1
|
Gao Y, Li H, Lu Y. Bottom-up effects of nitrogen fertilizer on cotton growth and population expansion of Aphis gossypii (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2025:toaf080. [PMID: 40221838 DOI: 10.1093/jee/toaf080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 04/15/2025]
Abstract
Bottom-up effects, triggered by fertilization regimes, can be key ecological forces regulating pest populations. In this study, we investigated the effects of 5 different concentrations of Ca(NO3)2 (0, 2, 4, 6, and 8 mM) on cotton plants and the performance of Aphis gossypii. Our results demonstrated that nitrogen application significantly enhanced the growth indices of cotton seedlings (eg plant height, aboveground fresh weight) and plant biochemistry parameters (eg nitrogen, chlorophyll, and tannin). Nitrogen also affected the life history parameters of A. gossypii (eg longevity, reproductive days, fecundity, intrinsic rate of increase, finite rate of increase, and net reproductive rate). Notably, the positive effects on cotton seedling growth and A. gossypii performance observed at the 6 mM level diminished at the 8 mM level. Additionally, the highest soluble sugar content was observed in the unfertilized plants (the 0 mM treatment). Electrical penetration graph analysis revealed that A. gossypii spent less time on intercellular probing and more time feeding on phloem with increasing nitrogen levels, suggesting improved nutrient acquisition from phloem, which supported the observed increase in fecundity. The above results indicate that the bottom-up effects of nitrogen fertilizer could trigger outbreaks of A. gossypii. These findings provide a scientific basis for optimizing nitrogen fertilizer within integrated pest management programs so as to protect yields, reduce the risk of aphid outbreaks, as well as the costs for labor and ecological environment.
Collapse
Affiliation(s)
- Yu Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huatong Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
2
|
Zhang Y, Wang X, Bian Z, Se C, Yang G, Lu Y. Application of flavonoid compounds suppresses the cotton aphid, Aphis gossypii. FRONTIERS IN PLANT SCIENCE 2025; 16:1545499. [PMID: 40247935 PMCID: PMC12003358 DOI: 10.3389/fpls.2025.1545499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/17/2025] [Indexed: 04/19/2025]
Abstract
Introduction The cotton aphid Aphis gossypii is a significant polyphagous crop pest and has evolved a high level of resistance to neonicotinoids and other insecticides. Flavonoids, plant phytonutrients, have shown promise as natural insect deterrents and growth inhibitors. However, comprehensive evaluations of the effects of flavonoids on A. gossypii are currently lacking. Methods In this study, we first evaluated the effects of seven flavonoids (kaempferol, genistein, daidzein, naringenin, rutin, luteolin, and apigenin) on aphid settling behavior using choice assays, followed by electrical penetration graph (EPG) recordings to assess their influence on feeding activity. We then measured honeydew excretion and conducted life table analysis under laboratory conditions to assess effects on growth and reproduction. Under greenhouse conditions, all seven flavonoids were tested for their inhibitory effects on A. gossypii population growth over 12 days. Based on the results, three effective flavonoids were selected for further testing at four concentrations (1×, 2×, 3×, and 4× of 1 μg/μL) to assess dose-dependent effects. Results We found that all seven flavonoids significantly deterred aphid settling on host plants. Kaempferol, daidzein, naringenin, rutin, luteolin, and apigenin significantly reduced the total duration of phloem feeding and the proportion of time spent on phloem-related activities. And also, each of seven flavonoids reduced honeydew production compared to controls. In the laboratory, all flavonoids reduced adult longevity and fecundity, and kaempferol, genistein, daidzein, naringenin, luteolin and apigenin also reduced the net reproductive rate (R0), intrinsic rate of increase (rm), and finite rate of increase (λ). Naringenin, apigenin, and kaempferol significantly inhibited A. gossypii population growth in a dose-dependent manner over 12 days. Discussion These results demonstrate that the seven flavonoids, especially naringenin, apigenin, and kaempferol tested provided effective management of A. gossypii populations by deterring host settling, reducing phloem feeding, honeydew production, and decreasing reproductive rates. This study highlights the potential of flavonoids as eco-friendly control agents against A. gossypii.
