1
|
Floyd JL, Prasad R, Dupont MD, Adu-Rutledge Y, Anshumali S, Paul S, Li Calzi S, Qi X, Malepati A, Johnson E, Jumbo-Lucioni P, Crosson JN, Mason JO, Boulton ME, Welner RS, Grant MB. Intestinal neutrophil extracellular traps promote gut barrier damage exacerbating endotoxaemia, systemic inflammation and progression of diabetic retinopathy in type 2 diabetes. Diabetologia 2025; 68:866-889. [PMID: 39875729 PMCID: PMC11950064 DOI: 10.1007/s00125-024-06349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/01/2024] [Indexed: 01/30/2025]
Abstract
AIMS/HYPOTHESIS Within the small intestine, neutrophils play an integral role in preventing bacterial infection. Upon interaction with bacteria or bacteria-derived antigens, neutrophils initiate a multi-staged response of which the terminal stage is NETosis, formation of protease-decorated nuclear DNA into extracellular traps. NETosis has a great propensity to elicit ocular damage and has been associated with diabetic retinopathy and diabetic macular oedema (DME) progression. Here, we interrogate the relationship between gut barrier dysfunction, endotoxaemia and systemic and intestinal neutrophilia in diabetic retinopathy. METHODS In a cohort of individuals with type 2 diabetes (n=58) with varying severity of diabetic retinopathy and DME, we characterised the abundance of circulating neutrophils by flow cytometry and markers of gut permeability and endotoxaemia by plasma ELISA. In a mouse model of type 2 diabetes, we examined the effects of diabetes on abundance and function of intestinal, blood and bone marrow neutrophils, gut barrier integrity, endotoxaemia and diabetic retinopathy severity. Pharmacological inhibition of NETosis was achieved by i.p. injection of the peptidyl arginine deiminase 4 inhibitor (PAD4i) GSK484 daily for 4 weeks between 6 and 7 months of type 2 diabetes. RESULTS In human participants, neutrophilia was unique to individuals with type 2 diabetes with diabetic retinopathy and DME and was accompanied by heightened circulating markers of gut permeability. At late-stage diabetes, neutrophilia and gut barrier dysfunction were seen in db/db mice. The db/db mice exhibited an increase in stem-like pre-neutrophils in the intestine and bone marrow and a decrease in haematopoietic vascular reparative cells. In the db/db mouse intestine, enhanced loss of gut barrier integrity was associated with elevated intestinal NETosis. Inhibition of NETosis by the PAD4i GSK484 resulted in decreased abundance of premature neutrophils in the intestine and blood and resulted in neutrophil retention in the bone marrow compared with vehicle-treated db/db mice. Additionally, the PAD4i decreased senescence within the gut epithelium and yielded a slowing of diabetic retinopathy progression. CONCLUSIONS/INTERPRETATION Severity of diabetic retinopathy and DME were associated with peripheral neutrophilia, gut barrier dysfunction and endotoxaemia in the human participants. db/db mice exhibited intestinal neutrophilia, specifically stem-like pre-neutrophils, which was associated with elevated NETosis and decreased levels of vascular reparative cells. Chronic inhibition of NETosis in db/db mice reduced intestinal senescence and NETs in the retina. These changes were associated with reduced endotoxaemia and an anti-inflammatory bone marrow milieu with retention of pre-neutrophils in the bone marrow and increased gut infiltration of myeloid angiogenic cells. Collectively, PAD-4i treatment decreased gut barrier dysfunction, restoring physiological haematopoiesis and levels of haematopoietic vascular reparative cells.
