1
|
Snowball JM, Jarrold BB, DeAngelis Y, Li C, Rovito HA, Hare MC, Laughlin T, Evdokiou AL, Oblong JE. Integration of transcriptomics and spatial biology analyses reveals Galactomyces ferment filtrate promotes epidermal interconnectivity via induction of keratinocyte differentiation, proliferation and cellular bioenergetics. Int J Cosmet Sci 2024; 46:927-940. [PMID: 38924095 DOI: 10.1111/ics.12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Human skin is the first line of defence from environmental factors such as solar radiation and is susceptible to premature ageing, including a disruption in epidermal differentiation and homeostasis. We evaluated the impact of a Galactomyces Ferment Filtrate (GFF) on epidermal differentiation and response to oxidative stress. METHODS We used transcriptomics, both spatial and traditional, to assess the impact of GFF on epidermal biology and homeostasis in keratinocytes (primary or immortalized) and in ex vivo skin explant tissue. The effect of GFF on cell adhesion rates, cellular ATP levels and proliferation rates were quantitated. Oxidative phosphorylation and glycolytic rates were measured under normal and stress-induced conditions. RESULTS Transcriptomics from keratinocytes and ex vivo skin explants from multiple donors show GFF induces keratinocyte differentiation, skin barrier development and cell adhesion while simultaneously repressing cellular stress and inflammatory related processes. Spatial transcriptomics profiling of ex vivo skin indicated basal keratinocytes at the epidermal-dermal junction and cornifying keratinocytes in the top layer of the epidermis as the primary cell types influenced by GFF treatment. Additionally, GFF significantly increases crosstalk between suprabasal and basal keratinocytes. To support these findings, we show that GFF can significantly increase cell adhesion and proliferation in keratinocytes. GFF also protected overall cellular bioenergetics under metabolic or oxidative stress conditions. CONCLUSION Our findings provide novel insights into cellular differences and epidermal spatial localization in response to GFF, supporting previous findings that this filtrate has a significant impact on epidermal biology and homeostasis, particularly on spatially defined crosstalk. We propose that GFF can help maintain epidermal health by enhancing keratinocyte crosstalk and differentiation/proliferation balance as well as promoting an enhanced response to stress.
Collapse
Affiliation(s)
| | | | | | - Chuiying Li
- The Procter & Gamble Company, Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|
2
|
Rusiñol L, Puig L. A Narrative Review of the IL-18 and IL-37 Implications in the Pathogenesis of Atopic Dermatitis and Psoriasis: Prospective Treatment Targets. Int J Mol Sci 2024; 25:8437. [PMID: 39126010 PMCID: PMC11312859 DOI: 10.3390/ijms25158437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Atopic dermatitis and psoriasis are prevalent inflammatory skin conditions that significantly impact the quality of life of patients, with diverse treatment options available. Despite advances in understanding their underlying mechanisms, recent research highlights the significance of interleukins IL-18 and IL-37, in Th1, Th2, and Th17 inflammatory responses, closely associated with the pathogenesis of psoriasis and atopic dermatitis. Hence, IL-18 and IL-37 could potentially become therapeutic targets. This narrative review synthesizes knowledge on these interleukins, their roles in atopic dermatitis and psoriasis, and emerging treatment strategies. Findings of a literature search up to 30 May 2024, underscore a research gap in IL-37-targeted therapies. Conversely, IL-18-focused treatments have demonstrated promise in adult-onset Still's Disease, warranting further exploration for their potential efficacy in psoriasis and atopic dermatitis.
