1
|
Vidkjær NH, Laursen BB, Kryger P. Phytochemical profiles of honey bees ( Apis mellifera) and their larvae differ from the composition of their pollen diet. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231654. [PMID: 39323556 PMCID: PMC11421904 DOI: 10.1098/rsos.231654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/19/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024]
Abstract
Pollen and nectar consumed by honey bees contain plant secondary metabolites (PSMs) with vital roles in plant-insect interactions. While PSMs can be toxic to bees, they can also be health-promoting, e.g. by improving pesticide and pathogen tolerances. As xenobiotics, PSMs undergo post-ingestion chemical modifications that can affect their bioactivity and transmission to the brood. Despite the importance of understanding honey bee PSM metabolism and distribution for elucidating bioactivity mechanisms, these aspects remain largely unexplored. In this study, we used HPLC-MS/MS to profile 47 pollen PSMs in honey bees and larvae. Both adult bees and larvae had distinct PSM profiles that differed from their diet. This is likely due to post-ingestion metabolism and compound-dependent variations in PSM transmission to the brood via nurse bee jelly. Phenolic acids and flavonoid aglycones were most abundant in bees and larvae, whereas alkaloids, cyanogenic glycosides and diterpenoids had the lowest abundance despite being consumed in higher concentrations. This study documents larval exposure to a variety of PSMs for the first time, with concentrations increasing from early to late larval instars. Our findings provide novel insights into the post-ingestion fate of PSMs in honey bees, providing a foundation for further exploration of biotransformation pathways and PSM effects on honey bee health.
Collapse
Affiliation(s)
- Nanna Hjort Vidkjær
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | | | - Per Kryger
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| |
Collapse
|
2
|
Bryś MS, Strachecka A. The Key Role of Amino Acids in Pollen Quality and Honey Bee Physiology-A Review. Molecules 2024; 29:2605. [PMID: 38893480 PMCID: PMC11173770 DOI: 10.3390/molecules29112605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
When studying honey bee nutrition, it is important to pay attention not only to the quantity but also to the quality of pollen for floral visitors. The recommended way to determine the value of pollen is to determine both the protein concentration and the amino acid composition in the insect's hemolymph. In addition, the composition of pollen also includes lipids, sterols and biogenic elements such as carbon, nitrogen, etc. Very high protein concentration is observed in aloe pollen, averaging 51%. Plants with a high protein content, at the level of 27% in Europe, are rapeseed and phacelia. In turn, a plant that is poor in protein (at the level of 11%) is buckwheat. The aforementioned plants are sown over very large areas. Vast acreages in Central and Eastern Europe are occupied by pollen- and nectar-providing invasive plants, such as goldenrod. Therefore, bees are forced to use one food source-a mono diet-which results in their malnutrition. In the absence of natural pollen, beekeepers use other foods for bees; including soy protein, powdered milk, egg yolks, fish meal, etc. However, the colony is the strongest when bees are fed with pollen, as opposed to artificial protein diets. More research is needed on the relationship between bee pollen composition and nutrition, as measured by protein concentration and amino acid composition in apian hemolymph, colony strength, honey yield and good overwintering.
Collapse
Affiliation(s)
- Maciej Sylwester Bryś
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland;
| | | |
Collapse
|
3
|
Motta EVS, Moran NA. The honeybee microbiota and its impact on health and disease. Nat Rev Microbiol 2024; 22:122-137. [PMID: 38049554 PMCID: PMC10998682 DOI: 10.1038/s41579-023-00990-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Honeybees (Apis mellifera) are key pollinators that support global agriculture and are long-established models for developmental and behavioural research. Recently, they have emerged as models for studying gut microbial communities. Earlier research established that hindguts of adult worker bees harbour a conserved set of host-restricted bacterial species, each showing extensive strain variation. These bacteria can be cultured axenically and introduced to gnotobiotic hosts, and some have basic genetic tools available. In this Review, we explore the most recent research showing how the microbiota establishes itself in the gut and impacts bee biology and health. Microbiota members occupy specific niches within the gut where they interact with each other and the host. They engage in cross-feeding and antagonistic interactions, which likely contribute to the stability of the community and prevent pathogen invasion. An intact gut microbiota provides protection against diverse pathogens and parasites and contributes to the processing of refractory components of the pollen coat and dietary toxins. Absence or disruption of the microbiota results in altered expression of genes that underlie immunity, metabolism, behaviour and development. In the field, such disruption by agrochemicals may negatively impact bees. These findings demonstrate a key developmental and protective role of the microbiota, with broad implications for bee health.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas, Austin, TX, USA.
