1
|
Pietri JE, Laroche M. Invasive indoor pests under the microbiological lens: bacterial and viral diversity from local to global scales in bed bugs and cockroaches. CURRENT OPINION IN INSECT SCIENCE 2025; 69:101344. [PMID: 39929276 DOI: 10.1016/j.cois.2025.101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/15/2025] [Accepted: 02/03/2025] [Indexed: 02/19/2025]
Abstract
Essentially, all animal life interacts closely with an array of microorganisms, such as bacteria and viruses, which can have both beneficial and harmful effects. The advancement of high-throughput molecular biology approaches (DNA and RNA sequencing) has led to an ongoing boom in investigating the composition and functions of microbial communities (microbiota) associated with a wide range of animal taxa, including insects. As this area of investigation has blossomed, such research on indoor urban insect pests has lagged more widely studied species. However, over the last several years, significant strides have been made in understanding the diversity and biological roles of microbes associated with such insects. This review highlights and discusses recent key findings, focusing on bed bugs and cockroaches, two of the most prolific globally invasive indoor insect pests. Advances in this area of research have long-term implications for public health and for the development of novel pest control approaches.
Collapse
Affiliation(s)
- Jose E Pietri
- Purdue University, Department of Entomology, Center for Urban and Industrial Pest Management, West Lafayette, IN, USA; Purdue University, Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA; Purdue University, Department of Biological Sciences, West Lafayette, IN, USA; University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, USA.
| | - Maureen Laroche
- University of Texas Medical Branch, Department of Microbiology & Immunology, Galveston, TX, USA; University of Texas Medical Branch, Department of Global Health, Galveston, TX, USA; Clima, Latin American Center of Excellence for Climate Change and Health, Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| |
Collapse
|
2
|
Wang YH, Liu Q, Vuong TMD, Wang HL, Fu JY, Su XY, Wang YJ, Yang JY, Zeng JY, Li HP. Gut bacterium Delftia tsuruhatensis strain ALG19 isolated from Agrilus planipennis larvae degrades cellulose in Fraxinus velutina. Front Microbiol 2025; 16:1567054. [PMID: 40236488 PMCID: PMC11998278 DOI: 10.3389/fmicb.2025.1567054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/06/2025] [Indexed: 04/17/2025] Open
Abstract
Introduction Strain ALG19, a predominant culturable bacterium isolated from the larval gut of the emerald ash borer (Agrilus planipennis) infesting velvet ash (Fraxinus velutina), was investigated to determine its taxonomic identity and evaluate its cellulose-degrading potential. Methods The taxonomic classification of ALG19 was determined through whole-genome sequencing, average nucleotide identity (ANI) analysis, and phylogenetic reconstruction based on single-copy orthologous genes. Functional annotation of carbohydrate-active genes was performed using the COG, KEGG, and CAZy databases. Cellulolytic activity was assessed using a multi-faceted approach. First, carboxymethyl cellulose hydrolysis assays were conducted to evaluate cellulolytic capability. Additionally, filter paper degradation and the utilization of velvet ash phloem cellulose were examined. For these experiments, the strain was cultured in an inorganic salt medium supplemented with the respective cellulose substrates for 60 days. Results Genomic analyses confirmed that ALG19 belongs to Delftia tsuruhatensis. The strain harbors 283 COG-annotated genes associated with carbohydrate transport and metabolism, 355 KEGG genes involved in carbohydrate metabolism pathways, and 105 CAZy-annotated carbohydrate-active enzymes. Phenotypic assays revealed a carboxymethyl cellulose hydrolysis zone ratio of 1.74. After a 60-day incubation period, ALG19 completely decomposed filter paper strips into flocs, resulting in a 38.06% reduction in dry weight compared to control samples, which basically retained their original shape. Furthermore, the strain degraded velvet ash phloem cellulose, leaving a residual content of 69.91%. This was 15.60% lower than the control, which exhibited a residual content of 82.83%. Discussion These findings demonstrate that D. tsuruhatensis ALG19 is capable of degrading cellulose present in the host plant of the emerald ash borer, its associated insect. This study identifies a potential target microorganism for future pest management strategies, which could mitigate the damage caused by the emerald ash borer by impairing its digestive capacity.
