1
|
Asmaz ED, Teker HT, Sertkaya ZT, Ceylani T, Genç Aİ. Effect of middle-age plasma therapy on ileum morphology, immune defense (IgA) and cell proliferation (Ki-67) of female aged rats. Histochem Cell Biol 2024; 163:17. [PMID: 39688692 DOI: 10.1007/s00418-024-02344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
ABSTARCT Blood plasma therapy, a new treatment method to eliminate the damage and deterioration caused by aging in many organ systems, has attracted increasing attention. The digestive tract, which cooperates with many different systems, has strong effects on our health. In the present study, the effects of plasma therapy on the ileum of elderly rats were investigated. Wistar rats (n = 7; 12-15 months old) were given pooled plasma collected from middle-age rats (6 months, n =28) (for 30 days, 0.3 ml daily, intravenously into the tail vein). At the end of the experiment, villus height, crypt depth, total mucosal thickness and surface absorption area were evaluated. In addition, the effects of IgA, which plays a role in the digestive system's defense against microorganisms, were examined. Both the cell proliferation intensity and proliferation index were evaluated in crypt cells. An increase was determined in all morphological parameters in the experimental group. Similarly, plasma application decreased IgA expression and numbers in the experimental groups. Contrarily, cell proliferation parameters showed a significant increase in the experimental groups' crypt cells. Therefore, we found that the treatment supports the digestive system in terms of both nutrient utilization and absorption-related parameters and has a protective effect on intestinal immune system parameters.
Collapse
Affiliation(s)
- Ender Deniz Asmaz
- Department of Histology and Embryology, Ankara Medipol University, Ankara, Turkey.
| | - Hikmet Taner Teker
- Department of Medical Biology and Genetics, Ankara Medipol University, Ankara, Turkey
| | | | - Taha Ceylani
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Turkey
| | - Aysun İnan Genç
- Department of Biology, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
2
|
Damian-Buda AC, Matei DM, Ciobanu L, Damian-Buda DZ, Pop RM, Buzoianu AD, Bocsan IC. Nesfatin-1: A Novel Diagnostic and Prognostic Biomarker in Digestive Diseases. Biomedicines 2024; 12:1913. [PMID: 39200377 PMCID: PMC11352118 DOI: 10.3390/biomedicines12081913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Nesfatin-1, deriving from a precursor protein, NUCB2, is a newly discovered molecule with anti-apoptotic, anti-inflammatory, antioxidant, and anorexigenic effects. It was initially identified in the central nervous system (CNS) and received increasing interest due to its energy-regulating properties. However, research showed that nesfatin-1 is also expressed in peripheral tissues, including the digestive system. The aim of this review is to give a résumé of the present state of knowledge regarding its structure, immunolocalization, and potential implications in diseases with inflammatory components. The main objective was to focus on its clinical importance as a diagnostic biomarker and potential therapeutic molecule in a variety of disorders, among which digestive disorders were of particular interest. Previous studies have shown that nesfatin-1 regulates the balance between pro- and antioxidant agents, which makes nesfatin-1 a promising therapeutic agent. Further in-depth research regarding the underlying mechanisms of action is needed for a better understanding of its effects.
Collapse
Affiliation(s)
- Adriana-Cezara Damian-Buda
- Pharmacology, Toxicology and Clinical Pharmacology Laboratory, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Daniela Maria Matei
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.M.M.); (L.C.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Lidia Ciobanu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.M.M.); (L.C.)
- Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | | | - Raluca Maria Pop
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| | - Anca Dana Buzoianu
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| | - Ioana Corina Bocsan
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No 8, 400012 Cluj-Napoca, Romania; (A.D.B.); (I.C.B.)
| |
Collapse
|
3
|
Świerk S, Przybyło M, Flaga J, Szczepanik K, Garus-Piętak A, Biernat W, Molik E, Wojtysiak D, Miltko R, Górka P. Effect of increased intake of concentrates and sodium butyrate supplementation on ruminal epithelium structure and function in growing rams. Animal 2023; 17:100898. [PMID: 37558583 DOI: 10.1016/j.animal.2023.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 08/11/2023] Open
Abstract
Increased ruminal butyrate production is considered to have a positive impact on rumen epithelium growth and function. However, excessive ruminal butyrate production may affect the rumen negatively, particularly when the rumen is already challenged with low pH. The aim of this study was to determine the effect of the inclusion of concentrates in the diet and sodium butyrate (SB) supplementation on ruminal epithelium growth and function in growing rams. Forty-two rams (27.8 ± 7.3 kg; 9-14 months of age) were allocated into six treatments and fed a diet with low (22.5% of diet DM; LOW) or high (60% of diet DM; HIGH) inclusion of concentrates in combination with no (SB0), 1.6% (SB1.6) or 3.2% (SB3.2) of diet DM inclusion of SB. There was no impact of the investigated factors on papilla dimensions and mucosa surface area, either in the atrium ruminis or ventral rumen (P ≥ 0.11). Stratum corneum thickness was higher for HIGH compared to LOW treatments (P ≤ 0.04), independently of the location in the rumen. In the atrium ruminis, the epithelium and living strata thickness quadratically increased due to SB supplementation for LOW treatments but quadratically decreased for HIGH treatments (concentrate inclusion × butyrate supplementation interaction; P ≤ 0.03); conversely, in the ventral sac of the rumen, a thicker epithelium was observed due to both increased concentrate inclusion in the diet and SB supplementation (P < 0.01) but living strata thickness was increased only by SB supplementation (linear effect; P < 0.01). The epithelium damage index in the ventral sac of the rumen was higher for LOW compared to HIGH treatments (P = 0.02). Increased inclusion of concentrates in the diet increased mRNA expression of monocarboxylate transporter 1 in both the epithelium of the atrium ruminis and ventral rumen, occludin in the epithelium of the atrium ruminis and downregulated in adenoma in the epithelium of the ventral rumen (P ≤ 0.02). Protein expression of claudin-4 in the epithelium of the ventral rumen was the highest for the HIGH/SB1.6 and HIGH/SB3.2 treatments (significant effect of interaction between main effects; P < 0.01). Under the conditions of the current study, increased intake of concentrates had mostly positive effects on ruminal epithelium in growing rams, and the same was observed for the effect of SB supplementation. However, the effect of SB supplementation was at least partially affected by the inclusion of concentrates in the diet.
Collapse
Affiliation(s)
- S Świerk
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - M Przybyło
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - J Flaga
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - K Szczepanik
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, ul. Krakowska 1, 32-083 Balice, Poland
| | - A Garus-Piętak
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - W Biernat
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - E Molik
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - D Wojtysiak
- Department of Animal Genetics, Breeding and Ethology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - R Miltko
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland
| | - P Górka
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland.
| |
Collapse
|
4
|
Jeerawattanawart S, Hansakon A, Roytrakul S, Angkasekwinai P. Regulation and function of adiponectin in the intestinal epithelial cells in response to Trichinella spiralis infection. Sci Rep 2023; 13:14004. [PMID: 37635188 PMCID: PMC10460792 DOI: 10.1038/s41598-023-41377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023] Open
Abstract
Besides metabolic homeostasis regulation, adipokines are recently emerged as important players in regulating immunity and inflammation. Helminth infection has known to modulate circulating adipokine secretion; however, the regulation and function of adipokines in response to helminth infection is still unclear. Here, we investigated the regulation and function of adiponectin during T. spiralis infection. While there was no change in circulating level of adiponectin, we found an increased adiponectin, but not leptin expression in the small intestine. Interestingly, the intestinal adiponectin expression was strongly associated with the expression of epithelial cell-derived cytokines IL-25, IL-33, and TSLP following infection. Indeed, mice deficiency of IL-25 receptor exhibited no intestinal adiponectin induction upon helminth infection. Interestingly, IL-25-induced adiponectin modulated intestinal epithelial cell responses by enhancing occludin and CCL17 expression. Using LPS-induced intestinal epithelial barrier dysfunctions in a Caco-2 cell monolayer model, adiponectin pretreatment enhanced a Transepithelial electrical resistance (TEER) and occludin expression. More importantly, adiponectin pretreatment of Caco2 cells prevented T. spiralis larval invasion in vitro and its administration during infection enhanced intestinal IL-13 secretion and worm expulsion in vivo. Altogether, our data suggest that intestinal adiponectin expression induced by helminth infection through the regulation of IL-25 promotes worm clearance and intestinal barrier function.