Collapse
Affiliation(s)
- Ying Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinhang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhipeng Bian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenchen Se
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guoqing Yang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
3
|
Tian S, Zhi J, Yue W, Li D, Liu L. EPG Reveals Dinotefuran's Efficiency in Suppressing the Feeding Behavior of Frankliniella occidentalis on Kidney Bean Leaves. NEOTROPICAL ENTOMOLOGY 2025; 54:49. [PMID: 40138114 DOI: 10.1007/s13744-025-01264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Western flower thrips (WFT), Frankliniella occidentalis (Thysanoptera: Thripidae), is one of the serious damage pests on agricultural production globally. Dinotefuran is an effective insecticide to control this pest. This study compared the feeding behavior and feeding area of F. occidentalis on the kidney bean leaves under four treatments: F. occidentalis, whether treated with dinotefuran (DWFT) or untreated (CWFT), each fed on kidney bean leaves that were either treated with dinotefuran (DP) or untreated with dinotefuran (CP). (labeled as: DWFT-DP, CWFT-DP, DWFT-CP, and CWFT-CP (control), respectively). After 72 h, the LC50 and LC25 of dinotefuran against F. occidentalis were 39.018 mg L-1 and 20.441 mg L-1, respectively. The total number of probes, total time probing, the number and duration of noningestion probes and short-ingestion probes were significantly lower in DWFT-DP and CWFT-DP compared with the control, while the total duration of non-probing significantly increased, and a significant reduction in the number and total duration of long-ingestion probes was observed only in DWFT-DP. In contrast, there were few significant changes in the feeding behavior of F. occidentalis in DWFT-CP compared to control, with minimal effect on these electrical penetration graph parameters. Moreover, the feeding area of F. occidentalis decreased significantly by 39.20% and 48.58% in CWFT-DP and DWFT-DP than that in control, respectively. This study indicates that F. occidentalis feed on kidney bean leaves treated by sublethal concentrations of dinotefuran, and that their feeding behavior, ingestion, and feeding scars are impaired, and the effects are stronger in treated thrips than untreated ones.
Collapse
Affiliation(s)
- Song Tian
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, China
| | - Junrui Zhi
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, China.
| | - Wenbo Yue
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, China
| | - Dingyin Li
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, China
| | - Li Liu
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Liu J, Liu Y, Wang W, Liang G, Lu Y. Characterizing Three Heat Shock Protein 70 Genes of Aphis gossypii and Their Expression in Response to Temperature and Insecticide Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2842-2852. [PMID: 39838942 DOI: 10.1021/acs.jafc.4c09505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Aphis gossypii is a highly polyphagous pest that causes substantial agricultural damage. Temperature and insecticides are two major abiotic stresses affecting their population abundance. Heat shock proteins play an essential role in cell protection when insects are exposed to environmental stresses. Three ApHsp70 genes were cloned from A. gossypii, and characterized their molecular features and expression profiles in response to temperature and insecticide stress. The deduced amino acid sequences of these proteins exhibited characteristic Hsp70 family signatures, and their tissue-specific expression patterns revealed their highest activity to be in the salivary glands under 35 °C. The temperature inductive assay further indicated that the expression of the three ApHsp70 genes was markedly upregulated under heat stress but not under cold shock. Furthermore, exposure to LC25 and LC50 concentrations of three insecticides triggered the upregulation of these ApHsp70 genes. The RNA interference (RNAi)-mediated suppression of ApHsp68 expression heightened cotton aphid's susceptibility to insecticides (acetamiprid and sulfoxaflor). Moreover, our study found that the sulfoxaflor-resistant strain of A. gossypii (Sul-R) displayed a higher survival rate compared with the sulfoxaflor-sensitive strain (Sul-S) under heat shock conditions. These results suggest that these three ApHsp70 genes play an essential role in response to both heat and insecticide stress.
