a deep intronic PCCB variant. RNA analysis established that this variant creates a pseudoexon with a premature stop codon. The parents are variant carriers, though three of them display pseudo-homozygosity due to a common large benign intronic deletion on the second allele. The parental presumed homozygosity merits special attention, as it masked the causative variant at first, which was resolved only by RNA studies. Arriving at a rapid diagnosis, whether biochemical or genetic, can be crucial in directing lifesaving care, concluding the diagnostic odyssey, and allowing the family prenatal testing in subsequent pregnancies. This study demonstrates the power of integrative genetic studies in reaching a diagnosis, utilizing GS and RNA analysis to overcome ES limitations and define pathogenicity. Importantly, it highlights that intronic deletions should be taken into consideration when analyzing genomic data, so that pseudo-homozygosity would not be misinterpreted as true homozygosity, and pathogenic variants will not be mislabeled as benign.
Collapse
Affiliation(s)
- Alina Kurolap
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Dalit Barel
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nava Shaul Lotan
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
| | - Isaiah Wexler
- Department of Pediatrics, Hadassah Medical Organization, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chofit Chai Gadot
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Adi Mory
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ortal Barel
- Genomics Unit, The Center for Cancer Research, Sheba Medical Center, Ramat Gan, Israel
| | - Shlomo Almashanu
- National Newborn Screening Program, Public Health Services, Ministry of Health, Ramat Gan, Israel
| | - Hagit Baris Feldman
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel..
| |
Collapse
|
13
|
Li YY, Xu J, Sun XC, Li HY, Mu K. Characteristics, differential diagnosis, individualized treatment, and prevention of hyperhomocysteinemia in newborns. Eur J Med Genet 2023; 66:104836. [PMID: 37673299 DOI: 10.1016/j.ejmg.2023.104836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
OBJECTIVES This study aimed to investigate the incidence rate, clinical phenotype, gene variation spectrum, and prognosis of neonatal hyperhomocysteinemia (HHcy) and explore its diagnosis, individualised treatment, and prevention strategies. METHODS We screened 84722 neonates for HHcy using liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with biochemical detection, urine gas chromatography-mass spectrometry (GC-MS), and next-generation sequencing (NGS) for gene analysis to comprehensively differentiate and diagnose diseases. RESULTS 18 children (P1-P18) were diagnosed with methylmalonic acidemia (MMA) and HHcy, and fourteen known and one new variant of the MMACHC gene were found. Five children showed poor mental reactions, brain dysplasia, lethargy, hyperbilirubinemia, and jaundice, whereas the other 13 children had no evident abnormalities. These children were all cobalamin- and folic acid-reactive types, and they were mainly supplemented with cobalamin, L-carnitine, betaine, and folic acid. The mother of P12 had a prenatal diagnosis at the next pregnancy; the results showed that MMACHC gene was not pathogenic and she gave birth to a healthy baby. One child (P19) was diagnosed with methylenetetrahydrofolate reductase (MTHFR) deficiency, and one new mutation was detected in the MTHFR gene. Patient P19 showed congenital brain dysplasia, neonatal anaemia, and hyperbilirubinemia, and treatment consisted mainly of betaine and cobalamin supplementation. One child (P20) was confirmed to have methionine adenosyltransferase I (MAT I) deficiency but had no clinical manifestations. After treatment, all the children had a good prognosis. CONCLUSION The incidence of neonatal HHcy in the Zibo area was 1/4236, and the common pathogenic variants were c.609G>A, c.80A>G, and c.482G>A in the MMACHC gene. Patients with HHcy can achieve a good prognosis if pathogenic factors and targeted treatment are identified. Gene analysis and prenatal diagnosis contribute to the early prevention of HHcy.
