1
|
Kasai H, Yamashita A, Akaike Y, Tanaka T, Matsuura Y, Moriishi K. HCV infection activates the proteasome via PA28γ acetylation and heptamerization to facilitate the degradation of RNF2, a catalytic component of polycomb repressive complex 1. mBio 2024; 15:e0169124. [PMID: 39329491 PMCID: PMC11559043 DOI: 10.1128/mbio.01691-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
We previously reported that hepatitis C virus (HCV) infection or HCV core protein expression induces HOX gene expression by impairing histone H2A monoubiquitination via a proteasome-dependent reduction in the level of RNF2, a key catalytic component of polycomb repressive complex 1 (H. Kasai, K. Mochizuki, T. Tanaka, A. Yamashita, et al., J Virol 95:e01784-20, 2021, https://doi.org/10.1128/jvi.01784-20). In this study, we aimed to investigate the mechanism by which HCV infection accelerates RNF2 degradation. Yeast two-hybrid screening and an immunoprecipitation assay revealed that RNF2 is a PA28γ-binding protein. The proteasome activator PA28γ destabilized the RNF2 protein in a proteasome-dependent manner, since RNF2 degradation was impaired by PA28γ knockout or MG132 treatment. HCV infection or core protein expression reduced the levels of RNF2 and histone H2A K119 monoubiquitination and induced the expression of HOX genes in the presence of PA28γ, while PA28γ knockout reversed these changes. Treatment with a lysine acetyltransferase inhibitor inhibited the acetylation of PA28γ at K195 and the degradation of the RNF2 protein, while treatment with a lysine deacetylase inhibitor accelerated these events in a PA28γ-dependent manner. RNF2 protein degradation was increased by expression of the acetylation mimetic PA28γ mutant but not by expression of the acetylation-defective mutant or the proteasome activation-defective mutant. Furthermore, HCV infection or core protein expression facilitated the interaction between PA28γ and the lysine acetyltransferase CBP/p300 and then accelerated PA28γ acetylation and heptazmerization to promote RNF2 degradation. These data suggest that HCV infection accelerates the acetylation-dependent heptamerization of PA28γ to increase the proteasomal targeting of RNF2.IMPORTANCEHCV is a causative agent of HCV-related liver diseases, including hepatic steatosis, cirrhosis, and hepatocellular carcinoma. PA28γ, which, in heptameric form, activates the 20S core proteasome for the degradation of PA28γ-binding proteins, is responsible for HCV-related liver diseases. HCV core protein expression or HCV infection accelerates RNF2 degradation, leading to the induction of HOX gene expression via a decrease in the level of H2Aub on HOX gene promoters. However, the mechanism of RNF2 degradation in HCV-infected cells has not been clarified. The data presented in this study suggest that PA28γ acetylation and heptamerization are promoted by HCV infection or by core protein expression to activate the proteasome for the degradation of RNF2 and are responsible for HCV propagation. This study provides novel insights valuable for the development of therapies targeting both HCV propagation and HCV-related diseases.
Collapse
Affiliation(s)
- Hirotake Kasai
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Atsuya Yamashita
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Yasunori Akaike
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
- Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
- Center for Infectious Diseases Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
- Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Spurbeck RR. Altered epigenetic landscape as infectious disease diagnostics. Epigenomics 2024; 16:1269-1272. [PMID: 39440607 PMCID: PMC11534112 DOI: 10.1080/17501911.2024.2415282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
|
3
|
Żychowska J, Ćmil M, Skórka P, Olejnik-Wojciechowska J, Plewa P, Bakinowska E, Kiełbowski K, Pawlik A. The Role of Epigenetic Mechanisms in the Pathogenesis of Hepatitis C Infection. Biomolecules 2024; 14:986. [PMID: 39199374 PMCID: PMC11352264 DOI: 10.3390/biom14080986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Hepatitis C virus (HCV) is a hepatotropic virus that can be transmitted through unsafe medical procedures, such as injections, transfusions, and dental treatment. The infection may be self-limiting or manifest as a chronic form that induces liver fibrosis, cirrhosis, or progression into hepatocellular carcinoma (HCC). Epigenetic mechanisms are major regulators of gene expression. These mechanisms involve DNA methylation, histone modifications, and the activity of non-coding RNAs, which can enhance or suppress gene expression. Abnormal activity or the dysregulated expression of epigenetic molecules plays an important role in the pathogenesis of various pathological disorders, including inflammatory diseases and malignancies. In this review, we summarise the current evidence on epigenetic mechanisms involved in HCV infection and progression to HCC.