Collapse
Affiliation(s)
- Jinping Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Zhang Q, Wang Q, Wyckhuys KAG, Jin S, Lu Y. Salinity stress alters plant-mediated interactions between above- and below-ground herbivores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173687. [PMID: 38830424 DOI: 10.1016/j.scitotenv.2024.173687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
Below-ground herbivory impacts plant development and often induces systemic responses in plants that affect the performance and feeding behavior of above-ground herbivores. Meanwhile, pest-damaged root tissue can enhance a plant's susceptibility to abiotic stress such as salinity. Yet, the extent to which herbivore-induced plant defenses are modulated by such abiotic stress has rarely been studied. In this study, we examine whether root feeding by larvae of the turnip moth, Agrotis segetum (Lepidoptera: Noctuidae) affects the performance of the above-ground, sap-feeding aphid Aphis gossypii (Hemiptera: Aphididae) on cotton, and assess whether those interactions are modulated by salinity stress. In the absence of salinity stress, A. segetum root feeding does not affect A. gossypii development. On the other hand, under intense salinity stress (i.e., 600 mM NaCl), A. segetum root feeding decreases aphid development time by 16.1 % and enhances fecundity by 72.0 %. Transcriptome, metabolome and bioassay trials showed that root feeding and salinity stress jointly trigger the biosynthesis of amino acids in cotton leaves. Specifically, increased titers of valine in leaf tissue relate to an enhanced performance of A. gossypii. Taken together, salinity stress alters the interaction between above- and below-ground feeders by changing amino acid accumulation. Our findings advance our understanding of how plants cope with concurrent biotic and abiotic stressors, and may help tailor plant protection strategies to varying production contexts.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Qiongqiong Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, People's Republic of China
| | - Kris A G Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China; School of Biological Sciences, University of Queensland, Saint Lucia 4072, Australia; Chrysalis Consulting, Danang 50000, Viet Nam
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| |
Collapse
|
6
|
Magara HJO, Tanga CM, Fisher BL, Azrag AGA, Niassy S, Egonyu JP, Hugel S, Roos N, Ayieko MA, Sevgan S, Ekesi S. Impact of temperature on the bionomics and geographical range margins of the two-spotted field cricket Gryllus bimaculatus in the world: Implications for its mass farming. PLoS One 2024; 19:e0300438. [PMID: 38687812 PMCID: PMC11060561 DOI: 10.1371/journal.pone.0300438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/27/2024] [Indexed: 05/02/2024] Open
Abstract
Gryllus bimaculatus (Orthoptera: Gryllidae) is widely considered an excellent nutrient source for food and feed. Despite its economic importance, there is limited information on the impact of temperature on the bionomics of this cricket to guide its effective and sustainable mass production in its geographical range. The biological parameters of G. bimaculatus were investigated at eight different temperatures ranging from 20-40˚C. The Insect Life-Cycle Modelling (ILCYM) program was used to fit linear and non-linear functions to the data to describe the influence of temperature on life history parameters and its farmability under the current and projected climate for 2050. Our results revealed that G. bimaculatus was able to complete its lifecycle in the temperature range of 20°C to 37°C with a maximum finite rate of population increase (= 1.14) at 35°C. The developmental time of G. bimaculatus decreased with increasing temperature. The least developmental time and mortality were attained at 32°C. The highest wet length and mass of G. bimaculatus occurred at 32°C. The lowest temperature threshold for G. bimaculatus egg and nymph development was approximated using linear regression functions to be at 15.9°C and 16.2°C with a temperature constant of 108.7 and 555.6 degree days. The maximum fecundity (2301.98 eggs per female), net reproductive rate (988.42 daughters/ generation), and intrinsic rate of natural increase (0.134 days) were recorded at 32°C and the shortest doubling of 5.2 days was observed at 35°C. Based on our findings G. bimaculatus can be farmed in countries with temperatures ranging between 20 and 37°C around the globe. These findings will help the cricket farmers understand and project the cricket population dynamics around the world as influenced by temperature, and as such, will contribute to more efficient farming.
Collapse
Affiliation(s)
- Henlay J. O. Magara
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Feed Development, Madagascar Biodiversity Center Parc Botanique et Zoologique de Tsimbazaza, Antananarivo, Madagascar
- School of Agricultural Sciences and Food Security, Jaramogi Oginga Odinga University Science and Technology (JOOUST), Bondo, Kenya
| | - Chrysantus M. Tanga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Brian L. Fisher
- Department of Feed Development, Madagascar Biodiversity Center Parc Botanique et Zoologique de Tsimbazaza, Antananarivo, Madagascar
- California Academy of Sciences, Entomology, San Francisco, California, United States of America
| | | | - Saliou Niassy
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Inter-African Phytosanitary Council of African Union (AU-IAPSC), Yaoundé, Cameroon
| | - James P. Egonyu
- Faculty of Science and Education, Busitema University, Tororo, Uganda
| | - Sylvain Hugel
- Department of Feed Development, Madagascar Biodiversity Center Parc Botanique et Zoologique de Tsimbazaza, Antananarivo, Madagascar
- Institut des Neurosciences Cellulaires et Intégratives, UPR 3212 CNRS, Université de Strasbourg, Strasbourg, France
| | - Nana Roos
- University of Copenhagen, Department of Nutrition, Exercise and Sports, Frederiksberg C, Denmark