Collapse
Affiliation(s)
- Yi-Han Wang
- Department of Forest Protection, College of Forestry, Hebei Agricultural University, Baoding, China
| | - Qi Liu
- Department of Forest Protection, College of Forestry, Hebei Agricultural University, Baoding, China
| | - Thi Minh Dien Vuong
- Modern Educational Technology Center, Hebei Agricultural University, Baoding, China
| | - Hua-Ling Wang
- Department of Forest Protection, College of Forestry, Hebei Agricultural University, Baoding, China
- Hebei Urban Forest Health Technology Innovation Center, Baoding, China
| | - Jing-Yi Fu
- Department of Forest Protection, College of Forestry, Hebei Agricultural University, Baoding, China
| | - Xiao-Yu Su
- Department of Forest Protection, College of Forestry, Hebei Agricultural University, Baoding, China
| | - Ying-Jie Wang
- Department of Forest Protection, College of Forestry, Hebei Agricultural University, Baoding, China
| | - Jia-Yu Yang
- Department of Forest Protection, College of Forestry, Hebei Agricultural University, Baoding, China
| | - Jian-Yong Zeng
- Department of Forest Protection, College of Forestry, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Hui-Ping Li
- Department of Forest Protection, College of Forestry, Hebei Agricultural University, Baoding, China
- Hebei Urban Forest Health Technology Innovation Center, Baoding, China
| |
Collapse
|
3
|
Guse K, Pietri JE. Endosymbiont and gut bacterial communities of the brown-banded cockroach, Supella longipalpa. PeerJ 2024; 12:e17095. [PMID: 38525276 PMCID: PMC10959106 DOI: 10.7717/peerj.17095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
The brown-banded cockroach (Supella longipalpa) is a widespread nuisance and public health pest. Like the German cockroach (Blattella germanica), this species is adapted to the indoor biome and completes the entirety of its life cycle in human-built structures. Recently, understanding the contributions of commensal and symbiotic microbes to the biology of cockroach pests, as well as the applications of targeting these microbes for pest control, have garnered significant scientific interest. However, relative to B. germanica, the biology of S. longipalpa, including its microbial associations, is understudied. Therefore, the goal of the present study was to quantitatively examine and characterize both the endosymbiont and gut bacterial communities of S. longipalpa for the first time. To do so, bacterial 16S rRNA gene amplicon sequencing was conducted on DNA extracts from whole adult females and males, early instar nymphs, and late instar nymphs. The results demonstrate that the gut microbiome is dominated by two genera of bacteria known to have beneficial probiotic effects in other organisms, namely Lactobacillus and Akkermansia. Furthermore, our data show a significant effect of nymphal development on diversity and variation in the gut microbiome. Lastly, we reveal significant negative correlations between the two intracellular endosymbionts, Blattabacterium and Wolbachia, as well as between Blattabacterium and the gut microbiome, suggesting that Blattabacterium endosymbionts could directly or indirectly influence the composition of other bacterial populations. These findings have implications for understanding the adaptation of S. longipalpa to the indoor biome, its divergence from other indoor cockroach pest species such as B. germanica, the development of novel control approaches that target the microbiome, and fundamental insect-microbe interactions more broadly.
Collapse
Affiliation(s)
- Kylene Guse
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, United States
| | - Jose E. Pietri
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
4
|
Li Q, Zhang X, Feng Q, Zhou H, Ma C, Lin C, Wang D, Yin J. Common Allergens and Immune Responses Associated with Allergic Rhinitis in China. J Asthma Allergy 2023; 16:851-861. [PMID: 37609376 PMCID: PMC10441643 DOI: 10.2147/jaa.s420328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
Allergic rhinitis (AR) is a chronic allergic disease of the upper respiratory system that affects approximately 10-40% of the global population. Due to the large number of plant pollen allergens with obvious seasonal variations, AR is common in China. AR is primarily caused by the abnormal regulation of the immune system. Its pathophysiological mechanism involves a series of immune cells and immune mediators, including cytokines. The present review summarizes the common allergens in China and the complex pathophysiological mechanism of AR. Additionally, host allergen contact, signal transduction, immune cell activation, cytokine release, and a series of inflammatory reactions are described according to their sequence of occurrence.