Collapse
Affiliation(s)
- Siranart Jeerawattanawart
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand
| | - Adithap Hansakon
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand.
- Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathum Thani, 12120, Thailand.
| |
Collapse
|
5
|
Tu R, Zhou C, Huang W, Feng Z, Zhao Q, Shi X, Cui L, Chen K. Fuzi polysaccharides improve immunity in immunosuppressed mouse models by regulating gut microbiota composition. Heliyon 2023; 9:e18244. [PMID: 37519691 PMCID: PMC10372400 DOI: 10.1016/j.heliyon.2023.e18244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
Rationale and objectives Fuzi, the dried root of Aconitum carmichaelii Debx, is one of the widely used traditional Chinese medicines. Fuzi polysaccharides are considered the most bioactive compounds with immunomodulatory functions, however, the mechanisms have not been evaluated. This study aims to systematically investigate the effects of Fuzi polysaccharides on the gut microbiota and immune function using a mouse model immunosuppressed with cyclophosphamide. Methods The short-chain fatty acid levels in cecal contents were measured by gas chromatography-mass spectrometry. The gut microbiota 16S rRNA gene were sequenced by next generation sequencing. The mRNA expression levels of NF-κB, IL-6, TNF-α, iNOS and COX-2 were measured using quantitative real-time polymerase chain reaction. The protein expression of occludin and zonula occludens-1 were analyzed by Western blot. The white blood cells were counted using automated hematology analyzer, and CD4+FOXP3+/CD4+ ratio was measured by flow cytometry. Results and Conclusions Fuzi polysaccharides had the function of elevating the concentration of acetic acid, propionic acid, isobutyric acid, and n-butyric acid in the cecum. Meanwhile, Fuzi polysaccharides could decrease the relative abundance of Helicobacter, Anaerotruncus, Faecalibacterium, Lachnospira, Erysipelotrichaceae_UCG-003, Mucispirillum, and Mycoplasma, and increase the relative abundance of Rhodospirillales, Ruminococcaceae_UCG-013, Mollicutes_RF39, Ruminococcus_1, Christensenellaceae_R-7_group, and Muribaculaceae in the gut. Furthermore, Fuzi polysaccharides exhibited the function of increasing spleen and thymus indices and number of white blood cells and lymphocytes. Fuzi polysaccharides could reverse the decreased mRNA expression of NF-кB, IL-6, and iNOS, differentiation of CD4+FOXP3+ regulatory T cells as well as protein expression of occludin and zonula occludens-1 induced by cyclophosphamide. In addition, the mRNA and protein expression of cytokines were significantly correlated with the abundance of gut microbiota under Fuzi polysaccharides treatment. Collectively, the above results demonstrated that Fuzi polysaccharides could regulate inflammatory cytokines and gut microbiota composition of immunosuppressive mice to improve immunity, thereby shedding light on revealing the molecular mechanism of polysaccharides of traditional Chinese medicines in the future.