| | - Monica A. Ayieko
- School of Agricultural Sciences and Food Security, Jaramogi Oginga Odinga University Science and Technology (JOOUST), Bondo, Kenya
| | - Subramanian Sevgan
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
7
|
Wang X, Zhang Y, Yuan H, Lu Y. Effects of Seven Plant Essential Oils on the Growth, Development and Feeding Behavior of the Wingless Aphis gossypii Glover. PLANTS (BASEL, SWITZERLAND) 2024; 13:916. [PMID: 38611446 PMCID: PMC11013612 DOI: 10.3390/plants13070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
Cotton aphid Aphis gossypii Glover damages plants such as cotton directly by feeding on leaves and indirectly by transmitting viruses and excreting honeydew, which interferes with photosynthesis. The control of A. gossypii is still dominated by the frequent use of insecticides, which leads to a gradual increase in pesticide resistance in A. gossypii. Research is therefore needed on non-pesticide controls. In this study, seven plant essential oils (EOs) of Ocimum sanctum L., Ocimum basilicum L., Ocimum gratissimum L., Mentha piperita L., Mentha arvensis L., Tagetes erecta L., and Lavandula angustifolia Mill. were examined as potential controls for A. gossypii. We used life tables and electrical penetration graphs (EPG) to explore the effects of these EOs on the growth, development, and feeding behavior of A. gossypii, followed by a study of effects of the EOs on honeydew secretion by A. gossypii as a measure of their antifeedant activity. We found that the EOs of O. sanctum, M. piperita, M. arvensis and T. erecta significantly extended the pre-adult developmental period. Also, adult longevity, number of oviposition days, and total fecundity of A. gossypii treated with the EOs of M. arvensis or T. erecta were all significantly reduced. Aphids treated with the EOs of O. sanctum, M. piperita, or L. angustifolia showed significant reductions in their net reproductive rate (R0), intrinsic rate of increase (rm), and finite rate of increase (λ), and significant increases in mean generation time (T). In terms of their effects on the feeding behavior of A. gossypii, all seven EOs significantly reduced the total duration of phloem feeding (E2 waves), the number of phloem-feeding bouts, and the proportion of time spent in secretion of saliva into phloem sieve elements (E1 waves) and phloem feeding (E2). The total duration and number of E1 waves (saliva secretion) were significantly reduced by the EOs of O. sanctum, O. gratissimum, and M. arvensis. For C waves (probing in non-vascular tissues), the total duration spent in this behavior was significantly increased by the EOs of O. gratissimum, M. piperita, and L. angustifolia, but the number of such probing events was increased only by L. angustifolia EO. The EOs of O. basilicum, M. arvensis, and T. erecta significantly increased the total duration of ingestion of xylem sap (G waves), while the total time of mechanical difficulty in stylet penetration (F waves) was increased by M. arvensis. The total duration and number of the non-probing events (Np waves) were significantly increased by EOs of O. sanctum and O. basilicum. After treatment with all seven of these EOs, the area covered by honeydew was significantly reduced compared with the control. Studies have analyzed that EOs of O. sanctum, M. piperita, and T. erecta were most effective, followed by the EOs of M. arvensis and L. angustifolia, and finally the EOs of O. basilicum and O. gratissimum. In the present study, the EOs of O. sanctum, M. piperita, and T. erecta were found to have potential for the development as antifeedants of A. gossypii, and these data provide a basis for future research on non-pesticide chemical control of A. gossypii.
Collapse
Affiliation(s)
- Xinhang Wang
- Department of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Ying Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Haibin Yuan
- Department of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
8
|
Liang P, Guo M, Wang D, Li T, Li R, Li D, Cheng S, Zhen C, Zhang L. Molecular and functional characterization of heat-shock protein 70 in Aphis gossypii under thermal and xenobiotic stresses. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105774. [PMID: 38458681 DOI: 10.1016/j.pestbp.2024.105774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/22/2023] [Accepted: 01/08/2024] [Indexed: 03/10/2024]
Abstract
Aphis gossypii, a globally distributed and economically significant pest of several crops, is known to infest a wide range of host plants. Heat shock proteins (Hsps), acting as molecular chaperones, are essential for the insect's environmental stress responses. The present study investigated the molecular characteristics and expression patterns of AgHsp70, a heat shock protein gene, in Aphis gossypii. Our phylogenetic analysis revealed that AgHsp70 shared high similarity with homologs from other insects, suggesting a conserved function across species. The developmental expression profiles of AgHsp70 in A. gossypii showed that the highest transcript levels were observed in the fourth instar nymphs, while the lowest levels were detected in the third instar nymphs. Heat stress and exposure to four different xenobiotics (2-tridecanone, tannic acid, gossypol, and flupyradifurone (4-[(2,2-difluoroethyl)amino]-2(5H)-furanone)) significantly up-regulated AgHsp70 expression. Knockdown of AgHsp70 using RNAi obviously increased the susceptibility of cotton aphids to 2-tridecanone, gossypol and flupyradifurone. Dual-luciferase reporter assays revealed that gossypol and flupyradifurone significantly enhanced the promoter activity of AgHsp70 at a concentration of 10 mg/L. Furthermore, we identified the transcription factor heat shock factor (HSF) as a regulator of AgHsp70, as silencing AgHSF reduced AgHsp70 expression. Our results shed light on the role of AgHsp70 in xenobiotic adaptation and thermo-tolerance.