Collapse
Affiliation(s)
- Yu-Yu Li
- Department of Medical Genetics, Zibo Maternal and Child Health Hospital, Zibo, China
| | - Jia Xu
- Department of Medical Genetics, Zibo Maternal and Child Health Hospital, Zibo, China
| | - Xue-Cheng Sun
- Department of Medical Genetics, Zibo Maternal and Child Health Hospital, Zibo, China
| | - Hong-Yu Li
- Department of Medical Genetics, Zibo Maternal and Child Health Hospital, Zibo, China
| | - Kai Mu
- Department of Medical Genetics, Zibo Maternal and Child Health Hospital, Zibo, China.
| |
Collapse
|
14
|
Schnabel E, Kölker S, Gleich F, Feyh P, Hörster F, Haas D, Fang-Hoffmann J, Morath M, Gramer G, Röschinger W, Garbade SF, Hoffmann GF, Okun JG, Mütze U. Combined Newborn Screening Allows Comprehensive Identification also of Attenuated Phenotypes for Methylmalonic Acidurias and Homocystinuria. Nutrients 2023; 15:3355. [PMID: 37571294 PMCID: PMC10420807 DOI: 10.3390/nu15153355] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Newborn screening (NBS) programs are effective measures of secondary prevention and have been successively extended. We aimed to evaluate NBS for methylmalonic acidurias, propionic acidemia, homocystinuria, remethylation disorders and neonatal vitamin B12 deficiency, and report on the identification of cofactor-responsive disease variants. This evaluation of the previously established combined multiple-tier NBS algorithm is part of the prospective pilot study "NGS2025" from August 2016 to September 2022. In 548,707 newborns, the combined algorithm was applied and led to positive NBS results in 458 of them. Overall, 166 newborns (prevalence 1: 3305) were confirmed (positive predictive value: 0.36); specifically, methylmalonic acidurias (N = 5), propionic acidemia (N = 4), remethylation disorders (N = 4), cystathionine beta-synthase (CBS) deficiency (N = 1) and neonatal vitamin B12 deficiency (N = 153). The majority of the identified newborns were asymptomatic at the time of the first NBS report (total: 161/166, inherited metabolic diseases: 9/14, vitamin B12 deficiency: 153/153). Three individuals were cofactor-responsive (methylmalonic acidurias: 2, CBS deficiency: 1), and could be treated by vitamin B12, vitamin B6 respectively, only. In conclusion, the combined NBS algorithm is technically feasible, allows the identification of attenuated and severe disease courses and can be considered to be evaluated for inclusion in national NBS panels.
Collapse
Affiliation(s)
- Elena Schnabel
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Patrik Feyh
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Friederike Hörster
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Dorothea Haas
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Junmin Fang-Hoffmann
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Marina Morath
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Gwendolyn Gramer
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
- Department for Inborn Metabolic Diseases, University Children’s Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wulf Röschinger
- Labor Becker MVZ GbR, Newborn Screening Unit, 81671 Munich, Germany
| | - Sven F. Garbade
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Georg F. Hoffmann
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Jürgen G. Okun
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| |
Collapse
|
15
|
Manoli I, Gebremariam A, McCoy S, Pass AR, Gagné J, Hall C, Ferry S, Van Ryzin C, Sloan JL, Sacchetti E, Catesini G, Rizzo C, Martinelli D, Spada M, Dionisi-Vici C, Venditti CP. Biomarkers to predict disease progression and therapeutic response in isolated methylmalonic acidemia. J Inherit Metab Dis 2023; 46:554-572. [PMID: 37243446 PMCID: PMC10330948 DOI: 10.1002/jimd.12636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Methylmalonic Acidemia (MMA) is a heterogenous group of inborn errors of metabolism caused by a defect in the methylmalonyl-CoA mutase (MMUT) enzyme or the synthesis and transport of its cofactor, 5'-deoxy-adenosylcobalamin. It is characterized by life-threatening episodes of ketoacidosis, chronic kidney disease, and other multiorgan complications. Liver transplantation can improve patient stability and survival and thus provides clinical and biochemical benchmarks for the development of hepatocyte-targeted genomic therapies. Data are presented from a US natural history protocol that evaluated subjects with different types of MMA including mut-type (N = 91), cblB-type (15), and cblA-type MMA (17), as well as from an Italian cohort of mut-type (N = 19) and cblB-type MMA (N = 2) subjects, including data before and after organ transplantation in both cohorts. Canonical metabolic markers, such as serum methylmalonic acid and propionylcarnitine, are variable and affected by dietary intake and renal function. We have therefore explored the use of the 1-13 C-propionate oxidation breath test (POBT) to measure metabolic capacity and the changes in circulating proteins to assess mitochondrial dysfunction (fibroblast growth factor 21 [FGF21] and growth differentiation factor 15 [GDF15]) and kidney injury (lipocalin-2 [LCN2]). Biomarker concentrations are higher in patients with the severe mut0 -type and cblB-type MMA, correlate with a decreased POBT, and show a significant response postliver transplant. Additional circulating and imaging markers to assess disease burden are necessary to monitor disease progression. A combination of biomarkers reflecting disease severity and multisystem involvement will be needed to help stratify patients for clinical trials and assess the efficacy of new therapies for MMA.
