1
|
Kundu D, Kennedy L, Zhou T, Ekser B, Meadows V, Sybenga A, Kyritsi K, Chen L, Ceci L, Wu N, Wu C, Glaser S, Carpino G, Onori P, Gaudio E, Alpini G, Francis H. p16 INK4A drives nonalcoholic fatty liver disease phenotypes in high fat diet fed mice through biliary E2F1/FOXO1/IGF-1 signaling. Hepatology 2023; 78:243-257. [PMID: 36799449 PMCID: PMC10410572 DOI: 10.1097/hep.0000000000000307] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 01/03/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND AND AIMS NAFLD is characterized by steatosis, hepatic inflammation, and fibrosis, which can develop into NASH. Patients with NAFLD/NASH have increased ductular reaction (DR) and biliary senescence. High fat/high cholesterol diet feeding increases biliary senescence, DR, and biliary insulin-like growth factor-1 (IGF-1) expression in mice. p16/IGF-1 converges with fork-head box transcription factor O1 (FOXO1) through E2F1. We evaluated p16 inhibition on NAFLD phenotypes and biliary E2F1/FOXO1/IGF-1 signaling. APPROACH AND RESULTS 4-week wild-type (C57BL/6J) male mice were fed a control diet (CD) or high fat/high cholesterol diet and received either p16 or control Vivo Morpholino (VM) by tail vein injection 2× during the 16th week of feeding. We confirmed p16 knockdown and examined: (i) NAFLD phenotypes; (ii) DR and biliary senescence; (iii) serum metabolites; and (iv) biliary E2F1/FOXO1/IGF-1 signaling. Human normal, NAFLD, and NASH liver samples and isolated cholangiocytes treated with control or p16 VM were evaluated for p16/E2F1/FOXO1/IGF-1 signaling. p16 VM treatment reduced cholangiocyte and hepatocyte p16. In wild-type high fat/high cholesterol diet mice with control VM, there were increased (i) NAFLD phenotypes; (ii) DR and biliary senescence; (iii) serum metabolites; and (iv) biliary E2F1/FOXO1/IGF-1 signaling; however, p16 VM treatment reduced these parameters. Biliary E2F1/FOX-O1/IGF-1 signaling increased in human NAFLD/NASH but was blocked by p16 VM. In vitro , p16 VM reduced biliary E2f1 and Foxo1 transcription by inhibiting RNA pol II binding and E2F1 binding at the Foxo1 locus, respectively. Inhibition of E2F1 reduced biliary FOXO1 in vitro. CONCLUSION Attenuating hepatic p16 expression may be a therapeutic approach for improving NAFLD/NASH phenotypes.
Collapse
Affiliation(s)
- Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Lindsey Kennedy
- Department of Research, Richard L. Roudebush VA Medical Center
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Burcin Ekser
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | | | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, Texas
| | | | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Gianfranco Alpini
- Department of Research, Richard L. Roudebush VA Medical Center
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Heather Francis
- Department of Research, Richard L. Roudebush VA Medical Center
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| |
Collapse
|
2
|
Gao J, Cui Y, Bao W, Hao Y, Piao X, Gu X. Ubiquitylome study reveals the regulatory effect of α-lipoic acid on ubiquitination of key proteins in tryptophan metabolism pathway of pig liver. Int J Biol Macromol 2023; 236:123795. [PMID: 36828089 DOI: 10.1016/j.ijbiomac.2023.123795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
The decline in antioxidant defenses make it easily for human and animals to suffer from liver damage and diseases induced by oxidative stress, causing enormous losses to human health and livestock production. As one of the canonical protein post-translational modifications (PTMs), ubiquitination is widely involved in cell proliferation, apoptosis and damage/repair response, and is proven to be involved in the ability of mammals to resist oxidative stress. To explore whether α-lipoic acid (LA), a safe and efficient antioxidant, plays a role in regulating liver antioxidant status by PTMs, proteins in livers of pigs fed with LA were analyzed at the level of proteome and ubiquitylome. Based on proteome-wide enrichment of ubiquitination, a total of 7274 proteins were identified and 5326 were quantified, we also identified 1564 ubiquitination sites in 580 ubiquitinated proteins, among which there were 136 differentially ubiquitinated sites in 103 differentially ubiquitinated proteins upon LA. Further bioinformatics analysis showed that these differential proteins were mainly enriched in tryptophan metabolic pathway, and accompanied by significantly improvement of liver antioxidant capacity. We revealed the regulatory effect of LA on ubiquitination of kynurenine 3-monooxygenase (KMO) and other key proteins in tryptophan metabolism pathway of pig liver for the first time.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanjun Cui
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weiguang Bao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yue Hao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangshu Piao