Collapse
Affiliation(s)
- Justyna Żychowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Maciej Ćmil
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Patryk Skórka
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | | | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| |
Collapse
|
4
|
Fiehn F, Beisel C, Binder M. Hepatitis C virus and hepatocellular carcinoma: carcinogenesis in the era of direct-acting antivirals. Curr Opin Virol 2024; 67:101423. [PMID: 38925094 DOI: 10.1016/j.coviro.2024.101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024]
Abstract
Chronic hepatitis C virus (HCV) infection is a major cause of hepatic fibrosis and cirrhosis, with a risk for the development of hepatocellular carcinoma (HCC). Although highly effective direct-acting antivirals (DAAs) are available, the incidence, morbidity, and mortality of HCV-associated HCC are still high. This article reviews the current knowledge of the mechanisms of HCV-induced carcinogenesis with a special focus on those processes that continue after virus clearance and outlines implications for patient surveillance after DAA treatment.
Collapse
Affiliation(s)
- Felix Fiehn
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (D430), German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Claudia Beisel
- Department of Internal Medicine IV, Gastroenterology and Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (D430), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
5
|
Pan Z, Seto WK, Liu CJ, Mao Y, Alqahtani SA, Eslam M. A literature review of genetics and epigenetics of HCV-related hepatocellular carcinoma: translational impact. Hepatobiliary Surg Nutr 2024; 13:650-661. [PMID: 39175720 PMCID: PMC11336528 DOI: 10.21037/hbsn-23-562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/19/2024] [Indexed: 08/24/2024]
Abstract
Background and Objective Hepatocellular carcinoma (HCC) poses a significant global health burden and ranks as the fifth most prevalent cancer on a global scale. Hepatitis C virus (HCV) infection remains one of the major risk factors for HCC development. HCC is a heterogeneous disease, and the development of HCC caused by HCV is intricate and involves various factors, including genetic susceptibility, viral factors, immune response due to chronic inflammation, alcohol abuse, and metabolic dysfunction associated with fatty liver disease. In this review, we provide a comprehensive and updated review of research on the genetics and epigenetic mechanisms implicated in developing HCC associated with HCV infection. We also discuss the potential translational implications, including novel biomarkers and drugs for treatment. Methods A comprehensive literature search was conducted in June 2023 in PubMed and Embase databases. Key Content and Findings Recent findings indicate that a variety of genetic and epigenetic processes are involved in the pathogenesis and continue to exist even after the complete elimination of HCV. The deregulation of the epigenome has been identified as a significant factor in the deletrious effects of liver disease, especially during the initial stages when genetic alterations are uncommon. The enduring "epigenetic memory" of gene expression is believed to be regulated by epigenetic mechanisms, indicating that alterations caused by HCV infection continue to exist and are linked to the risk of development of liver cancer even after successful treatment. Systems biology analytical methods will be required to delineate the magnitude and significance of both genetic and epigenomic alterations in tumor evolution. Conclusions By facilitating a more profound understanding of these aspects, this will ultimately foster the advancement of novel therapies and ultimately improve outcomes for patients.
Collapse
Affiliation(s)
- Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Wai-Kay Seto
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Chun-Jen Liu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei
- Hepatitis Research Center, National Taiwan University Hospital, Taipei
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Beijing, China
| | - Saleh A. Alqahtani
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- Division of Gastroenterology & Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Panneerselvam S, Wilson C, Kumar P, Abirami D, Pamarthi J, Reddy MS, Varghese J. Overview of hepatocellular carcinoma: from molecular aspects to future therapeutic options. Cell Adh Migr 2023; 17:1-21. [PMID: 37726886 PMCID: PMC10512929 DOI: 10.1080/19336918.2023.2258539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the seventh most highly prevalent malignant tumor globally and the second most common cause of mortality. HCC develops with complex pathways that occur through multistage biological processes. Non-alcoholic fatty liver disease, metabolic-associated fatty liver disease, alcoholic liver disease, autoimmune hepatitis, hepatitis B, and hepatitis C are the causative etiologies of HCC. HCC develops as a result of epigenetic changes, protein-coding gene mutations, and altered signaling pathways. Biomarkers and potential therapeutic targets for HCC open up new possibilities for treating the disease. Immune checkpoint inhibitors are included in the treatment options in combination with molecular targeted therapy.