Collapse
Affiliation(s)
- Pingzhuo Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Mingyu Guo
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Dan Wang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Ting Li
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, United States
| | - Ren Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Dapeng Li
- The Museum of Chinese Gardens and Landscape Architecture, Beijing 100072, China
| | - Shenhang Cheng
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Congai Zhen
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| | - Lei Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Song L, Fu W, Li W, Liu L, Wang S. The influence of high-temperature frequency variation on the life-history traits of pyridaben-sensitive and -resistant strains of Tetranychus truncatus. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:109-122. [PMID: 38172470 DOI: 10.1007/s10493-023-00873-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
With a generally warming global climate, the number of Tetranychus truncatus specimens in the Hexi region in China has been increasing. As ectotherms, the growth and development of T. truncatus are greatly affected by changes in environmental temperature. The effect of heatwaves on organisms depends on a delicate balance between damage and repair periods. Therefore, we simulated nine patterns of periodically recurring changes in the frequency of high-temperature days using an intraday gradual temperature change model to study and compare the effects on the development and reproduction of pyridaben-sensitive and -resistant strains of T. truncatus. The results showed that the influence of the frequency of high-temperature days on developmental stages, longevity and fecundity was different between the two strains. The egg and immature stages of the sensitive strain were all affected by hot days, whereas the adult stage was less affected by the frequency. The egg stage of the resistant strain was less affected; it was mainly affected in the immature and adult stages. Under the moderate condition of increasing the proportion of days at normal temperature, the longevity of the resistant strain gradually increased and reached a maximum at a 1:3 frequency, and then it decreased with the increase in high-temperature days. The longevity of the sensitive strain was less affected by frequency, and there was no significant difference between most treatment and control groups. In addition, both sensitive and resistant strains were able to complete growth and development under all nine frequencies of high-temperature days, but the reproductive rate was lower than it was at normal temperatures, indicating that both strains of T. truncatus adapted to high temperatures at the expense of reduced reproduction rates. This lays a key theoretical foundation for predicting the occurrence of agricultural pest populations under the background of climate warming and developing appropriate control strategies.
Collapse
Affiliation(s)
- Liwen Song
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Wenhua Fu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenliang Li
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lei Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Senshan Wang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
10
|
Jahan H, Khudr MS, Arafeh A, Hager R. Exposure to heat stress leads to striking clone-specific nymph deformity in pea aphid. PLoS One 2023; 18:e0282449. [PMID: 37883483 PMCID: PMC10602343 DOI: 10.1371/journal.pone.0282449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/15/2023] [Indexed: 10/28/2023] Open
Abstract
Climatic changes, such as heatwaves, pose unprecedented challenges for insects, as escalated temperatures above the thermal optimum alter insect reproductive strategies and energy metabolism. While thermal stress responses have been reported in different insect species, thermo-induced developmental abnormalities in phloem-feeding pests are largely unknown. In this laboratory study, we raised two groups of first instar nymphs belonging to two clones of the pea aphid Acyrthosiphon pisum, on fava beans Vicia faba. The instars developed and then asexually reproduced under constant exposure to a sub-lethal heatwave (27°C) for 14 days. Most mothers survived but their progenies showed abnormalities, as stillbirths and appendageless or weak nymphs with folded appendages were delivered. Clone N116 produced more deceased and appendageless embryos, contrary to N127, which produced fewer dead and more malformed premature embryos. Interestingly, the expression of the HSP70 and HSP83 genes differed in mothers between the clones. Moreover, noticeable changes in metabolism, e.g., lipids, were also detected and that differed in response to stress. Deformed offspring production after heat exposure may be due to heat injury and differential HSP gene expression, but may also be indicative of a conflict between maternal and offspring fitness. Reproductive altruism might have occurred to ensure some of the genetically identical daughters survive. This is because maintaining homeostasis and complete embryogenesis could not be simultaneously fulfilled due to the high costs of stress. Our findings shine new light on pea aphid responses to heatwaves and merit further examination across different lineages and species.