Collapse
Affiliation(s)
- Jason L Floyd
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ram Prasad
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mariana D Dupont
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yvonne Adu-Rutledge
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shambhavi Anshumali
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarbodeep Paul
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiaoping Qi
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Akanksha Malepati
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emory Johnson
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patricia Jumbo-Lucioni
- Pharmaceutical, Social and Administrative Sciences, Samford University, Birmingham, AL, USA
| | - Jason N Crosson
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Retina Consultants of Alabama, Birmingham, AL, USA
| | - John O Mason
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Retina Consultants of Alabama, Birmingham, AL, USA
| | - Michael E Boulton
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert S Welner
- Department of Medicine, Division Hematology/Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Maria B Grant
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Nguyen Y, Rudd Zhong Manis J, Ronczkowski NM, Bui T, Oxenrider A, Jadeja RN, Thounaojam MC. Unveiling the gut-eye axis: how microbial metabolites influence ocular health and disease. Front Med (Lausanne) 2024; 11:1377186. [PMID: 38799150 PMCID: PMC11122920 DOI: 10.3389/fmed.2024.1377186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
The intricate interplay between the gut microbiota and ocular health has surpassed conventional medical beliefs, fundamentally reshaping our understanding of organ interconnectivity. This review investigates into the intricate relationship between gut microbiota-derived metabolites and their consequential impact on ocular health and disease pathogenesis. By examining the role of specific metabolites, such as short-chain fatty acids (SCFAs) like butyrate and bile acids (BAs), herein we elucidate their significant contributions to ocular pathologies, thought-provoking the traditional belief of organ sterility, particularly in the field of ophthalmology. Highlighting the dynamic nature of the gut microbiota and its profound influence on ocular health, this review underlines the necessity of comprehending the complex workings of the gut-eye axis, an emerging field of science ready for further exploration and scrutiny. While acknowledging the therapeutic promise in manipulating the gut microbiome and its metabolites, the available literature advocates for a targeted, precise approach. Instead of broad interventions, it emphasizes the potential of exploiting specific microbiome-related metabolites as a focused strategy. This targeted approach compared to a precision tool rather than a broad-spectrum solution, aims to explore the therapeutic applications of microbiome-related metabolites in the context of various retinal diseases. By proposing a nuanced strategy targeted at specific microbial metabolites, this review suggests that addressing specific deficiencies or imbalances through microbiome-related metabolites might yield expedited and pronounced outcomes in systemic health, extending to the eye. This focused strategy holds the potential in bypassing the irregularity associated with manipulating microbes themselves, paving a more efficient pathway toward desired outcomes in optimizing gut health and its implications for retinal diseases.
Collapse
Affiliation(s)
- Yvonne Nguyen
- Mercer University School of Medicine, Macon, GA, United States
| | | | | | - Tommy Bui
- Departments of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Allston Oxenrider
- Departments of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Ravirajsinh N. Jadeja
- Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Menaka C. Thounaojam
- Departments of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| |
Collapse
|
3
|
Murali SK, Mansell TJ. Next generation probiotics: Engineering live biotherapeutics. Biotechnol Adv 2024; 72:108336. [PMID: 38432422 DOI: 10.1016/j.biotechadv.2024.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/10/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The population dynamics of the human microbiome have been associated with inflammatory bowel disease, cancer, obesity, autoimmune diseases, and many other human disease states. An emerging paradigm in treatment is the administration of live engineered organisms, also called next-generation probiotics. However, the efficacy of these microbial therapies can be limited by the organism's overall performance in the harsh and nutrient-limited environment of the gut. In this review, we summarize the current state of the art use of bacterial and yeast strains as probiotics, highlight the recent development of genetic tools for engineering new therapeutic functions in these organisms, and report on the latest therapeutic applications of engineered probiotics, including recent clinical trials. We also discuss the supplementation of prebiotics as a method of manipulating the microbiome and improving the overall performance of engineered live biotherapeutics.
Collapse
Affiliation(s)
- Sanjeeva Kumar Murali
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Thomas J Mansell
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
4
|
Mei X, Mell B, Aryal S, Manandhar I, Tummala R, Zubcevic J, Lai K, Yang T, Li Q, Yeoh BS, Joe B. Genetically engineered Lactobacillus paracasei rescues colonic angiotensin converting enzyme 2 (ACE2) and attenuates hypertension in female Ace2 knock out rats. Pharmacol Res 2023; 196:106920. [PMID: 37716548 DOI: 10.1016/j.phrs.2023.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/24/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Engineered gut microbiota represents a new frontier in medicine, in part serving as a vehicle for the delivery of therapeutic biologics to treat a range of host conditions. The gut microbiota plays a significant role in blood pressure regulation; thus, manipulation of gut microbiota is a promising avenue for hypertension treatment. In this study, we tested the potential of Lactobacillus paracasei, genetically engineered to produce and deliver human angiotensin converting enzyme 2 (Lacto-hACE2), to regulate blood pressure in a rat model of hypertension with genetic ablation of endogenous Ace2 (Ace2-/- and Ace2-/y). Our findings reveal a sex-specific reduction in blood pressure in female (Ace2-/-) but not male (Ace2-/y) rats following colonization with the Lacto-hACE2. This beneficial effect of lowering blood pressure was aligned with a specific reduction in colonic angiotensin II, but not renal angiotensin II, suggesting the importance of colonic Ace2 in the regulation of blood pressure. We conclude that this approach of targeting the colon with engineered bacteria for delivery of ACE2 represents a promising new paradigm in the development of antihypertensive therapeutics.