Collapse
Affiliation(s)
- Irini Manoli
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Abigael Gebremariam
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Samantha McCoy
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexandra R. Pass
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jack Gagné
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Camryn Hall
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Susan Ferry
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Carol Van Ryzin
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jennifer L. Sloan
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Elisa Sacchetti
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Giulio Catesini
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Cristiano Rizzo
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Diego Martinelli
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Marco Spada
- Division of Hepatobiliopancreatic Surgery, Liver and Kidney Tranplantation, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- European Research Network TransplantChild
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Charles P. Venditti
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
16
|
Tangeraas T, Ljungblad UW, Lutvica E, Kristensen E, Rowe AD, Bjørke-Monsen AL, Rootwelt-Revheim T, Sæves I, Pettersen RD. Vitamin B12 Deficiency (Un-)Detected Using Newborn Screening in Norway. Int J Neonatal Screen 2023; 9:ijns9010003. [PMID: 36648770 PMCID: PMC9844471 DOI: 10.3390/ijns9010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Untreated vitamin B12 (B12) deficiency may cause delayed development in infants. Several newborn screening (NBS) programs have reported an increased detection rate of B12 deficiency when second-tier dried blood spot (DBS) analyses of total homocysteine (tHcy) and methylmalonic acid (MMA) are included. This is a retrospective study of newborns reported from NBS during 2012−2021 with confirmed B12 deficiency. DBSs were retrieved from the NBS biobank for second-tier MMA and tHcy analysis. Thirty-one newborns were diagnosed with B12 deficiency out of 552970 screened. Twenty-five were ascertained from sixty-one false positive (FP) cases of methylmalonic acidemia and propionic acidemia (PA), and six infants screened positive for other NBS metabolic diseases with propionylcarnitine (C3) in the normal range. In the original DBS, 7/23 (30%) and 12/23 (52%) of B12-deficient newborns with FP methylmalonic acidemia/PA had MMA and tHcy > 99th percentile. B12 deficiency was a common differential diagnosis of screening positive for methylmalonic and PA. C3 failed to identify a subset of newborns with B12 deficiency. Second-tier MMA and tHcy analyses in the DBS showed suboptimal sensitivity for identifying infants with B12 deficiency. The shortcomings of NBS should be acknowledged when considering B12 deficiency as a primary target of NBS panels.
Collapse
Affiliation(s)
- Trine Tangeraas
- Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway
- European Reference Network for Hereditary Metabolic Disorders (MetabERN), 0424 Oslo, Norway
- Correspondence:
| | - Ulf W. Ljungblad
- Institute of Clinical Medicine, University of Oslo, Mailbox 1171 Blindern, 0318 Oslo, Norway
- Department of Pediatrics, Vestfold Hospital Trust, Mailbox 1068, 3103 Tønsberg, Norway
| | - Elma Lutvica
- Medical Faculty, University of Oslo, Mailbox 1171 Blindern, 0318 Oslo, Norway
| | - Erle Kristensen
- Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway
| | - Alex D. Rowe
- Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Anne-Lise Bjørke-Monsen
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5007 Bergen, Norway
| | - Terje Rootwelt-Revheim
- European Reference Network for Hereditary Metabolic Disorders (MetabERN), 0424 Oslo, Norway
| | - Ingjerd Sæves
- Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Rolf D. Pettersen
- Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
17
|
Ljungblad UW, Lindberg M, Eklund EA, Saeves I, Bjørke‐Monsen A, Tangeraas T. Nitrous oxide in labour predicted newborn screening total homocysteine and is a potential risk factor for infant vitamin B12 deficiency. Acta Paediatr 2022; 111:2315-2321. [PMID: 36029294 PMCID: PMC9825840 DOI: 10.1111/apa.16530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 01/11/2023]
Abstract
AIM Risk factors for vitamin B12 deficiency in infants are not fully understood. The aim of the study was to assess predictors of total homocysteine and methylmalonic acid analysed in newborn screening dried blood spots. METHODS In a Norwegian case control study, we analysed total homocysteine and methylmalonic acid in newborn screening dried blood spots of 86 infants clinically diagnosed with vitamin B12 deficiency during 2012-2018. Results were compared to 252 healthy infants and 400 dried blood spot controls. Medical records were reviewed, and mothers completed questionnaires. RESULTS Both total homocysteine and methylmalonic acid were significantly higher on newborn screening dried blood spots in infants later clinically diagnosed with vitamin B12 deficiency than controls. Multiple regression analysis showed that the dose of nitrous oxide during labour was the strongest predictor for total homocysteine level in newborn screening dried blood spots for all infants, with larger effect in infants later clinically diagnosed with vitamin B12 deficiency than controls. CONCLUSION Nitrous oxide dose during labour was a predictor for total homocysteine and may impact the interpretation of total homocysteine analysis in newborn screening. Nitrous oxide is suggested as a contributing risk factor for infants prone to develop vitamin B12 deficiency.