Collapse
Affiliation(s)
- Sugan Panneerselvam
- Department of Hepatology and Transplant Hepatology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Cornelia Wilson
- Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Discovery Park, Sandwich, UK
| | - Prem Kumar
- Department of Hepatology and Transplant Hepatology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Dinu Abirami
- Department of Gastroenterology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Jayakrishna Pamarthi
- Multi-Disciplinary Research Unit, Madras Medical College, Chennai, Tamil Nadu, India
| | - Mettu Srinivas Reddy
- The Director and Head, Liver Transplant and HPB surgery, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Joy Varghese
- Department of Gastroenterology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Papadopoulou G, Petroulia S, Karamichali E, Dimitriadis A, Marousis D, Ioannidou E, Papazafiri P, Koskinas J, Foka P, Georgopoulou U. The Epigenetic Controller Lysine-Specific Demethylase 1 (LSD1) Regulates the Outcome of Hepatitis C Viral Infection. Cells 2023; 12:2568. [PMID: 37947646 PMCID: PMC10648375 DOI: 10.3390/cells12212568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Hepatitis C virus (HCV) alters gene expression epigenetically to rearrange the cellular microenvironment in a beneficial way for its life cycle. The host epigenetic changes induced by HCV lead to metabolic dysfunction and malignant transformation. Lysine-specific demethylase 1 (LSD1) is an epigenetic controller of critical cellular functions that are essential for HCV propagation. We investigated the putative role of LSD1 in the establishment of HCV infection using genetic engineering and pharmacological inhibition to alter endogenous LSD1 levels. We demonstrated for the first time that HCV replication was inhibited in LSD1-overexpressing cells, while specific HCV proteins differentially fine-tuned endogenous LSD1 expression levels. Electroporation of the full-length HCV genome and subgenomic replicons in LSD1 overexpression enhanced translation and partially restored HCV replication, suggesting that HCV might be inhibited by LSD1 during the early steps of infection. Conversely, the inhibition of LSD1, followed by HCV infection in vitro, increased viral replication. LSD1 was shown to participate in an intriguing antiviral mechanism, where it activates endolysosomal interferon-induced transmembrane protein 3 (IFITM3) via demethylation, leading endocytosed HCV virions to degradation. Our study proposes that HCV-mediated LSD1 oscillations over countless viral life cycles throughout chronic HCV infection may promote epigenetic changes related to HCV-induced hepatocarcinogenesis.
Collapse
Affiliation(s)
- Georgia Papadopoulou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Stavroula Petroulia
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Eirini Karamichali
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Alexios Dimitriadis
- Molecular Biology and Immunobiotechnology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Dimitrios Marousis
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Elisavet Ioannidou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Panagiota Papazafiri
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - John Koskinas
- 2nd Department of Internal Medicine, Medical School of Athens, Hippokration General Hospital, 11521 Athens, Greece
| | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Urania Georgopoulou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
8
|
Hu Y, Zhang X, Li Q, Zhou Q, Fang D, Lu Y. An immune and epigenetics-related scoring model and drug candidate prediction for hepatic carcinogenesis via dynamic network biomarker analysis and connectivity mapping. Comput Struct Biotechnol J 2023; 21:4619-4633. [PMID: 37817777 PMCID: PMC10561057 DOI: 10.1016/j.csbj.2023.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with high mortality. This study aimed to build a prognostic signature for HCC patients based on immune-related genes (IRGs) and epigenetics-related genes (EPGs). RNA-seq data from Gene Expression Omnibus were used for dynamic network biomarker (DNB) analysis to identify 56 candidate IRG-EPG-DNBs and their first-neighbor genes. These genes were screened using LASSO-Cox regression analysis to finally obtain five candidate genes-RNF2, YBX1, EZH2, CAD, and PSMD1-which constituted the prognostic signature panel. According to this panel, patients in The Cancer Genome Atlas and International Cancer Genome Consortium were divided into high- and low-risk groups. The prognosis, clinicopathological features, and immune cell infiltration significantly differed between the two risk groups. The prognostic ability of the signature panel and expression profiling were further validated using online databases. We used an independent cohort of patients to validate the expression profiles of the five genes using reverse transcription-PCR. CMap and CellMiner predicted four small molecule drug-protein pairs based on the five prognostic genes. Of them, two market drugs approved by the Food and Drug Administration (AT-13387 and KU-55933) have emerged as candidates for HCC study. This new signature panel may serve as a potential prognostic marker, engendering the possibility of novel personalized therapy with classification of HCC patients.