| |
Collapse
|
4
|
Motta EVS, Gage A, Smith TE, Blake KJ, Kwong WK, Riddington IM, Moran N. Host-microbiome metabolism of a plant toxin in bees. eLife 2022; 11:82595. [PMID: 36472498 PMCID: PMC9897726 DOI: 10.7554/elife.82595] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
While foraging for nectar and pollen, bees are exposed to a myriad of xenobiotics, including plant metabolites, which may exert a wide range of effects on their health. Although the bee genome encodes enzymes that help in the metabolism of xenobiotics, it has lower detoxification gene diversity than the genomes of other insects. Therefore, bees may rely on other components that shape their physiology, such as the microbiota, to degrade potentially toxic molecules. In this study, we show that amygdalin, a cyanogenic glycoside found in honey bee-pollinated almond trees, can be metabolized by both bees and members of the gut microbiota. In microbiota-deprived bees, amygdalin is degraded into prunasin, leading to prunasin accumulation in the midgut and hindgut. In microbiota-colonized bees, on the other hand, amygdalin is degraded even further, and prunasin does not accumulate in the gut, suggesting that the microbiota contribute to the full degradation of amygdalin into hydrogen cyanide. In vitro experiments demonstrated that amygdalin degradation by bee gut bacteria is strain-specific and not characteristic of a particular genus or species. We found strains of Bifidobacterium, Bombilactobacillus, and Gilliamella that can degrade amygdalin. The degradation mechanism appears to vary since only some strains produce prunasin as an intermediate. Finally, we investigated the basis of degradation in Bifidobacterium wkB204, a strain that fully degrades amygdalin. We found overexpression and secretion of several carbohydrate-degrading enzymes, including one in glycoside hydrolase family 3 (GH3). We expressed this GH3 in Escherichia coli and detected prunasin as a byproduct when cell lysates were cultured with amygdalin, supporting its contribution to amygdalin degradation. These findings demonstrate that both host and microbiota can act together to metabolize dietary plant metabolites.
Collapse
Affiliation(s)
- Erick VS Motta
- Department of Integrative Biology, The University of Texas at AustinAustinUnited States
| | - Alejandra Gage
- Department of Integrative Biology, The University of Texas at AustinAustinUnited States
| | - Thomas E Smith
- Department of Integrative Biology, The University of Texas at AustinAustinUnited States
| | - Kristin J Blake
- Mass Spectrometry Facility, Department of Chemistry, The University of Texas at AustinAustinUnited States
| | | | - Ian M Riddington
- Mass Spectrometry Facility, Department of Chemistry, The University of Texas at AustinAustinUnited States
| | - Nancy Moran
- Department of Integrative Biology, The University of Texas at AustinAustinUnited States
| |
Collapse
|
5
|
Fitch G, Figueroa LL, Koch H, Stevenson PC, Adler LS. Understanding effects of floral products on bee parasites: Mechanisms, synergism, and ecological complexity. Int J Parasitol Parasites Wildl 2022; 17:244-256. [PMID: 35299588 PMCID: PMC8920997 DOI: 10.1016/j.ijppaw.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/27/2022]
Abstract
Floral nectar and pollen commonly contain diverse secondary metabolites. While these compounds are classically thought to play a role in plant defense, recent research indicates that they may also reduce disease in pollinators. Given that parasites have been implicated in ongoing bee declines, this discovery has spurred interest in the potential for 'medicinal' floral products to aid in pollinator conservation efforts. We review the evidence for antiparasitic effects of floral products on bee diseases, emphasizing the importance of investigating the mechanism underlying antiparasitic effects, including direct or host-mediated effects. We discuss the high specificity of antiparasitic effects of even very similar compounds, and highlight the need to consider how nonadditive effects of multiple compounds, and the post-ingestion transformation of metabolites, mediate the disease-reducing capacity of floral products. While the bulk of research on antiparasitic effects of floral products on bee parasites has been conducted in the lab, we review evidence for the impact of such effects in the field, and highlight areas for future research at the floral product-bee disease interface. Such research has great potential both to enhance our understanding of the role of parasites in shaping plant-bee interactions, and the role of plants in determining bee-parasite dynamics. This understanding may in turn reveal new avenues for pollinator conservation.