Collapse
Affiliation(s)
- Ran Tu
- Medical Laboratory of Jingmen People's Hospital, Jingchu University of Technology Affiliated Central Hospital, Jingmen, Hubei, China
| | - Cheng Zhou
- Medical Laboratory of Jingmen People's Hospital, Jingchu University of Technology Affiliated Central Hospital, Jingmen, Hubei, China
| | - Wenfeng Huang
- Medical Laboratory of Jingmen People's Hospital, Jingchu University of Technology Affiliated Central Hospital, Jingmen, Hubei, China
| | - Zhengping Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
- Yan'an Hospital of Traditional Chinese Medicine, Yan'an, Shaanxi, China
| | - Qiufang Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaofei Shi
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Langjun Cui
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Keke Chen
- School of Biological and Environmental Engineering, Xi'an University, Xi'an Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Kim S, Sun S, Kim M, Ha J, Seok E, Yang H. NUCB2/nesfatin-1 suppresses the acrosome reaction in sperm within the mouse epididymis. Anim Cells Syst (Seoul) 2023; 27:120-128. [PMID: 37197085 PMCID: PMC10184593 DOI: 10.1080/19768354.2023.2212741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Nesfatin-1, a polypeptide hormone derived from the nucleobindin 2 (NUCB2) precursor protein, is known to regulate appetite and energy metabolism. Recent studies have also shown that NUCB2/nesfatin-1 is expressed in the reproductive organs of mice. However, the expression and potential role of NUCB2/nesfatin-1 in the mouse epididymis remain unclear. Therefore, we investigated the expression of NUCB2/nesfatin-1 in the mouse epididymis and its potential function. NUCB2/nesfatin-1 was detected in the epididymis by qRT-PCR and western blotting, and high expression levels were observed in epididymal epithelial cells by immunohistochemical staining. Pregnant mare's serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) injections significantly increased NUCB2/nesfatin-1 expression in the epididymis. After castration, NUCB2/nesfatin-1 expression in the epididymis decreased, but was significantly increased by testosterone injection. Nesfatin-1-binding sites were found in the middle piece of testicular sperm, but were scarcely detected in the sperm head. By contrast, nesfatin-1 binding sites were identified on the sperm head within the epididymis. Furthermore, nesfatin-1 treatment inhibited the acrosome reaction in epididymal sperm. These results suggest that the nesfatin-1 protein produced in the epididymis binds to nesfatin-1 binding sites on the sperm head and plays a role in suppressing the acrosome reaction before ejaculation.
Collapse
Affiliation(s)
- Soohyun Kim
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, South Korea
| | - Sojung Sun
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, South Korea
| | - Minbi Kim
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, South Korea
| | - Jinah Ha
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, South Korea
| | - Eunji Seok
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, South Korea
| | - Hyunwon Yang
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, South Korea
- Hyunwon Yang Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, 621 Hwarang-ro, Seoul01794, South Korea
| |
Collapse
|
7
|
Taylor VJ. Lactation from the inside out: Maternal homeorhetic gastrointestinal adaptations regulating energy and nutrient flow into milk production. Mol Cell Endocrinol 2023; 559:111797. [PMID: 36243202 DOI: 10.1016/j.mce.2022.111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Lactation invokes homeorhetic processes to ramp up and supply milk synthesis components to fulfil nutritional, immunological and microbiological requirements of developing offspring, overseen by complex neuroendocrine networks. The maternal gut meets these intense metabolic demands, supported by hyperphagia and rapid adjustments to process larger food quantities. Enteroplasticity describes an inherent ability of the gastrointestinal tract to harness metabolic and structural adaptations that increase nutrient absorption. Most shifts in response to increased demands are transitory and by secreting milk, the continuous energetic drain out of the maternal body avoids development of pathological metabolic diseases. Lactation has various positive benefits for long-term maternal health but many females do not lactate for long post pregnancy and younger women are increasingly pre-disposed to excessive body mass and/or metabolic complications prior to reproducing. Inadvertently invoking intestinal adaptations to harvest and store excess nutrients has negative health implications with increased risks for both mother and offspring.