Collapse
Affiliation(s)
- Qirong Li
- Department of Otolaryngology-Head and Neck Surgery, the First Hospital of Jilin University, Changchun, People’s Republic of China
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, People’s Republic of China
| | - Xinyi Zhang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, People’s Republic of China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, People’s Republic of China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, People’s Republic of China
| | - Chaoyang Ma
- Hepatology Hospital of Jilin Province, Changchun, People’s Republic of China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, People’s Republic of China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, People’s Republic of China
| | - Jianmei Yin
- Department of Otolaryngology-Head and Neck Surgery, the First Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
5
|
Oladipupo SO, Laidoudi Y, Beckmann JF, Hu XP, Appel AG. The prevalence of Wolbachia in multiple cockroach species and its implication for urban insect management. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1307-1316. [PMID: 37247378 DOI: 10.1093/jee/toad098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Cockroach management relies heavily on the use of conventional insecticides in urban settings, which no longer provide the anticipated level of control. Knowledge of cockroach endosymbionts, like Wolbachia, might provide novel avenues for control. Therefore, we screened 16 cockroach species belonging to 3 families (Ectobiidae, Blattidae, and Blaberidae) for the presence of Wolbachia. We mapped the evolution of Wolbachia-cockroach relationships based on maximum likelihood phylogeny and phylogenetic species clustering on a multi-loci sequence dataset (i.e., coxA, virD4, hcpA, and gatB) of Wolbachia genes. We confirmed the previous report of Wolbachia in 1 Ectobiid species; Supella longipalpa (Fab.), and detected the presence of Wolbachia in 2 Ectobiid species; Balta notulata (Stål) and Pseudomops septentrionalis Hebard, and 1 Blaberid species; Gromphadorhina portentosa (Schaum). All cockroach-associated Wolbachia herein detected were clustered with the ancestor of F clade Wolbachia of Cimex lectularius L. (bed bugs). Since Wolbachia provision C. lectularius with biotin vitamins that confer reproductive fitness, we screened the cockroach-associated Wolbachia for the presence of biotin genes. In toto, our results reveal 2 important findings: (i) Wolbachia is relatively uncommon among cockroach species infecting about 25% of species investigated, and (ii) cockroach-associated Wolbachia have biotin genes that likely provide nutritional benefits to their hosts. Thus, we discuss the potential of exploring Wolbachia as a tool for urban insect management.
Collapse
Affiliation(s)
- Seun O Oladipupo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Younes Laidoudi
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
| | - John F Beckmann
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Xing Ping Hu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Arthur G Appel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
6
|
Zha C, Turner M, Ray R, Liang D, Pietri JE. Effects of copper and zinc oxide nanoparticles on German cockroach development, indoxacarb resistance, and bacterial load. PEST MANAGEMENT SCIENCE 2023; 79:2944-2950. [PMID: 36966487 PMCID: PMC10330183 DOI: 10.1002/ps.7472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/09/2023] [Accepted: 03/26/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The German cockroach, Blattella germanica, is a ubiquitous and medically significant urban pest. The ongoing development of insecticide resistance in global populations of B. germanica has complicated control efforts and created a need for improved tools. We previously reported that disruption of the gut microbiota by oral administration of the antimicrobial doxycycline reduced resistance in an indoxacarb resistant field strain and also delayed nymphal development and reduced adult fecundity. However, the application of doxycycline for cockroach control in the field is impractical. Here, we sought to determine whether two metal nanoparticles with known antimicrobial properties, copper (Cu) and zinc oxide (ZnO), have similar effects to doxycycline on the physiology of B. germanica and could provide more practical alternatives for control. RESULTS We found that dietary exposure to 0.1% Cu nanoparticles, but not ZnO, significantly delays the development of nymphs into adults. However, neither of the nanoparticles altered the fecundity of females, and ZnO surprisingly increased resistance to indoxacarb in a resistant field strain, in contrast to doxycycline. Semi-quantitative polymerase chain reaction (qPCR) further revealed that prolonged dietary exposure (14 days) to Cu or ZnO nanoparticles at the low concentration readily consumed by cockroaches (0.1%) does not reduce the load of the bacterial microbiota, suggesting alternative mechanisms behind their observed effects. CONCLUSIONS Together, our results indicate that ingestion of Cu nanoparticles can impact German cockroach development through an undetermined mechanism that does not involve reducing the overall load of the bacterial microbiota. Therefore, Cu may have some applications in cockroach control as a result of this activity but antagonistic effects on insecticide resistance should be considered when evaluating the potential of nanoparticles for cockroach control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chen Zha
- Apex Bait Technologies, Inc., Santa Clara, CA, USA
| | - Matthew Turner
- Sanford School of Medicine, Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, USA
| | - Ritesh Ray
- Sanford School of Medicine, Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, USA
| | | | - Jose E. Pietri
- Sanford School of Medicine, Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
7
|