Collapse
Affiliation(s)
- Hawa Jahan
- Faculty of Biology, Medicine and Health, Division of Evolution, Infection and Genomics, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Faculty of Biological Sciences, Department of Zoology, University of Dhaka, Dhaka, Bangladesh
| | - Mouhammad Shadi Khudr
- Faculty of Biology, Medicine and Health, Division of Evolution, Infection and Genomics, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Ali Arafeh
- Faculty of Science and Engineering, Chemical Engineering, James Chadwick Building, The University of Manchester, Manchester, United Kingdom
| | - Reinmar Hager
- Faculty of Biology, Medicine and Health, Division of Evolution, Infection and Genomics, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
11
|
Liu J, Wang C, Li H, Gao Y, Yang Y, Lu Y. Bottom-Up Effects of Drought-Stressed Cotton Plants on Performance and Feeding Behavior of Aphis gossypii. PLANTS (BASEL, SWITZERLAND) 2023; 12:2886. [PMID: 37571039 PMCID: PMC10420646 DOI: 10.3390/plants12152886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Drought, a major stress for crop plants, is expected to increase in frequency due to climate change. Drought can alter crop growth and levels of secondary plant metabolites, which in turn can affect herbivores, but this latter point is still controversial. This study used three different polyethylene glycol (PEG-6000) levels (0%, 1%, and 3%) to simulate drought stress and evaluated their effects on cotton plants and the impacts on the performance of the cotton aphid Aphis gossypii. Cotton plants under drought stress showed decreased water content, above-ground biomass, and nitrogen content and increased soluble protein, soluble sugar, and tannin contents. Based on analysis of the developmental time and fecundity data from individuals and at the population level, a significantly lower fecundity and population abundance of A. gossypii were detected on cotton plants with drought stress, which supports the "plant vigor hypothesis". The poor development of A. gossypii is possibly related to lower xylem sap and phloem ingestion under drought stress. In addition, the increased tannin content of cotton plants induced by drought and lower detoxification enzyme activities of A. gossypii may have affected the responses of aphids to drought-stressed plants. Overall, the results showed that drought stress altered the physiological characteristics of the cotton plants, resulting in adverse bottom-up effects on cotton aphid performances. This implies that the adoption of drip irrigation under plastic film that can help alleviate drought stress may favor the population growth of cotton aphids.
Collapse
Affiliation(s)
- Jinping Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.L.); (C.W.); (H.L.); (Y.G.)
| | - Chen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.L.); (C.W.); (H.L.); (Y.G.)
- College of Plant Protection, Yangzhou University, Yangzhou 225007, China
| | - Huatong Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.L.); (C.W.); (H.L.); (Y.G.)
| | - Yu Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.L.); (C.W.); (H.L.); (Y.G.)
| | - Yizhong Yang
- College of Plant Protection, Yangzhou University, Yangzhou 225007, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.L.); (C.W.); (H.L.); (Y.G.)
| |
Collapse
|
12
|
Reeves LA, Garratt MPD, Fountain MT, Senapathi D. Functional and Behavioral Responses of the Natural Enemy Anthocoris nemoralis to Cacopsylla pyri, at Different Temperatures. JOURNAL OF INSECT BEHAVIOR 2023; 36:222-238. [PMID: 37547869 PMCID: PMC10403413 DOI: 10.1007/s10905-023-09836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023]
Abstract
Anthocoris nemoralis is the dominant predator of pear sucker (Cacopsylla pyri) in the UK. Anthocoris nemoralis migrates into orchards in spring or is introduced as a biocontrol agent, reaching peak population levels in July-August, contributing to effective control of summer pear sucker populations. However, due to temperature dependent development and metabolism there are concerns that C. pyri populations or feeding rates may increase due to changing climatic conditions. Thus, how A. nemoralis responds to temperature, impacts its ability as a biocontrol agent. Functional response assays, monitoring attack rate and handling time of A. nemoralis and behavioral assays, using Ethovision tracking software occurred, to assess the impact of temperature on predation. Experiments were conducted at current and future July-August mean temperatures, predicted using RCP4.5 and RCP8.5 (medium and high, representative concentration pathway) emissions scenarios, using 2018 UK Climate Projections (UKCP18). All treatments demonstrated a Type II functional response, with female anthocorids demonstrating shorter handling times and higher attack rates than males. Males showed longer prey handling times at 18 °C compared to 23 °C and more time was spent active at lower temperatures for both sexes. Females did not show significant differences in attack rate or handling time in response to temperature. Overall prey consumption was also not significantly affected by temperature for either sex. This study suggests that anthocorids are likely to remain effective natural enemies under future predicted temperatures, due to non-significant differences in prey consumption. Supplementary Information The online version contains supplementary material available at 10.1007/s10905-023-09836-5.