Collapse
Affiliation(s)
- Vicky J Taylor
- School of Life, Health and Chemical Sciences (LHCS), Faculty of Science, Technology, Engineering and Mathematics (STEM), The Open University, United Kingdom.
| |
Collapse
|
8
|
Basal Blood Morphology, Serum Biochemistry, and the Liver and Muscle Structure of Weaned Wistar Rats Prenatally Exposed to Fumonisins. Animals (Basel) 2022; 12:ani12182353. [PMID: 36139213 PMCID: PMC9495192 DOI: 10.3390/ani12182353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cereal, which is the main ingredient of animal feed, is often contaminated with mold, which produces heat-resistant, carcinogenic, and harmful metabolites/toxins called fumonisins. Feed contamination with fumonisins is a worldwide problem; however, the dietary intake of fumonisins is difficult to estimate because their concentrations in many products are unknown. The effects of consuming fumonisin-contaminated feed on animal health are not fully known, and the economic losses that are related to health care or animal husbandry are difficult to calculate as fumonisins are found commonly in foods, including those that are intended for infants or pregnant dams. The involuntary intake of moldy feed leads to a serious health risk with long-term effects. The research on prenatal exposure to fumonisins is limited. Previous studies have shown that prenatal fumonisins exposure causes abnormalities in the bone and enteric nervous system development. Therefore, it is very important to study the effects of prenatal exposure to fumonisins on the general development of offspring at different periods of life, including weaning. Abstract Cereals are often contaminated with fumonisins, which are the toxic byproducts of mold. The aim of the study was to determine the effect of maternal exposure to fumonisins on the development and the liver function of the offspring at weaning. Two doses of fumonisins (60 and 90 mg/kg b.w.) were tested. The changes in the basal blood morphology, the biochemical parameters, the absolute and relative weights of the vital organs, and the changes in the cardiac and biceps brachii muscle histology were studied. The liver damage was assessed by evaluating the liver morphology and the common clinical liver panel. Maternal fumonisin intoxication caused a decrease in the body weight at birth and an increase in the heart, liver, kidney, lungs, ovaries, and testes weights. The cytokines and hormones, as well as the red blood cell counts and hemoglobin levels, were elevated in a dose-dependent manner following the exposure to fumonisins. Maternal exposure caused degenerative morphological and structural changes in the liver, as well as inflammation in the striated muscles, such as the heart and biceps brachii, and disproportionate development of the rat offspring in a dose-dependent manner. Moreover, FB exposure resulted in the disproportional development of the rat offspring in a dose-dependent manner, which was probably caused by the bodily hormonal dysregulation. Prenatal fumonisin exposure can be a pathological precursor for serious diseases, such as obesity and diabetes, later in life.
Collapse
|
9
|
Kras K, Muszyński S, Tomaszewska E, Arciszewski MB. Minireview: Peripheral Nesfatin-1 in Regulation of the Gut Activity—15 Years since the Discovery. Animals (Basel) 2022; 12:ani12010101. [PMID: 35011207 PMCID: PMC8749754 DOI: 10.3390/ani12010101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Nesfatin-1 is a newly identified molecule derived from the precursor protein NEFA/nucleobindin2. In this minireview we analyzed the research on the nesfatin-1 localization in the gastrointestinal tract of the mammals. We also referred to the effects of the protein on disorders in the gastrointestinal tract. Abstract Nesfatin-1, discovered in 2006, is an anorexigenic molecule derived from the precursor protein NEFA/nucleobindin2. It is generally postulated that this molecule acts through a specific G protein-coupled receptor, as yet unidentified. Research conducted over the last 15 years has revealed both central and peripheral actions of nesfatin-1. Given its major central role, studies determining its inhibitory effect on food intake seem to be of major scientific interest. However, in recent years a number of experiments have found that peripheral organs, including those of the gastrointestinal tract (GIT), may also be a source (possibly even the predominant source) of nesfatin-1. This mini-review aimed to summarize the current state of knowledge regarding the expression and immunoreactivity of nesfatin-1 and its possible involvement (both physiological and pathological) in the mammalian GIT. Research thus far has shown very promising abilities of nesfatin-1 to restore the balance between pro-oxidants and antioxidants, to interplay with the gut microbiota, and to alter the structure of the intestinal barrier. This necessitates more extensive research on the peripheral actions of this molecule. More in-depth knowledge of such mechanisms (especially those leading to anti-inflammatory and anti-apoptotic effects) is important for a better understanding of the involvement of nefatin-1 in GIT pathophysiological conditions and/or for future therapeutic approaches.