Collapse
Affiliation(s)
- Lluís Rusiñol
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR Sant Pau), Sant Quintí 77-79, 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lluís Puig
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR Sant Pau), Sant Quintí 77-79, 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
3
|
Nakamizo S, Yan X, Kabashima K. Enhancement of skin barrier function and augmentation of epidermal cell-cell interactions by galactomyces ferment filtrate. J Dermatol Sci 2024; 115:94-97. [PMID: 39013659 DOI: 10.1016/j.jdermsci.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/06/2024] [Accepted: 03/27/2024] [Indexed: 07/18/2024]
Affiliation(s)
- Satoshi Nakamizo
- Department of Dermatology Kyoto University Graduate School of Medicine, Kyoto, Japan; Alliance Laboratory for Advanced Medical Research, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Xianghong Yan
- Science Communications, Procter & Gamble (P&G) Innovation Godo Kaisha, Kobe, Japan
| | - Kenji Kabashima
- Department of Dermatology Kyoto University Graduate School of Medicine, Kyoto, Japan; A*STAR Skin Research Labs (A*SRL) and Skin Research Institute of Singapore (SRIS), Agency for Science, Technology, and Research (A*STAR), Singapore.
| |
Collapse
|
4
|
Mesjasz A, Trzeciak M, Gleń J, Jaskulak M. Potential Role of IL-37 in Atopic Dermatitis. Cells 2023; 12:2766. [PMID: 38067193 PMCID: PMC10706414 DOI: 10.3390/cells12232766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Interleukin 37 (IL-37) is a recently discovered member of the IL-1 cytokine family that appears to have anti-inflammatory and immunosuppressive effects in various diseases. IL-37 acts as a dual-function cytokine, exerting its effect extracellularly by forming a complex with the receptors IL-18 α (IL-18Rα) and IL-1R8 and transmitting anti-inflammatory signals, as well as intracellularly by interacting with Smad3, entering the nucleus, and inhibiting the transcription of pro-inflammatory genes. Consequently, IL-37 is linked to IL-18, which plays a role in the pathogenesis of atopic dermatitis (AD), consistent with our studies. Some isoforms of IL-37 are expressed by keratinocytes, monocytes, and other skin immune cells. IL-37 has been found to modulate the skewed T helper 2 (Th2) inflammation that is fundamental to the pathogenesis of AD. This review provides an up-to-date summary of the function of IL-37 in modulating the immune system and analyses its potential role in the pathogenesis of AD. Moreover, it speculates on IL-37's hypothetical value as a therapeutic target in the treatment of AD.
Collapse
Affiliation(s)
- Alicja Mesjasz
- Dermatological Students Scientific Association, Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Magdalena Trzeciak
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Jolanta Gleń
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Marta Jaskulak
- Department of Immunobiology and Environmental Microbiology, Faculty of Health Sciences, Medical University of Gdansk, 80-214 Gdansk, Poland;
| |
Collapse
|
5
|
Fusco A, Perfetto B, Savio V, Chiaromonte A, Torelli G, Donnarumma G, Baroni A. Regulatory Ability of Lactiplantibacillus plantarum on Human Skin Health by Counteracting In Vitro Malassezia furfur Effects. J Fungi (Basel) 2023; 9:1153. [PMID: 38132754 PMCID: PMC10744525 DOI: 10.3390/jof9121153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
The skin serves as the first barrier against pathogen attacks, thanks to its multifunctional microbial community. Malassezia furfur is a commensal organism of normal cutaneous microflora but is also a cause of skin diseases. It acts on different cell pattern recognition receptors (TLRs, AhR, NLRP3 inflammasome) leading to cellular damage, barrier impairment, and inflammatory cytokines production. Lactobacillus spp. Is an endogenous inhabitant of healthy skin, and studies have proven its beneficial role in wound healing, skin inflammation, and protection against pathogen infections. The aim of our study is to demonstrate the ability of live Lactiplantibacillus plantarum to interfere with the harmful effects of the yeast on human keratinocytes (HaCat) in vitro. To enable this, the cells were treated with M. furfur, either alone or in the presence of L. plantarum. To study the inflammasome activation, cells require a stimulus triggering inflammation (LPS) before M. furfur infection, with or without L. plantarum. L. plantarum effectively counteracts all the harmful strategies of yeast, reducing the phospholipase activity, accelerating wound repair, restoring barrier integrity, reducing AhR and NLRP3 inflammasome activation, and, consequently, releasing inflammatory cytokines. Although lactobacilli have a long history of use in fermented foods, it can be speculated that they can also have health-promoting activities when topically applied.