Zhao Y, Song Q, Song Y. The role of insect intestinal microbes in controlling of Empoasca onukii Matsuda (Hemiptera: Cicadellidae) pest infestations in the production of tea garden: a review. Arch Microbiol 2023; 205:267. [PMID: 37351731 DOI: 10.1007/s00203-023-03609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/27/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
Pests like the phytophagous bug Empoasca onukii Matsuda frequently harm tea plants. The harm this insect does to agricultural and environmentally sensitive places is extremely harmful since physical and chemical prevention and control are still the primary methods of handling it. Therefore, it is important to develop pest management strategies. Recent research has demonstrated that pathogenic fungus and the gut microbiota interact to induce host and death, and that the gut microbiota, which has a dramatic effect on the host, can engage in pest control. The advancement of genome editing technologies is also new to the field of pest management. The diversity, function, and research methodologies of insect gut microbiota are summarized in this work, and discusses E. onukii Matsuda control options as well as the importance of insect gut microbiome in pest management. In comparison to traditional pesticides and physical prevention and control, the interaction between pathogenic fungi represented by Beauveria bassiana and intestinal microorganisms, as well as their participation in pest management, causes physiological stress on the host, which meets the new requirements of modern agricultural green development and has a protective effect on habitat fragmentation areas (Karst region). Exploring additional harmful fungus for pest management and fully using the specific traits of insect gut microbiota to achieve "killing insects with bacteria" would be a promising technique from this standpoint.
Collapse
Affiliation(s)
- Yuanqi Zhao
- School of Karst Science, Guizhou Normal University, Guiyang, 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| | - Qingfa Song
- School of Karst Science, Guizhou Normal University, Guiyang, 550001, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| | - Yuehua Song
- School of Karst Science, Guizhou Normal University, Guiyang, 550001, China.
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China.
| |
Collapse
|
8
|
Zhang X, Zhang F, Lu X. Diversity and Functional Roles of the Gut Microbiota in Lepidopteran Insects. Microorganisms 2022; 10:microorganisms10061234. [PMID: 35744751 PMCID: PMC9231115 DOI: 10.3390/microorganisms10061234] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
Lepidopteran insects are one of the most widespread and speciose lineages on Earth, with many common pests and beneficial insect species. The evolutionary success of their diversification depends on the essential functions of gut microorganisms. This diverse gut microbiota of lepidopteran insects provides benefits in nutrition and reproductive regulation and plays an important role in the defence against pathogens, enhancing host immune homeostasis. In addition, gut symbionts have shown promising applications in the development of novel tools for biological control, biodegradation of waste, and blocking the transmission of insect-borne diseases. Even though most microbial symbionts are unculturable, the rapidly expanding catalogue of microbial genomes and the application of modern genetic techniques offer a viable alternative for studying these microbes. Here, we discuss the gut structure and microbial diversity of lepidopteran insects, as well as advances in the understanding of symbiotic relationships and interactions between hosts and symbionts. Furthermore, we provide an overview of the function of the gut microbiota, including in host nutrition and metabolism, immune defence, and potential mechanisms of detoxification. Due to the relevance of lepidopteran pests in agricultural production, it can be expected that the research on the interactions between lepidopteran insects and their gut microbiota will be used for biological pest control and protection of beneficial insects in the future.
Collapse
Affiliation(s)
- Xiancui Zhang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
- Correspondence: (F.Z.); (X.L.)
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
- Correspondence: (F.Z.); (X.L.)
| |
Collapse
|
9
|
Zeni V, Baliota GV, Benelli G, Canale A, Athanassiou CG. Diatomaceous Earth for Arthropod Pest Control: Back to the Future. Molecules 2021; 26:7487. [PMID: 34946567 PMCID: PMC8706096 DOI: 10.3390/molecules26247487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/19/2022] Open
Abstract
Nowadays, we are tackling various issues related to the overuse of synthetic insecticides. Growing concerns about biodiversity, animal and human welfare, and food security are pushing agriculture toward a more sustainable approach, and research is moving in this direction, looking for environmentally friendly alternatives to be adopted in Integrated Pest Management (IPM) protocols. In this regard, inert dusts, especially diatomaceous earths (DEs), hold a significant promise to prevent and control a wide range of arthropod pests. DEs are a type of naturally occurring soft siliceous sedimentary rock, consisting of the fossilized exoskeleton of unicellular algae, which are called diatoms. Mainly adopted for the control of stored product pests, DEs have found also their use against some household insects living in a dry environment, such as bed bugs, or insects of agricultural interest. In this article, we reported a comprehensive review of the use of DEs against different arthropod pest taxa, such as Acarina, Blattodea, Coleoptera, Diptera, Hemiptera, Hymenoptera, Ixodida, Lepidoptera, when applied either alone or in combination with other techniques. The mechanisms of action of DEs, their real-world applications, and challenges related to their adoption in IPM programs are critically reported.