Collapse
Affiliation(s)
- Katarzyna Kras
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 12 Akademicka St., 20-950 Lublin, Poland;
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 13 Akademicka St., 20-950 Lublin, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 12 Akademicka St., 20-950 Lublin, Poland;
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 12 Akademicka St., 20-950 Lublin, Poland;
- Correspondence:
| |
Collapse
|
10
|
Tomaszewska E, Rudyk H, Świetlicka I, Hułas-Stasiak M, Donaldson J, Arczewska M, Muszyński S, Dobrowolski P, Puzio I, Kushnir V, Brezvyn O, Muzyka V, Kotsyumbas I. The Influence of Prenatal Fumonisin Exposure on Bone Properties, as well as OPG and RANKL Expression and Immunolocalization, in Newborn Offspring Is Sex and Dose Dependent. Int J Mol Sci 2021; 22:ijms222413234. [PMID: 34948030 PMCID: PMC8705866 DOI: 10.3390/ijms222413234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 01/18/2023] Open
Abstract
The current study examined the effects of exposure of pregnant dams to fumonisins (FBs; FB1 and FB2), from the seventh day of pregnancy to parturition, on offspring bone metabolism and properties. The rats were randomly divided into three groups intoxicated with FBs at either 0, 60, or 90 mg/kg b.w. Body weight and bone length were affected by fumonisin exposure, irrespective of sex or dose, while the negative and harmful effects of maternal FBs’ exposure on bone mechanical resistance were sex and dose dependent. The immunolocalization of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-Β ligand (RANKL), in bone and articular cartilage, indicated that the observed bone effects resulted from the FB-induced alterations in bone metabolism, which were confirmed by the changes observed in the Western blot expression of OPG and RANKL. It was concluded that the negative effects of prenatal FB exposure on the general growth and morphometry of the offspring bones, as a result of the altered expression of proteins responsible for bone metabolism, were dose and sex dependent.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
- Correspondence: (E.T.); (I.Ś.)
| | - Halyna Rudyk
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Donetska St. 11, 79000 Lviv, Ukraine; (H.R.); (V.K.); (O.B.); (V.M.); (I.K.)
| | - Izabela Świetlicka
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland; (M.A.); (S.M.)
- Correspondence: (E.T.); (I.Ś.)
| | - Monika Hułas-Stasiak
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland; (M.H.-S.); (P.D.)
| | - Janine Donaldson
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Marta Arczewska
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland; (M.A.); (S.M.)
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland; (M.A.); (S.M.)
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland; (M.H.-S.); (P.D.)
| | - Iwona Puzio
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| | - Volodymyr Kushnir
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Donetska St. 11, 79000 Lviv, Ukraine; (H.R.); (V.K.); (O.B.); (V.M.); (I.K.)
| | - Oksana Brezvyn
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Donetska St. 11, 79000 Lviv, Ukraine; (H.R.); (V.K.); (O.B.); (V.M.); (I.K.)
| | - Viktor Muzyka
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Donetska St. 11, 79000 Lviv, Ukraine; (H.R.); (V.K.); (O.B.); (V.M.); (I.K.)
| | - Ihor Kotsyumbas
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Donetska St. 11, 79000 Lviv, Ukraine; (H.R.); (V.K.); (O.B.); (V.M.); (I.K.)