Collapse
Affiliation(s)
- Yuting Hu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xingli Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingya Li
- Henan University of Chinese Medicine, Henan 450046, China
| | - Qianmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dongdong Fang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyu Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
9
|
Aoyagi H, Iijima H, Gaber ES, Zaitsu T, Matsuda M, Wakae K, Watashi K, Suzuki R, Masaki T, Kahn J, Saito T, El-Kassas M, Shimada N, Kato K, Enomoto M, Hayashi K, Tsubota A, Mimata A, Sakamaki Y, Ichinose S, Muramatsu M, Wake K, Wakita T, Aizaki H. Hepatocellular organellar abnormalities following elimination of hepatitis C virus. Liver Int 2023; 43:1677-1690. [PMID: 37312620 DOI: 10.1111/liv.15624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/14/2023] [Accepted: 05/14/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS The future development of hepatocellular carcinoma (HCC) in patients after sustained virologic response (SVR) is an important issue. The purposes of this study were to investigate pathological alterations in organelle of the liver of SVR patients and to characterize organelle abnormalities that may be related to carcinogenesis after SVR. METHODS The ultrastructure of liver biopsy specimens from patients with chronic hepatitis C (CHC) and SVR were compared to cell and mouse models and assessed semi-quantitatively using transmission electron microscopy. RESULTS Hepatocytes in patients with CHC showed abnormalities in the nucleus, mitochondria, endoplasmic reticulum, lipid droplet, and pericellular fibrosis, comparable to those seen in hepatitis C virus (HCV)-infected mice and cells. DAA treatment significantly reduced organelle abnormalities such as the nucleus, mitochondria, and lipid droplet in the hepatocytes of patients and mice after SVR, and cured cells, but it did not change dilated/degranulated endoplasmic reticulum and pericellular fibrosis in patients and mice after SVR. Further, samples from patients with a post-SVR period of >1 year had significantly larger numbers of abnormalities in the mitochondria and endoplasmic reticulum than those of <1 year. A possible cause of organelle abnormalities in patients after SVR could be oxidative stress of the endoplasmic reticulum and mitochondria associated with abnormalities of the vascular system due to fibrosis. Interestingly, abnormal endoplasmic reticulum was associated with patients with HCC for >1 year after SVR. CONCLUSIONS These results indicate that patients with SVR exhibit a persistent disease state and require long-term follow-up to detect early signs of carcinogenesis.
Collapse
Affiliation(s)
- Haruyo Aoyagi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroko Iijima
- Department of Internal Medicine, Division of Hepatobiliary and Pancreatic Disease, Hyogo College of Medicine, Hyogo, Japan
| | - Eman S Gaber
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuma Zaitsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kosho Wakae
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takahiro Masaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Jeffrey Kahn
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Takeshi Saito
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Noritomo Shimada
- Division of Gastroenterology and Hepatology, Ootakanomori Hospital, Chiba, Japan
| | - Keizo Kato
- Division of Gastroenterology and Hepatology, Shinmatsudo Central General Hospital, Chiba, Japan
| | - Masaru Enomoto
- Department of Hepatology, Osaka Metropolitan University, Osaka, Japan
| | - Kazuhiko Hayashi
- Division of Gastroenterology and Hepatology, Meijo Hospital, Nagoya, Japan
| | - Akihito Tsubota
- Core Research Facilities, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Ayako Mimata
- Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuriko Sakamaki
- Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shizuko Ichinose
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenjiro Wake
- Liver Research Unit, Minophagen Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
10
|