Collapse
Affiliation(s)
- Ulf Wike Ljungblad
- Institute of Clinical MedicineUniversity of OsloOsloNorway,Department of PaediatricsVestfold Hospital TrustTønsbergNorway
| | - Morten Lindberg
- Department of Medical BiochemistryVestfold Hospital TrustTønsbergNorway
| | - Erik A. Eklund
- Department of Paediatrics, Clinical Sciences LundLund UniversityLundSweden
| | - Ingjerd Saeves
- Norwegian National Unit for Newborn ScreeningOslo University HospitalOsloNorway
| | - Anne‐Lise Bjørke‐Monsen
- Laboratory of Medical BiochemistryInnlandet Hospital TrustLillehammerNorway,Department of Medical Biochemistry and PharmacologyHaukeland University HospitalBergenNorway
| | - Trine Tangeraas
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent MedicineOslo University HospitalOsloNorway
| |
Collapse
|
18
|
Kumar J, Soomro RA, Neiber RR, Ahmed N, Medany SS, Albaqami MD, Nafady A. Ni Nanoparticles Embedded Ti 3C 2T x-MXene Nanoarchitectures for Electrochemical Sensing of Methylmalonic Acid. BIOSENSORS 2022; 12:231. [PMID: 35448291 PMCID: PMC9030921 DOI: 10.3390/bios12040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 05/08/2023]
Abstract
MXenes-Ti3C2Tx, based on their versatile surface characteristics, has rapidly advanced as an interactive substrate to develop electrochemical sensors for clinical applications. Herein, Ni embedded Ti3C2Tx (MX-Ni) composites were prepared using a self-assembly approach where Ti3C2Tx sheets served as an interactive conductive substrate as well as a protective layer to nickel nanoparticles (Ni NPs), preventing their surface oxidation and aggregation. The composite displayed a cluster-like morphology with an intimate interfacial arrangement between Ni, Ti3C2Tx and Ti3C2Tx-derived TiO2. The configuration of MX-Ni into an electrochemical sensor realized a robust cathodic reduction current against methylmalonic acid (MMA), a biomarker to vitamin B12 deficiency. The synergism of Ni NPs strong redox characteristics with conductive Ti3C2Tx enabled sensitive signal output in wide detection ranges of 0.001 to 0.003 µM and 0.0035 to 0.017 µM and a detection sensitivity down to 0.12 pM of MMA. Importantly, the sensor demonstrated high signal reproducibility and excellent operational capabilities for MMA in a complex biological matrix such as human urine samples.
Collapse
Affiliation(s)
- Jai Kumar
- State Key Laboratory of Organic-Inorganic Composites Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Razium Ali Soomro
- State Key Laboratory of Organic-Inorganic Composites Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Rana R. Neiber
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
- College of Chemical Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Nazeer Ahmed
- Research Center on Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Shymaa S. Medany
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Munirah D. Albaqami
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.D.A.); (A.N.)
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.D.A.); (A.N.)
| |
Collapse
|