| |
Collapse
|
11
|
Trabecular Bone Parameters, TIMP-2, MMP-8, MMP-13, VEGF Expression and Immunolocalization in Bone and Cartilage in Newborn Offspring Prenatally Exposed to Fumonisins. Int J Mol Sci 2021; 22:ijms222212528. [PMID: 34830409 PMCID: PMC8623786 DOI: 10.3390/ijms222212528] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/13/2023] Open
Abstract
Fumonisins are protein serine/threonine phosphatase inhibitors and potent inhibitors of sphingosine N-acyltransferase (ceramide synthase) disrupting de novo sphingolipid biosynthesis. The experiment was conducted to evaluate the effects of fumonisins (FB) exposure from the 7th day of pregnancy to parturition on offspring bone development. The rats were randomly allocated to either a control group (n = 6), not treated with FBs, or to one of the two groups intoxicated with FBs (either at 60 mg FB/kg b.w. or at 90 mg FB/kg b.w. Numerous negative, offspring sex-dependent effects of maternal FB exposure were observed with regards to the histomorphometry of trabecular bone. These effects were due to FB-inducted alterations in bone metabolism, as indicated by changes in the expression of selected proteins involved in bone development: tissue inhibitor of metalloproteinases 2 (TIMP-2), matrix metalloproteinase 8 (MMP-8), matrix metalloproteinase 13 (MMP-13), and vascular endothelial growth factor (VEGF). The immunolocalization of MMPs and TIMP-2 was performed in trabecular and compact bone, as well as articular and growth plate cartilages. Based on the results, it can be concluded that the exposure of pregnant dams to FB negatively affected the expression of certain proteins responsible for bone matrix degradation in newborns prenatally exposed to FB in a dose- and sex-dependent manner.
Collapse
|
12
|
The effect of supplementation with β-hydroxy-β-methylbutyric acid (HMB) to pregnant sows on the mucosal structure, immunolocalization of intestinal barrier proteins, VIP and leptin in the large intestine in their offspring. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
The large intestine epithelium plays an important role in water absorption and participates in fluid, acid-base and electrolyte balance, and the removal of waste products. The large intestine is rich in microorganism-presented enzyme activity. Apart from energy supply, the colon also participates in the synthesis of trophic factors and the modulation of the immune system and the systemic inflammatory response. The current study investigated the effects of dietary HMB administration to pregnant sows on the postnatal development of the colon in their offspring, at weaning. From the 70th to the 90th day of gestation, sows received either a basal diet (n = 12) or the basal diet supplemented with HMB (n = 12) at a dose of 0.2 g/kg of body weight/day. Maternal HMB treatment increased serum IgG and glucose concentrations and decreased serum urea concentration in the piglets. Basal histomorphometric analysis of offspring large intestines showed that prenatal HMB treatment led to a reduction in the thickness of the mucosa, submucosa and both types of myenterons, as well as reduced crypt thickness. The immunoreaction performed to mark T0 lymphocytes and total T lymphocytes in the colon wall showed that prenatal HMB treatment decreased the number of both types of lymphocytes. Greater expression for cadherin was found in the colon of piglets delivered by the HMB-treated sows. The expression of both tight junction proteins (occludin and claudin-3), as well as that of leptin, was stronger in the HMB-treated group. Vasoactive intestinal peptide (VIP) expression was stronger in the submucosal plexuses in the HMB maternal treated piglets, while no changes were observed in the myenteric plexuses. The results obtained indicate that the administration of HMB to pregnant sows significantly influenced the expression of leptin, VIP and some proteins of the intestinal barrier in their offspring, with less influence on large intestine basal morphology.
Collapse
|
13
|
Changes in the Intestinal Histomorphometry, the Expression of Intestinal Tight Junction Proteins, and the Bone Structure and Liver of Pre-Laying Hens Following Oral Administration of Fumonisins for 21 Days. Toxins (Basel) 2021; 13:toxins13060375. [PMID: 34070555 PMCID: PMC8229214 DOI: 10.3390/toxins13060375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/12/2023] Open
Abstract
Fumonisins (FB) are metabolites found in cereal grains (including maize), crop products, and pelleted feed. There is a dearth of information concerning the effects of FB intoxication on the intestinal histomorphometry, the expression of intestinal tight junction proteins, and the bone structure and liver in pre-laying hens. The current experiment was carried out on hens from the 11th to the 14th week of age. The hens were orally administered an extract containing fumonisin B1 (FB1) and fumonisin B2 (FB2) at doses of 0.0 mg/kg b.w. (body weight), 1.0 mg/kg b.w., 4.0 mg/kg b.w., and 10.9 mg/kg b.w. for 21 days. Following FB intoxication, the epithelial integrity of the duodenum and jejunum was disrupted, and dose-dependent degenerative changes were observed in liver. An increased content of immature collagen was observed in the bone tissue of FB-intoxicated birds, indicating intensified bone turnover. A similar effect was observed with regards to the articular cartilage, where enhanced fibrillogenesis was observed mainly in the group of birds that received the FB extract at a dose of 10.9 mg/kg b.w. In conclusion, FB intoxication resulted in negative structural changes in the bone tissue of the hens, which could result in worsened bone mechanics and an increase in the risk of bone fractures. Fumonisin administration, even at a dose of 1.0 mg/kg b.w., can lead to degradation of the intestinal barrier and predispose hens to intestinal disturbances later in life.