Collapse
Affiliation(s)
- Gordon Fitch
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Laura L. Figueroa
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Hauke Koch
- Royal Botanic Gardens, Kew Green, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Philip C. Stevenson
- Royal Botanic Gardens, Kew Green, Kew, Richmond, Surrey, TW9 3AE, UK
- Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
| | - Lynn S. Adler
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
6
|
Kopit AM, Klinger E, Cox-Foster DL, Ramirez RA, Pitts-Singer TL. Effects of Provision Type and Pesticide Exposure on the Larval Development of Osmia lignaria (Hymenoptera: Megachilidae). ENVIRONMENTAL ENTOMOLOGY 2022; 51:240-251. [PMID: 34718488 DOI: 10.1093/ee/nvab119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 06/13/2023]
Abstract
Wild and managed bee populations are in decline, and one of many environmental causes is the impact of pesticides on developing bees. For solitary bees, delayed larval development could lead to asynchronous adult emergence, unhealthy and inefficient adult pollinators, and decreased brood production and survival. We examined a methodology for testing Osmia lignaria Say (Hymenoptera: Megachilidae) larval responses to pesticide exposure using a laboratory bioassay. We created two provision types: a homogenized blend of O. lignaria provisions from an apple orchard and homogenized almond pollen pellets collected by honey bees plus sugar water. Pesticides were administered to the provisions to compare toxic effects. We recorded larval developmental durations for second-fifth instar and for fifth instar to cocoon initiation for larvae fed provisions treated with water (control) or doses of three pesticides and a representative spray-tank mixture (acetamiprid, boscalid/pyraclostrobin, dimethoate, and acetamiprid plus boscalid/pyraclostrobin). All larvae survived to cocoon initiation when only water was added to provisions. Impacts of pesticide treatments significantly differed between the apple and almond homogenates. The greatest treatment effects occurred when the homogenized almond provision was mixed with acetamiprid alone and when combined with boscalid/pyraclostrobin. Optimizing bioassays through the use of appropriate larval food for exposing solitary bee larvae to agrochemicals is crucial for assessing risks for pollinators.
Collapse
Affiliation(s)
- Andi M Kopit
- Department of Biology, Utah State University, Logan, UT, USA
| | - Ellen Klinger
- USDA ARS Pollinating Insects Research Unit, Logan, UT, USA
- Department of Entomology, The Ohio State University, Columbus, OH, USA
| | | | | | | |
Collapse
|
7
|
Tauber JP, McMahon D, Ryabov EV, Kunat M, Ptaszyńska AA, Evans JD. Honeybee intestines retain low yeast titers, but no bacterial mutualists, at emergence. Yeast 2021; 39:95-107. [PMID: 34437725 DOI: 10.1002/yea.3665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/08/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Honeybee symbionts, predominantly bacteria, play important roles in honeybee health, nutrition, and pathogen protection, thereby supporting colony health. On the other hand, fungi are often considered indicators of poor bee health, and honeybee microbiome studies generally exclude fungi and yeasts. We hypothesized that yeasts may be an important aspect of early honeybee biology, and if yeasts provide a mutual benefit to their hosts, then honeybees could provide a refuge during metamorphosis to ensure the presence of yeasts at emergence. We surveyed for yeast and fungi during pupal development and metamorphosis in worker bees using fungal-specific quantitative polymerase chain reaction (qPCR), next-generation sequencing, and standard microbiological culturing. On the basis of yeast presence in three distinct apiaries and multiple developmental stages, we conclude that yeasts can survive through metamorphosis and in naïve worker bees, albeit at relatively low levels. In comparison, known bacterial mutualists, like Gilliamella and Snodgrassella, were generally not found in pre-eclosed adult bees. Whether yeasts are actively retained as an important part of the bee microbiota or are passively propagating in the colony remains unknown. Our demonstration of the constancy of yeasts throughout development provides a framework to further understand the honeybee microbiota.
Collapse
Affiliation(s)
- James P Tauber
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, Maryland, USA.,Department for Materials and the Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Dino McMahon
- Department for Materials and the Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany.,Institute for Biology, Free University of Berlin, Berlin, Germany
| | - Eugene V Ryabov
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, Maryland, USA
| | - Magdalena Kunat
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Aneta A Ptaszyńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Jay D Evans
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, Maryland, USA
| |
Collapse
|