Guo Z, Liang J. Characterization of a lipid droplet and endoplasmic reticulum stress related gene risk signature to evaluate the clinical and biological value in hepatocellular carcinoma. Lipids Health Dis 2022; 21:146. [PMID: 36581927 PMCID: PMC9798721 DOI: 10.1186/s12944-022-01759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Lipid metabolism and endoplasmic reticulum (ER) stress play an important role in the progression and metastasis of hepatocellular carcinoma (HCC). We aimed to establish lipid droplet (LD)-associated and ER stress-related gene risk signature as prognostic indicators. MATERIALS AND METHODS Literature searches for LD-associated proteins was screened and validated in The Cancer Genome Atlas (TCGA) and International Cancer Genome Collaboratory (ICGC) databases. A total of 371 samples were enrolled from the TCGA RNA-seq dataset (training cohort) and 240 samples from IGGC RNA-seq dataset (validation cohort). A 10-gene risk signature was established by the last absolute shrinkage and selection operator (LASSO) regression analysis. The prognostic value of the risk signature was evaluated by Cox regression, Kaplan-Meier and ROC Curve analyses. Biological features associated with LD and ER stress-related factors were explored by functional analysis and in vitro experiment. RESULTS Based on the medical literatures, 124 lipid droplet-associated proteins were retrieved, and three genes failed to establish a valid prognostic model. ER stress was considered as an important component by functional analysis. A 10-gene risk signature compared the clinicopathology characteristics, immunosuppressive events and a nomogram in HCC patients. CONCLUSION LD-associated and ER stress-related gene risk signatures highlighted poor prognosis for clinicopathological features, positively correlate with macrophages and T cell immunoglobulin and mucin-3 (TIM-3) expression in the tumor microenvironment, and might act as independent prognostic factors.
Collapse
Affiliation(s)
- Ziwei Guo
- grid.449412.ePeking University International Hospital, Beijing, China ,grid.412474.00000 0001 0027 0586Peking University Cancer Hospital and Institute, Beijing, China
| | - Jun Liang
- grid.449412.ePeking University International Hospital, Beijing, China ,grid.412474.00000 0001 0027 0586Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
11
|
Sugimachi K, Araki H, Saito H, Masuda T, Miura F, Inoue K, Shimagaki T, Mano Y, Iguchi T, Morita M, Toh Y, Yoshizumi T, Ito T, Mimori K. Persistent epigenetic alterations in transcription factors after a sustained virological response in hepatocellular carcinoma. JGH Open 2022; 6:854-863. [PMID: 36514506 PMCID: PMC9730721 DOI: 10.1002/jgh3.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Background and Aim The risk of hepatocellular carcinoma (HCC) persists in a condition of sustained virologic response (SVR) after hepatitis C virus (HCV) eradication. Comprehensive molecular analyses were performed to test the hypothesis that epigenetic abnormalities present after an SVR play a role in hepatocarcinogenesis. Methods Whole-genome methylome and RNA sequencing were performed on HCV, SVR, and healthy liver tissue. Integrated analysis of the sequencing data focused on expression changes in transcription factors and their target genes, commonly found in HCV and SVR. Identified expression changes were validated in demethylated cultured HCC cell lines and an independent validation cohort. Results The coincidence rates of the differentially methylated regions between the HCV and SVR groups were 91% in the hypomethylated and 71% in the hypermethylated regions in tumorous tissues, and 37% in the hypomethylated and 36% in the hypermethylated regions in non-tumorous tissues. These results indicate that many epigenomic abnormalities persist even after an SVR was achieved. Integrated analysis identified 61 transcription factors and 379 other genes that had methylation abnormalities and gene expression changes in both groups. Validation cohort specified gene expression changes for 14 genes, and gene ontology pathway analysis revealed apoptotic signaling and inflammatory response were associated with these genes. Conclusion This study demonstrates that DNA methylation abnormalities, retained after HCV eradication, affect the expression of transcription factors and their target genes. These findings suggest that DNA methylation in SVR patients may be functionally important in carcinogenesis, and could serve as biomarkers to predict HCC occurrence.
