1
|
Izquierdo F, Fernández Vadillo C, Fenoy S, Hurtado-Marcos C, Magnet A, Higes M, Martín-Hernández R, Del Aguila C. Production and characterization of monoclonal antibodies for specific detection of Nosema ceranae and Nosema apis in beehive samples. Int J Parasitol 2025; 55:163-172. [PMID: 39638107 DOI: 10.1016/j.ijpara.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Two microsporidian species infect honeybees worldwide, Nosema apis and Nosema ceranae. Two different clinical patterns are considered: nosemosis type A (N. apis) and nosemosis type C (N. ceranae). Nosemosis type A is characterized in acute forms and nosemosis type C shows no clear outward clinical signs. The development of a rapid and simple tool for Nosema detection could allow beekeepers or veterinarians to carry out diagnostic tests in situ. Currently, PCR and microscopy are expensive techniques that require qualified staff and may not be available in every laboratory. The present study describes the production and characterization of four monoclonal antibodies (mAbs) against N. ceranae and N. apis, and the development of an IFAT. An IFAT using the mAbs was compared with microscopy and PCR for 180 beehive samples. The diagnostic test revealed similar sensitivity and specificity percentages to IFAT (97.79% and 93.18%, respectively) and microscopy (97.79% and 95.45%), considering 100% for the PCR as the 'gold standard'. A mAb (7D2) was patented for its high specificity for N. ceranae. The IFAT using the mAbs is a good alternative to microscopy and PCR in laboratories where PCR is not available for the detection and identification of both Nosema spp.
Collapse
Affiliation(s)
- Fernando Izquierdo
- Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Carmen Fernández Vadillo
- Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Soledad Fenoy
- Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Carolina Hurtado-Marcos
- Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Angela Magnet
- Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain
| | - Carmen Del Aguila
- Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain.
| |
Collapse
|
2
|
Kunat-Budzyńska M, Łabuć E, Ptaszyńska AA. Seasonal detection of pathogens in honeybees kept in natural and laboratory conditions. Parasitol Int 2025; 104:102978. [PMID: 39378965 DOI: 10.1016/j.parint.2024.102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
The honeybee is one of the most important pollinators in the world. The frequently observed poor health of honeybee colonies can be caused by various factors, e.g. environmental pollution, nutritional stress, and climate changes. Moreover, honeybees are constantly exposed to a wide spectrum of pathogens, such as parasites, bacteria, and viruses. We examined the occurrence of various diseases in different-aged worker honeybees from two colonies kept in natural and laboratory conditions during spring, summer, and autumn in Poland. The honeybees were examined by PCR to detect infection with selected pathogens: Nosema ceranae, N. apis, N. bombi, Acarapis woodi, trypanosomatids, and neogregarines (Mattesia or Apicystis species) and by RT-PCR to identify deformed wing virus (DWV), black queen cell virus (BQCV), and acute bee paralysis virus (ABPV). DWV and N. ceranae turned out to be the dominant pathogens. Trypanosomatids and BQCV were also found in several samples. We did not detect the presence of the other pathogens: N. apis, N. bombi, A. woodi, neogregarines, or ABPV. As shown in the present study, the dynamics and occurrence of pathogens are influenced by keeping conditions, honeybee age, and seasonality.