Collapse
Affiliation(s)
- Valeria Zeni
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (A.C.)
| | - Georgia V. Baliota
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou Str., 38446 Volos, Greece; (G.V.B.); (C.G.A.)
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (A.C.)
| | - Angelo Canale
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (A.C.)
| | - Christos G. Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou Str., 38446 Volos, Greece; (G.V.B.); (C.G.A.)
| |
Collapse
|
10
|
Paula DP. Next-Generation Sequencing and Its Impacts on Entomological Research in Ecology and Evolution. NEOTROPICAL ENTOMOLOGY 2021; 50:679-696. [PMID: 34374956 DOI: 10.1007/s13744-021-00895-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The advent of NGS-based methods has been profoundly transforming entomological research. Through continual development and improvement of different methods and sequencing platforms, NGS has promoted mass elucidation of partial or whole genetic materials associated with beneficial insects, pests (of agriculture, forestry and animal, and human health), and species of conservation concern, helping to unravel ecological and evolutionary mechanisms and characterizing survival, trophic interactions, and dispersal. It is shifting the scale of biodiversity and environmental analyses from individuals and biodiversity indicator species to the large-scale study of communities and ecosystems using bulk samples of species or a mixed "soup" of environmental DNA. As the NGS-based methods have become more affordable, complexity demystified, and specificity and sensitivity proven, their use in entomological research has spread widely. This article presents several examples on how NGS-based methods have been used in entomology to provide incentives to apply them when appropriate and to open our minds to the expected advances in entomology that are yet to come.
Collapse
|
11
|
Jackson D, Maltz MR, Freund HL, Borneman J, Aronson E. Environment and Diet Influence the Bacterial Microbiome of Ambigolimax valentianus, an Invasive Slug in California. INSECTS 2021; 12:575. [PMID: 34201881 PMCID: PMC8307491 DOI: 10.3390/insects12070575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/27/2022]
Abstract
Ambigolimax valentianus is an invasive European terrestrial gastropod distributed throughout California. It is a serious pest of gardens, plant nurseries, and greenhouses. We evaluated the bacterial microbiome of whole slugs to capture a more detailed picture of bacterial diversity and composition in this host. We concentrated on the influences of diet and environment on the Ambigolimax valentianus core bacterial microbiome as a starting point for obtaining valuable information to aid in future slug microbiome studies. Ambigolimax valentianus were collected from two environments (gardens or reared from eggs in a laboratory). DNA from whole slugs were extracted and next-generation 16S rRNA gene sequencing was performed. Slug microbiomes differed between environmental sources (garden- vs. lab-reared) and were influenced by a sterile diet. Lab-reared slugs fed an unsterile diet harbored greater bacterial species than garden-reared slugs. A small core microbiome was present that was shared across all slug treatments. This is consistent with our hypothesis that a core microbiome is present and will not change due to these treatments. Findings from this study will help elucidate the impacts of slug-assisted bacterial dispersal on soils and plants, while providing valuable information about the slug microbiome for potential integrated pest research applications.
Collapse
Affiliation(s)
- Denise Jackson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; (D.J.); (H.L.F.); (J.B.)
- Natural Science Division, Porterville College, Porterville, CA 93257, USA
| | - Mia R. Maltz
- Center for Conservation Biology, University of California, Riverside, CA 92521, USA;
- Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Hannah L. Freund
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; (D.J.); (H.L.F.); (J.B.)
- Genetics, Genomics, and Bioinformatics Program, University of California, Riverside, CA 92521, USA
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; (D.J.); (H.L.F.); (J.B.)
| | - Emma Aronson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; (D.J.); (H.L.F.); (J.B.)
- Center for Conservation Biology, University of California, Riverside, CA 92521, USA;
| |
Collapse
|