Collapse
Affiliation(s)
- Keishi Sugimachi
- Department of Hepatobiliary‐Pancreatic SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Hiromitsu Araki
- Department of Biochemistry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Business and Technology Management, Faculty of EconomicsKyushu UniversityFukuokaJapan
| | - Hideyuki Saito
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Takaaki Masuda
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Fumihito Miura
- Department of Biochemistry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kentaro Inoue
- Department of Biochemistry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Tomonari Shimagaki
- Department of Hepatobiliary‐Pancreatic SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Yohei Mano
- Department of Hepatobiliary‐Pancreatic SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Tomohiro Iguchi
- Department of Hepatobiliary‐Pancreatic SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Masaru Morita
- Department of Gastroenterological SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Yasushi Toh
- Department of Gastroenterological SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takashi Ito
- Department of Biochemistry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Koshi Mimori
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| |
Collapse
|
12
|
Breen EC, Sehl ME, Shih R, Langfelder P, Wang R, Horvath S, Bream JH, Duggal P, Martinson J, Wolinsky SM, Martínez-Maza O, Ramirez CM, Jamieson BD. Accelerated aging with HIV begins at the time of initial HIV infection. iScience 2022; 25:104488. [PMID: 35880029 PMCID: PMC9308149 DOI: 10.1016/j.isci.2022.104488] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/06/2021] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Living with HIV infection is associated with early onset of aging-related chronic conditions, sometimes described as accelerated aging. Epigenetic DNA methylation patterns can evaluate acceleration of biological age relative to chronological age. The impact of initial HIV infection on five epigenetic measures of aging was examined before and approximately 3 years after HIV infection in the same individuals (n=102). Significant epigenetic age acceleration (median 1.9-4.8 years) and estimated telomere length shortening (all p≤ 0.001) were observed from pre-to post-HIV infection, and remained significant in three epigenetic measures after controlling for T cell changes. No acceleration was seen in age- and time interval-matched HIV-uninfected controls. Changes in genome-wide co-methylation clusters were also significantly associated with initial HIV infection (p≤ 2.0 × 10-4). These longitudinal observations clearly demonstrate an early and substantial impact of HIV infection on the epigenetic aging process, and suggest a role for HIV itself in the earlier onset of clinical aging.
Collapse
Affiliation(s)
- Elizabeth Crabb Breen
- Cousins Center for Psychoneuroimmunology, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Mary E. Sehl
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Roger Shih
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Langfelder
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ruibin Wang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA 21205, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
- Altos Labs, San Diego, CA 92121, USA
| | - Jay H. Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA 21205, USA
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Steven M. Wolinsky
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Otoniel Martínez-Maza
- Departments of Obstetrics & Gynecology and Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Christina M. Ramirez
- Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Beth D. Jamieson
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Bankwitz D, Krey T, Pietschmann T. [Development approaches for vaccines against hepatitis C virus infections]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2022; 65:183-191. [PMID: 35015104 PMCID: PMC8749110 DOI: 10.1007/s00103-021-03477-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/07/2021] [Indexed: 11/04/2022]
Abstract
Mehr als 10 Jahre nach der Zulassung der ersten direkt wirkenden antiviralen Wirkstoffe zur Behandlung der Hepatitis C bleibt die Inzidenz der Hepatitis-C-Virus-(HCV-)Infektion ungebrochen hoch. In manchen Ländern stecken sich mehr Menschen neu mit dem Virus an, als Patienten durch eine erfolgreiche Therapie geheilt werden. Die Entwicklung eines prophylaktischen Impfstoffes könnte die Transmission des Virus unterbinden und dadurch einen wesentlichen Beitrag zur Kontrolle dieser weltweit verbreiteten Infektion leisten. In diesem Artikel werden die besonderen Herausforderungen und die aktuellen Ansätze der HCV-Impfstoffentwicklung dargestellt. HCV ist ein hochgradig diverses und wandlungsfähiges Virus, das zumeist dem Immunsystem entkommt und chronische Infektionen etabliert. Andererseits heilt die HCV-Infektion bei bis zu einem Drittel der exponierten Individuen aus, sodass eine schützende Immunität erreichbar ist. Zahlreiche Untersuchungen zu den Determinanten einer schützenden Immunität gegen HCV zeichnen ein immer kompletteres Bild davon, welche Ziele ein Impfstoff erreichen muss. Sehr wahrscheinlich werden sowohl starke neutralisierende Antikörper als auch wirkungsvolle zytotoxische T‑Zellen gebraucht, um sicher vor einer chronischen Infektion zu schützen. Die Schlüsselfrage ist, welche Ansätze besonders breit wirksame Antikörper und T‑Zellen heranreifen lassen. Dies wird erforderlich sein, um vor der großen Fülle unterschiedlicher HCV-Varianten zu schützen. Die jüngsten Erfolge von mRNA-Impfstoffen öffnen neue Türen auch für die HCV-Impfstoffforschung. Kombiniert mit einem tieferen Verständnis der Struktur und Funktion der viralen Hüllproteine, der Identifizierung kreuzprotektiver Antikörper- und T‑Zellepitope sowie der Nutzung standardisierter Verfahren zur Quantifizierung der Wirksamkeit von Impfkandidaten ergeben sich neue Perspektiven für die Entwicklung eines Impfstoffes.