Collapse
Affiliation(s)
- Magdalena Kunat-Budzyńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Emilia Łabuć
- Laboratory of Bioinformatics and Biostatistics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Aneta A Ptaszyńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| |
Collapse
|
3
|
Gilbert J, Paris L, Dubuffet A, Texier C, Delbac F, Diogon M. Nosema ceranae infection reduces the fat body lipid reserves in the honeybee Apis mellifera. J Invertebr Pathol 2024; 207:108218. [PMID: 39393624 DOI: 10.1016/j.jip.2024.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Nosema ceranae is an intestinal parasite frequently found in Apis mellifera colonies. This parasite belongs to Microsporidia, a group of obligate intracellular parasites known to be strongly dependent on their host for energy and resources. Previous studies have shown that N. ceranae could alter several metabolic pathways, including those involved in the nutrient storage. To explore the impact of N. ceranae on the fat body reserves, newly emerged summer bees were experimentally infected, and we measured (1) the lipid percentage of the abdominal fat body at 2-, 7- and 14-days post-inoculation (p.i.) using diethyl ether lipid extraction, (2) the triglyceride and protein concentrations by spectrophotometric assay methods, and (3) the amount of intracellular lipid droplets in trophocytes at 14- and 21-days p.i. using Nile Red staining. Comparing the three methods used to evaluate lipid stores, our data revealed that Nile Red staining seemed to be the simplest, fastest and reliable method. Our results first revealed that the percentage of fat body lipids significantly decreased in infected bees at D14 p.i. The protein stores did not seem to be affected by the infection, while triglyceride concentration was reduced by 30% and lipid droplet amount by 50% at D14 p.i. Finally, a similar decrease in lipid droplet reserves in response to N. ceranae infection was observed in bees collected in fall.
Collapse
Affiliation(s)
- Juliette Gilbert
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Laurianne Paris
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Aurore Dubuffet
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Catherine Texier
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Frédéric Delbac
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Marie Diogon
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
4
|
Tersigni J, Tamim El Jarkass H, James EB, Reinke AW. Interactions between microsporidia and other members of the microbiome. J Eukaryot Microbiol 2024; 71:e13025. [PMID: 38561869 DOI: 10.1111/jeu.13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
The microbiome is the collection of microbes that are associated with a host. Microsporidia are intracellular eukaryotic parasites that can infect most types of animals. In the last decade, there has been much progress to define the relationship between microsporidia and the microbiome. In this review, we cover an increasing number of reports suggesting that microsporidia are common components of the microbiome in both invertebrates and vertebrates. These microsporidia infections can range from mutualistic to pathogenic, causing several physiological phenotypes, including death. Infection with microsporidia often causes a disruption in the normal microbiome, with both increases and decreases of bacterial, fungal, viral, and protozoan species being observed. This impact on the microbiome can occur through upregulation and downregulation of innate immunity as well as morphological changes to tissues that impact interactions with these microbes. Other microbes, particularly bacteria, can inhibit microsporidia and have been exploited to control microsporidia infections. These bacteria can function through regulating immunity, secreting anti-microsporidia compounds, and, in engineered versions, expressing double-stranded RNA targeting microsporidia genes. We end this review by discussing potential future directions to further understand the complex interactions between microsporidia and the other members of the microbiome.
Collapse
Affiliation(s)
- Jonathan Tersigni
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Edward B James
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Babin A, Schurr F, Delannoy S, Fach P, Huyen Ton Nu Nguyet M, Bougeard S, de Miranda JR, Rundlöf M, Wintermantel D, Albrecht M, Attridge E, Bottero I, Cini E, Costa C, De la Rúa P, Di Prisco G, Dominik C, Dzul D, Hodge S, Klein AM, Knapp J, Knauer AC, Mänd M, Martínez-López V, Medrzycki P, Pereira-Peixoto MH, Potts SG, Raimets R, Schweiger O, Senapathi D, Serrano J, Stout JC, Tamburini G, Brown MJF, Laurent M, Rivière MP, Chauzat MP, Dubois E. Distribution of infectious and parasitic agents among three sentinel bee species across European agricultural landscapes. Sci Rep 2024; 14:3524. [PMID: 38347035 PMCID: PMC10861508 DOI: 10.1038/s41598-024-53357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
Infectious and parasitic agents (IPAs) and their associated diseases are major environmental stressors that jeopardize bee health, both alone and in interaction with other stressors. Their impact on pollinator communities can be assessed by studying multiple sentinel bee species. Here, we analysed the field exposure of three sentinel managed bee species (Apis mellifera, Bombus terrestris and Osmia bicornis) to 11 IPAs (six RNA viruses, two bacteria, three microsporidia). The sentinel bees were deployed at 128 sites in eight European countries adjacent to either oilseed rape fields or apple orchards during crop bloom. Adult bees of each species were sampled before their placement and after crop bloom. The IPAs were detected and quantified using a harmonised, high-throughput and semi-automatized qPCR workflow. We describe differences among bee species in IPA profiles (richness, diversity, detection frequencies, loads and their change upon field exposure, and exposure risk), with no clear patterns related to the country or focal crop. Our results suggest that the most frequent IPAs in adult bees are more appropriate for assessing the bees' IPA exposure risk. We also report positive correlations of IPA loads supporting the potential IPA transmission among sentinels, suggesting careful consideration should be taken when introducing managed pollinators in ecologically sensitive environments.