Collapse
|
14
|
Donaldson J, Świątkiewicz S, Arczewka-Włosek A, Muszyński S, Szymańczyk S, Arciszewski MB, Siembida AZ, Kras K, Piedra JLV, Schwarz T, Tomaszewska E, Dobrowolski P. Modern Hybrid Rye, as an Alternative Energy Source for Broiler Chickens, Improves the Absorption Surface of the Small Intestine Depending on the Intestinal Part and Xylanase Supplementation. Animals (Basel) 2021; 11:1349. [PMID: 34068515 PMCID: PMC8151840 DOI: 10.3390/ani11051349] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022] Open
Abstract
The current study investigated the effects of the inclusion of modern hybrid rye (Brasetto variety) to a corn-wheat-based diet, with or without xylanase, on the absorptive surface of the small intestine of broilers. A total of 224 one-day-old male Ross 308 broiler chicks were randomly divided into four experimental groups with seven replicate cages of eight birds/replicate. A 2 × 2 factorial study design was used, with rye inclusion (0% or 20%) and xylanase supplementation (0 or 200 mg/kg of feed) as factors. Inclusion of rye increased duodenal and ileal crypt depth, villi height, the villus-to-crypt ratio and absorption surface area (p < 0.05), and ileal mucosa thickness and crypt width (p < 0.05). Xylanase supplementation attenuated the effects of rye in the duodenum and ileum and decreased the villi height and villus-to-crypt ratio in the jejunum (p < 0.05). Rye and xylanase had no effect on the spatial distribution of claudin 3 and ZO-1 protein, but xylanase supplementation reduced the amount of claudin 3 in the duodenum and jejunum (p < 0.05). The findings of this study indicate that 20% inclusion of modern hybrid rye to the diets of broilers improved the structure of the duodenum and ileum, but these effects were attenuated by xylanase supplementation.
Collapse
Affiliation(s)
- Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Sylwester Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 1 Krakowska St., 32-083 Balice, Poland; (S.Ś.); (A.A.-W.)
| | - Anna Arczewka-Włosek
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 1 Krakowska St., 32-083 Balice, Poland; (S.Ś.); (A.A.-W.)
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 13 Akademicka St., 20-950 Lublin, Poland;
| | - Sylwia Szymańczyk
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 12 Akademicka St., 20-950 Lublin, Poland; (S.S.); (E.T.)
| | - Marcin Bartłomiej Arciszewski
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.B.A.); (A.Z.S.); (K.K.)
| | - Anna Zacharko Siembida
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.B.A.); (A.Z.S.); (K.K.)
| | - Katarzyna Kras
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.B.A.); (A.Z.S.); (K.K.)
| | - Jose Luis Valverde Piedra
- Department of Pharmacology, Toxicology and Environmental Protection, University of Life Sciences, Lublin, 13 Akademicka St., 20-950 Lublin, Poland;
| | - Tomasz Schwarz
- Department of Animal Genetics, Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Kraków, 24/28 Mickiewicza Ave., 30-059 Cracow, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 12 Akademicka St., 20-950 Lublin, Poland; (S.S.); (E.T.)
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| |
Collapse
|