Collapse
Affiliation(s)
- Laura A. Reeves
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire RG6 6AR UK
| | - Michael P. D. Garratt
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire RG6 6AR UK
| | | | - Deepa Senapathi
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire RG6 6AR UK
| |
Collapse
|
13
|
Liu J, Liu Y, Li Q, Lu Y. Heat shock protein 70 and Cathepsin B genes are involved in the thermal tolerance of Aphis gossypii. PEST MANAGEMENT SCIENCE 2023; 79:2075-2086. [PMID: 36700477 DOI: 10.1002/ps.7384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Elevated temperature can directly affect the insect pest population dynamics. Many experimental studies have indicated that high temperatures affect the biological and ecological characteristics of the widely distributed crop pest Aphis gossypii, but the molecular mechanisms underlying its response to heat stress remain unstudied. Here, we used transcriptomic analysis to explore the key genes and metabolic pathways involved in the regulation of thermotolerance in A. gossypii at 29 °C, 32 °C, and 35 °C. RESULTS The results of bioinformatics analysis show that few genes were consistently differentially expressed among the higher temperature treatments compared to 29 °C, and a moderate temperature increase of 3 °C can elicit gene expression changes that help A. gossypii adapt to warmer temperatures. Based on KEGG pathway enrichment analysis, we found that genes encoding four heat shock protein 70 s (Hsp70s) and nine cathepsin B (CathB) proteins were significantly upregulated at 35 °C compared with 32 °C. Genes related to glutathione production were also highly enriched between 32 °C and 29 °C. Silencing of two Hsp70s (ApHsp70A1-1 and ApHsp68) and two CathBs (ApCathB01 and ApCathB02) with RNA interference using a nanocarrier-based transdermal dsRNA delivery system significantly increased sensitivity of A. gossypii to high temperatures. CONCLUSION A. gossypii is able to fine-tune its response across a range of temperatures, and Hsp70 and CathB genes are essential for adaption of A. gossypii to warmer temperatures. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinping Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Wei Y, Su Y, Han X, Guo W, Zhu Y, Yao Y. Evaluation of Transgenerational Effects of Sublethal Imidacloprid and Diversity of Symbiotic Bacteria on Acyrthosiphon gossypii. INSECTS 2023; 14:insects14050427. [PMID: 37233055 DOI: 10.3390/insects14050427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Symbiotic bacteria and hormesis in aphids are the driving forces for pesticide resistance. However, the mechanism remains unclear. In this study, the effects of imidacloprid on the population growth parameters and symbiotic bacterial communities of three successive generations of Acyrthosiphon gossypii were investigated. The bioassay results showed that imidacloprid had high toxicity to A. gossypii with an LC50 of 1.46 mg·L-1. The fecundity and longevity of the G0 generation of A. gossypii decreased when exposed to the LC15 of imidacloprid. The net reproductive rate (R0), intrinsic rate of increase (rm), finite rate of increase (λ), and total reproductive rate (GRR) of G1 and G2 offspring were significantly increased, but those of the control and G3 offspring were not. In addition, sequencing data showed that the symbiotic bacteria of A. gossypii mainly belonged to Proteobacteria, with a relative abundance of 98.68%. The dominant genera of the symbiotic bacterial community were Buchnera and Arsenophonus. After treatment with the LC15 of imidacloprid, the diversity and species number of bacterial communities of A. gossypii decreased for G1-G3 and the abundance of Candidatus-Hamiltonella decreased, but Buchnera increased. These results provide insight into the resistance mechanism of insecticides and the stress adaptation between symbiotic bacteria and aphids.