Collapse
Affiliation(s)
- Aurélie Babin
- ANSES, Sophia Antipolis Laboratory, Unit of Honey bee Pathology, 06902, Sophia Antipolis, France.
| | - Frank Schurr
- ANSES, Sophia Antipolis Laboratory, Unit of Honey bee Pathology, 06902, Sophia Antipolis, France
| | - Sabine Delannoy
- IdentyPath Genomics Platform, Food Safety Laboratory, ANSES, 94701, Maisons-Alfort, France
| | - Patrick Fach
- IdentyPath Genomics Platform, Food Safety Laboratory, ANSES, 94701, Maisons-Alfort, France
| | | | - Stéphanie Bougeard
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Epidemiology and Welfare, France
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden
| | - Dimitry Wintermantel
- Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
| | - Matthias Albrecht
- Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - Eleanor Attridge
- Federation of Irish Beekeepers' Associations, Tullamore, Ireland
| | - Irene Bottero
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Elena Cini
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Cecilia Costa
- CREA Research Centre for Agriculture and Environment, Via di Corticella 133, 40128, Bologna, Italy
| | - Pilar De la Rúa
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100, Murcia, Spain
| | - Gennaro Di Prisco
- CREA Research Centre for Agriculture and Environment, Via di Corticella 133, 40128, Bologna, Italy
- Institute for Sustainable Plant Protection, The Italian National Research Council, Piazzale E. Ferni 1, 80055, Portici, Napoli, Italy
| | - Christophe Dominik
- UFZ-Helmholtz Centre for Environmental Research, Department of Community Ecology, 06120, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
| | - Daniel Dzul
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100, Murcia, Spain
| | - Simon Hodge
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Alexandra-Maria Klein
- Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
| | - Jessica Knapp
- Department of Biology, Lund University, Lund, Sweden
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Anina C Knauer
- Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - Marika Mänd
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Vicente Martínez-López
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100, Murcia, Spain
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Bioscience Building, L69 7ZB, Liverpool, UK
| | - Piotr Medrzycki
- CREA Research Centre for Agriculture and Environment, Via di Corticella 133, 40128, Bologna, Italy
| | - Maria Helena Pereira-Peixoto
- Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
| | - Simon G Potts
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Risto Raimets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Oliver Schweiger
- UFZ-Helmholtz Centre for Environmental Research, Department of Community Ecology, 06120, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
| | - Deepa Senapathi
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - José Serrano
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100, Murcia, Spain
| | - Jane C Stout
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Giovanni Tamburini
- Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
- University of Bari, Department of Soil, Plant and Food Sciences (DiSSPA-Entomology and Zoology), Bari, Italy
| | - Mark J F Brown
- Centre for Ecology, Evolution & Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, UK
| | - Marion Laurent
- ANSES, Sophia Antipolis Laboratory, Unit of Honey bee Pathology, 06902, Sophia Antipolis, France
| | - Marie-Pierre Rivière
- ANSES, Sophia Antipolis Laboratory, Unit of Honey bee Pathology, 06902, Sophia Antipolis, France
| | - Marie-Pierre Chauzat
- ANSES, Sophia Antipolis Laboratory, Unit of Honey bee Pathology, 06902, Sophia Antipolis, France
- Paris-Est University, ANSES, Laboratory for Animal Health, 94701, Maisons-Alfort, France
| | - Eric Dubois
- ANSES, Sophia Antipolis Laboratory, Unit of Honey bee Pathology, 06902, Sophia Antipolis, France.
| |
Collapse
|