Collapse
Affiliation(s)
- Xue Mei
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Blair Mell
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Sachin Aryal
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Ishan Manandhar
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Ramakumar Tummala
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Jasenka Zubcevic
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Khanh Lai
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Tao Yang
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qiuhong Li
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Beng San Yeoh
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
5
|
Wang R, Wang QY, Bai Y, Bi YG, Cai SJ. Research progress of diabetic retinopathy and gut microecology. Front Microbiol 2023; 14:1256878. [PMID: 37744925 PMCID: PMC10513461 DOI: 10.3389/fmicb.2023.1256878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
According to the prediction of the International Diabetes Federation, global diabetes mellitus (DM) patients will reach 783.2 million in 2045. The increasing incidence of DM has led to a global epidemic of diabetic retinopathy (DR). DR is a common microvascular complication of DM, which has a significant impact on the vision of working-age people and is one of the main causes of blindness worldwide. Substantial research has highlighted that microangiopathy and chronic low-grade inflammation are widespread in the retina of DR. Meanwhile, with the introduction of the gut-retina axis, it has also been found that DR is associated with gut microecological disorders. The disordered structure of the GM and the destruction of the gut barrier result in the release of abnormal GM flora metabolites into the blood circulation. In addition, this process induced alterations in the expression of various cytokines and proteins, which further modulate the inflammatory microenvironment, vascular damage, oxidative stress, and immune levels within the retina. Such alterations led to the development of DR. In this review, we discuss the corresponding alterations in the structure of the GM flora and its metabolites in DR, with a more detailed focus on the mechanism of gut microecology in DR. Finally, we summarize the potential therapeutic approaches of DM/DR, mainly regulating the disturbed gut microecology to restore the homeostatic level, to provide a new perspective on the prevention, monitoring, and treatment of DR.
Collapse
Affiliation(s)
- Rui Wang
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi, China
| | - Qiu-Yuan Wang
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi, China
| | - Yang Bai
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi, China
| | - Ye-Ge Bi
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi, China
| | - Shan-Jun Cai
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi, China
| |
Collapse
|
6
|
Campagnoli LIM, Varesi A, Barbieri A, Marchesi N, Pascale A. Targeting the Gut-Eye Axis: An Emerging Strategy to Face Ocular Diseases. Int J Mol Sci 2023; 24:13338. [PMID: 37686143 PMCID: PMC10488056 DOI: 10.3390/ijms241713338] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The human microbiota refers to a large variety of microorganisms (bacteria, viruses, and fungi) that live in different human body sites, including the gut, oral cavity, skin, and eyes. In particular, the presence of an ocular surface microbiota with a crucial role in maintaining ocular surface homeostasis by preventing colonization from pathogen species has been recently demonstrated. Moreover, recent studies underline a potential association between gut microbiota (GM) and ocular health. In this respect, some evidence supports the existence of a gut-eye axis involved in the pathogenesis of several ocular diseases, including age-related macular degeneration, uveitis, diabetic retinopathy, dry eye, and glaucoma. Therefore, understanding the link between the GM and these ocular disorders might be useful for the development of new therapeutic approaches, such as probiotics, prebiotics, symbiotics, or faecal microbiota transplantation through which the GM could be modulated, thus allowing better management of these diseases.
Collapse
Affiliation(s)
| | - Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | - Annalisa Barbieri
- Department of Drug Sciences, Unit of Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.B.); (N.M.)
| | - Nicoletta Marchesi
- Department of Drug Sciences, Unit of Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.B.); (N.M.)
| | - Alessia Pascale
- Department of Drug Sciences, Unit of Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.B.); (N.M.)
| |
Collapse
|