Collapse
Affiliation(s)
- Dorothea Bankwitz
- Twincore Zentrum für Experimentelle und Klinische Infektionsforschung, Institut für Experimentelle Virologie, Feodor-Lynen-Str. 7, 30625, Hannover, Deutschland
| | - Thomas Krey
- Medizinische Hochschule Hannover, RESIST Exzellenzcluster EXC2155, Hannover, Deutschland.,Zentrum für Strukturbiologie und Zellbiologie in der Medizin, Institut für Biochemie, Universität Lübeck, Lübeck, Deutschland.,Deutsches Zentrum für Infektionsforschung (DZIF), Partnerstandort Hamburg-Lübeck-Borstel-Riems, Braunschweig, Deutschland.,Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Deutschland
| | - Thomas Pietschmann
- Twincore Zentrum für Experimentelle und Klinische Infektionsforschung, Institut für Experimentelle Virologie, Feodor-Lynen-Str. 7, 30625, Hannover, Deutschland. .,Medizinische Hochschule Hannover, RESIST Exzellenzcluster EXC2155, Hannover, Deutschland. .,Deutsches Zentrum für Infektionsforschung (DZIF), Partnerstandort Hannover-Braunschweig, Braunschweig, Deutschland.
| |
Collapse
|
14
|
RASSF1A and p16 promoter methylation and treatment response in chronic hepatitis C genotype 1b patients treated with pegylated interferon/ribavirin. ARCH BIOL SCI 2022. [DOI: 10.2298/abs211208004k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Prevention of chronic hepatitis C (CHC) and its complications is based on
antiviral therapy and early detection of reliable molecular markers in
persons under risk. We investigated whether the methylation status of
RASSF1A and p16 genes, alone or in combination with host and viral factors,
affects the response to therapy with pegylated interferon/ribavirin (PEGIFN/
RBV). Methylation-specific polymerase chain reaction (MSP) was used to
determine the methylation status of the target promoter sequences of RASSF1A
and p16 in circulating-free DNA from the peripheral blood of 49 patients
with CHC genotype 1b. The methylation status of the examined genes did not
affect the response to therapy. However, the simultaneous presence of either
RASSF1A or p16 methylation and the CC genotype of IL28B was significantly
related to a sustained virologic response (P=0.009 and P=0.032,
respectively). After Bonferroni correction, only the result concerning the
RASSF1A gene remained significant (P<0.0125). Methylation of RASSF1A was
associated with the CC genotype of the IL28B gene (P=0.024) and a higher
viral load (?400 000 IU/mL, P=0.009). Our results suggest that combined
analysis of RASSF1A gene methylation and IL28B rs12979860 polymorphism could
potentially help in the prediction of therapy response in CHC genotype 1b
patients.
Collapse
|
15
|
Virus-Induced Risk of Hepatocellular Carcinoma: Recent Progress and Future Challenges. J Clin Med 2021; 11:jcm11010208. [PMID: 35011949 PMCID: PMC8745496 DOI: 10.3390/jcm11010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic viral hepatitis is a key risk factor for liver fibrosis and hepatocellular carcinoma (HCC) [...].
Collapse
|
16
|
Abstract
Chronic hepatitis C virus infection is still one of the major risk factors for the development of hepatocellular carcinoma (HCC), the most frequent type of primary liver cancer. Direct-acting antivirals have substantially improved the cure rate of the virus, but the risk of hepatitis C virus-related HCC remains high, mainly in patients with advanced liver fibrosis and cirrhosis. HCC is often asymptomatic and, therefore, remains undetected until the late tumor stage, which is associated with poor survival rates. Therefore, to improve the surveillance programs following HCV eradication, there is a need to summarize predictive factors or potential biomarkers, to specifically identify patients likely to develop HCC after direct-acting antiviral treatment. This review outlines the most recent data about different predictive factors for HCC development after direct-acting antiviral treatment of hepatitis C virus-infected patients, to improve the clinical management of patients with chronic hepatitis C virus.