Collapse
Affiliation(s)
- Alessandra Fusco
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (B.P.); (V.S.); (A.C.); (G.T.)
| | - Brunella Perfetto
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (B.P.); (V.S.); (A.C.); (G.T.)
| | - Vittoria Savio
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (B.P.); (V.S.); (A.C.); (G.T.)
| | - Adriana Chiaromonte
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (B.P.); (V.S.); (A.C.); (G.T.)
| | - Giovanna Torelli
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (B.P.); (V.S.); (A.C.); (G.T.)
| | - Giovanna Donnarumma
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (B.P.); (V.S.); (A.C.); (G.T.)
| | - Adone Baroni
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
6
|
Ki H, Baek JS, Hawkes HJK, Kim YS, Hwang KY. Fermented Kamut Sprout Extract Decreases Cell Cytotoxicity and Increases the Anti-Oxidant and Anti-Inflammation Effect. Foods 2023; 12:foods12112107. [PMID: 37297352 DOI: 10.3390/foods12112107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Kamut sprouts (KaS) contain several biologically active compounds. In this study, solid-state fermentation using Saccharomyces cerevisiae and Latilactobacillus sakei was used to ferment KaS (fKaS-ex) for 6 days. The fKaS-ex showed a 26.3 mg/g dried weight (dw) and 46.88 mg/g dw of polyphenol and the β-glucan contents, respectively. In the Raw264.7 and HaCaT cell lines, the non-fermented KaS (nfKaS-ex) decreased cell viability from 85.3% to 62.1% at concentrations of 0.63 and 2.5 mg/mL, respectively. Similarly, the fKaS-ex decreased cell viability, but showed more than 100% even at 1.25 and 5.0 mg/mL concentrations, respectively. The anti-inflammatory effect of fKaS-ex also increased. At 600 µg/mL, the fKaS-ex exhibited a significantly higher ability to reduce cytotoxicity by suppressing COX-2 and IL-6 mRNA expressions as well as that for IL-1β mRNA. In summary, fKaS-ex exhibited significantly lower cytotoxicity and increased anti-oxidant and anti-inflammatory properties, indicating that fKaS-ex is beneficial for use in food and other industries.
Collapse
Affiliation(s)
- Hosam Ki
- Materials Science Research Institute, LABIO Co., Ltd., Seoul 08501, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jun-Seok Baek
- Materials Science Research Institute, LABIO Co., Ltd., Seoul 08501, Republic of Korea
| | - Hye-Jin Kim Hawkes
- Center for Creative Convergence Education, Hanyang University, Seoul 04763, Republic of Korea
| | - Young Soo Kim
- Materials Science Research Institute, LABIO Co., Ltd., Seoul 08501, Republic of Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Korea BioDefense Research Institute, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
7
|
Significant Reversal of Facial Wrinkle, Pigmented Spot and Roughness by Daily Application of Galactomyces Ferment Filtrate-Containing Skin Products for 12 Months-An 11-Year Longitudinal Skin Aging Rejuvenation Study. J Clin Med 2023; 12:jcm12031168. [PMID: 36769815 PMCID: PMC9917576 DOI: 10.3390/jcm12031168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Facial skin aging is an important psychophysical and social concern, especially in women. We compared facial parameters reflecting aging of the skin in 1999 and 2010 in 86 female volunteers. Then, all subjects applied three Galactomyces ferment filtrate-containing skin care products (G3 products; SK-II Facial Treatment Essence, SK-II Cellumination Essence, and SK-II Skin Signature Cream) twice daily for 12 months (M), with the skin parameters being measured at 2 M, 8 M, and 12 M during this period. Facial skin aging parameters such as wrinkles, hyperpigmented spots, and roughness significantly deteriorated during the 11-year interval. This 11-year aging process was associated with reduced hydration and increased transepidermal water loss (TEWL). Notably, treatment with G3 products significantly and cumulatively increased skin hydration with a correlated reduction of TEWL during the 12 M treatment period. Such treatment also significantly and cumulatively reversed the 11-year facial skin aging in the three parameters of wrinkles, spots, and roughness. These results suggest that facial skin retains the potential to recover from the aging process when it is applied with appropriate cosmetic agents.
Collapse
|