Collapse
Affiliation(s)
- Yindi Wei
- College of Agriculture, Tarim University, Aral 843300, China
| | - Yue Su
- College of Agriculture, Tarim University, Aral 843300, China
| | - Xu Han
- College of Agriculture, Tarim University, Aral 843300, China
| | - Weifeng Guo
- College of Agriculture, Tarim University, Aral 843300, China
| | - Yue Zhu
- College of Agriculture, Tarim University, Aral 843300, China
| | - Yongsheng Yao
- College of Agriculture, Tarim University, Aral 843300, China
| |
Collapse
|
15
|
Wang XR, Shao Y, Wang C, Liu YQ. Effects of heat stress on virus transmission and virus-mediated apoptosis in whitefly Bemisia tabaci. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21857. [PMID: 34859483 DOI: 10.1002/arch.21857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV), a plant DNA virus of the genus Begomovirus, is transmitted by whiteflies of the Bemisia tabaci species complex in a persistent manner. Our previous study indicated that activation of the apoptosis pathway in whiteflies could facilitate TYLCV accumulation and transmission. Considering that temperature change can influence the spread of insect-borne plant viruses, we focused on plant virus induced-apoptosis to investigate the underlying mechanism of temperature regulation on plant virus transmission via an insect vector. We found that heat stress (40°C) on whiteflies could facilitate TYLCV accumulation and increase transmission to tomato plants. Despite upregulation of caspase-1 and caspase-3 gene expression, heat stress failed to induce an increase in the activation of cleaved caspase-3 and DNA fragmentation in TYLCV-infected whiteflies. However, our data failed to determine the role of heat stress in apoptosis modulation of insect-plant virus interplay while still providing clues to understand insect vectors and their transmitted plant viruses.
Collapse
Affiliation(s)
- Xin-Ru Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
| | - Yue Shao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- The Plant Protection and Soil Fertilizer Management Station of Wenzhou, Wenzhou, Zhejiang, China
| | - Chao Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yin-Quan Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Mobarak SH, Debnath R, Koner A, Barik A. Effect of temperature for mass rearing of Spilosoma obliqua on an artificial diet using age-stage, two-sex life table approach. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01054-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
17
|
Thermal and Oxygen Flight Sensitivity in Ageing Drosophila melanogaster Flies: Links to Rapamycin-Induced Cell Size Changes. BIOLOGY 2021; 10:biology10090861. [PMID: 34571738 PMCID: PMC8464818 DOI: 10.3390/biology10090861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary Cold-blooded organisms can become physiologically challenged when performing highly oxygen-demanding activities (e.g., flight) across different thermal and oxygen environmental conditions. We explored whether this challenge decreases if an organism is built of smaller cells. This is because small cells create a large cell surface, which is costly, but can ease the delivery of oxygen to cells’ power plants, called mitochondria. We developed fruit flies in either standard food or food with rapamycin (a human drug altering the cell cycle and ageing), which produced flies with either large cells (no supplementation) or small cells (rapamycin supplementation). We measured the maximum speed at which flies were flapping their wings in warm and hot conditions, combined with either normal or reduced air oxygen concentrations. Flight intensity increased with temperature, and it was reduced by poor oxygen conditions, indicating limitations of flying insects by oxygen supply. Nevertheless, flies with small cells showed lower limitations, only slowing down their wing flapping in low oxygen in the hot environment. Our study suggests that small cells in a body can help cold-blooded organisms maintain demanding activities (e.g., flight), even in poor oxygen conditions, but this advantage can depend on body temperature. Abstract Ectotherms can become physiologically challenged when performing oxygen-demanding activities (e.g., flight) across differing environmental conditions, specifically temperature and oxygen levels. Achieving a balance between oxygen supply and demand can also depend on the cellular composition of organs, which either evolves or changes plastically in nature; however, this hypothesis has rarely been examined, especially in tracheated flying insects. The relatively large cell membrane area of small cells should increase the rates of oxygen and nutrient fluxes in cells; however, it does also increase the costs of cell membrane maintenance. To address the effects of cell size on flying insects, we measured the wing-beat frequency in two cell-size phenotypes of Drosophila melanogaster when flies were exposed to two temperatures (warm/hot) combined with two oxygen conditions (normoxia/hypoxia). The cell-size phenotypes were induced by rearing 15 isolines on either standard food (large cells) or rapamycin-enriched food (small cells). Rapamycin supplementation (downregulation of TOR activity) produced smaller flies with smaller wing epidermal cells. Flies generally flapped their wings at a slower rate in cooler (warm treatment) and less-oxygenated (hypoxia) conditions, but the small-cell-phenotype flies were less prone to oxygen limitation than the large-cell-phenotype flies and did not respond to the different oxygen conditions under the warm treatment. We suggest that ectotherms with small-cell life strategies can maintain physiologically demanding activities (e.g., flight) when challenged by oxygen-poor conditions, but this advantage may depend on the correspondence among body temperatures, acclimation temperatures and physiological thermal limits.
Collapse
|