Collapse
|
17
|
Epigenetic Changes Affecting the Development of Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13164237. [PMID: 34439391 PMCID: PMC8392268 DOI: 10.3390/cancers13164237] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma is a life-threatening disease. Despite many efforts to understand the exact pathogenesis and the signaling pathways involved in its formation, treatment remains unsatisfactory. Currently, an important function in the development of neoplastic diseases and treatment effects is attributed to changes taking place at the epigenetic level. Epigenetic studies revealed modified methylation patterns in HCC, dysfunction of enzymes engaged in the DNA methylation process, the aberrant function of non-coding RNAs, and a set of histone modifications that influence gene expression. The aim of this review is to summarize the current knowledge on the role of epigenetics in the formation of hepatocellular carcinoma. Abstract Hepatocellular carcinoma (HCC) remains a serious oncologic issue with still a dismal prognosis. So far, no key molecular mechanism that underlies its pathogenesis has been identified. Recently, by specific molecular approaches, many genetic and epigenetic changes arising during HCC pathogenesis were detected. Epigenetic studies revealed modified methylation patterns in HCC tumors, dysfunction of enzymes engaged in the DNA methylation process, and a set of histone modifications that influence gene expression. HCC cells are also influenced by the disrupted function of non-coding RNAs, such as micro RNAs and long non-coding RNAs. Moreover, a role of liver cancer stem cells in HCC development is becoming evident. The reversibility of epigenetic changes offers the possibility of influencing them and regulating their undesirable effects. All these data can be used not only to identify new therapeutic targets but also to predict treatment response. This review focuses on epigenetic changes in hepatocellular carcinoma and their possible implications in HCC therapy.
Collapse
|
18
|
Viral Manipulation of the Host Epigenome as a Driver of Virus-Induced Oncogenesis. Microorganisms 2021; 9:microorganisms9061179. [PMID: 34070716 PMCID: PMC8227491 DOI: 10.3390/microorganisms9061179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Tumorigenesis due to viral infection accounts for a high fraction of the total global cancer burden (15–20%) of all human cancers. A comprehensive understanding of the mechanisms by which viral infection leads to tumor development is extremely important. One of the main mechanisms by which viruses induce host cell proliferation programs is through controlling the host’s epigenetic machinery. In this review, we dissect the epigenetic pathways through which oncogenic viruses can integrate their genome into host cell chromosomes and lead to tumor progression. In addition, we highlight the potential use of drugs based on histone modifiers in reducing the global impact of cancer development due to viral infection.
Collapse
|
19
|
Dzobo K. Coronavirus Disease 19 and Future Ecological Crises: Hopes from Epigenomics and Unraveling Genome Regulation in Humans and Infectious Agents. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:269-278. [PMID: 33904782 DOI: 10.1089/omi.2021.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
With coronavirus disease 19 (COVID-19), we have witnessed a shift from public health to planetary health and a growing recognition of the importance of systems science in developing effective solutions against pandemics in the 21st century. COVID-19 and the history of frequent infectious outbreaks in the last two decades suggest that COVID-19 is likely a dry run for future ecological crises. Now is the right time to plan ahead and deploy the armamentarium of systems science scholarship for planetary health. The science of epigenomics, which investigates both genetic and nongenetic traits regarding heritable phenotypic alterations, and new approaches to understanding genome regulation in humans and pathogens offer veritable prospects to boost the global scientific capacities to innovate therapeutics and diagnostics against novel and existing infectious agents. Several reversible epigenetic alterations, such as chromatin remodeling and histone methylation, control and influence gene expression. COVID-19 lethality is linked, in part, to the cytokine storm, age, and status of the immune system in a given person. Additionally, due to reduced human mobility and daily activities, effects of the pandemic on the environment have been both positive and negative. For example, reduction in environmental pollution and lesser extraction from nature have potential positive corollaries on water and air quality. Negative effects include pollution as plastics and other materials were disposed in unconventional places and spaces in the course of the pandemic. I discuss the opportunities and challenges associated with the science of epigenomics, specifically with an eye to inform and prevent future ecological crises and pandemics that are looming on the horizon in the 21st century. In particular, this article underscores that epigenetics of both viruses and the host may influence virus infectivity and severity of attendant disease.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|