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Lembach Jahnsen H, Mergental H, Perera MTPR, Mirza DF. Ex-situ liver preservation with machine preservation. Curr Opin Organ Transplant 2021; 26:121-132. [PMID: 33650995 DOI: 10.1097/mot.0000000000000864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW To summarize key studies in liver preservation published over the last 3 years and evaluate benefits and limitations of the different perfusion techniques. Selected experimental applications that may be translated to the clinical use will be also discussed. RECENT FINDINGS Normothermic machine perfusion (NMP) has transitioned into clinical practice. Viability assessment is a reliable tool for clinical decision-making, and safety of the back-to-base approach has facilitated adoption of the technology. Data supporting well tolerated use of declined livers after NMP and new protocols selecting complex recipients aim to improve access to suitable organs. Hypothermic machine perfusion (HMP) is showing promising clinical results by decreasing biliary complications in recipients' receiving organs donated after circulatory death (DCD) and improving early graft function in extended criteria organs. Long-term data of HMP on DCD livers shows improved graft survival over standard SCS. Novel approaches utilizing sequential HMP--NMP or ischaemia-free preservation aim to improve outcomes of extended criteria organs. SUMMARY Machine perfusion for organ transplantation has become an established technique but the field is rapidly evolving. Ongoing research focuses on evaluation of the intervention efficacy and finding optimal indications to use each perfusion strategy according to graft type and clinical scenario.
Collapse
Affiliation(s)
- Hanns Lembach Jahnsen
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham
| | - Hynek Mergental
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom
| | - M Thamara P R Perera
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham
| | - Darius F Mirza
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom
| |
Collapse
|
4
|
Tryptophan Metabolism via Kynurenine Pathway: Role in Solid Organ Transplantation. Int J Mol Sci 2021; 22:ijms22041921. [PMID: 33671985 PMCID: PMC7919278 DOI: 10.3390/ijms22041921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/01/2023] Open
Abstract
Solid organ transplantation is a gold standard treatment for patients suffering from an end-stage organ disease. Patient and graft survival have vastly improved during the last couple of decades; however, the field of transplantation still encounters several unique challenges, such as a shortage of transplantable organs and increasing pool of extended criteria donor (ECD) organs, which are extremely prone to ischemia-reperfusion injury (IRI), risk of graft rejection and challenges in immune regulation. Moreover, accurate and specific biomarkers, which can timely predict allograft dysfunction and/or rejection, are lacking. The essential amino acid tryptophan and, especially, its metabolites via the kynurenine pathway has been widely studied as a contributor and a therapeutic target in various diseases, such as neuropsychiatric, autoimmune disorders, allergies, infections and malignancies. The tryptophan-kynurenine pathway has also gained interest in solid organ transplantation and a variety of experimental studies investigating its role both in IRI and immune regulation after allograft implantation was first published. In this review, the current evidence regarding the role of tryptophan and its metabolites in solid organ transplantation is presented, giving insights into molecular mechanisms and into therapeutic and diagnostic/prognostic possibilities.
Collapse
|
5
|
Raigani S, De Vries RJ, Carroll C, Chen YW, Chang DC, Shroff SG, Uygun K, Yeh H. Viability testing of discarded livers with normothermic machine perfusion: Alleviating the organ shortage outweighs the cost. Clin Transplant 2020; 34:e14069. [PMID: 32860634 DOI: 10.1111/ctr.14069] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/01/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Over 700 donor livers are discarded annually in the United States due to high risk of poor graft function. The objective of this study was to determine the impact of using normothermic machine perfusion to identify transplantable livers among those currently discarded. STUDY DESIGN A series of 21 discarded human livers underwent viability assessment during normothermic machine perfusion. Cross-sectional analysis of the Scientific Registry of Transplant Recipients database and cost analysis was performed to extrapolate the case series to national experience. RESULTS 21 discarded human livers were included in the perfusion cohort. 11 of 20 (55%) eligible grafts met viability criteria for transplantation. Grafts in the perfusion cohort had a similar donor risk index compared with discarded grafts (n = 1402) outside of New England in 2017 and 2018 (median [IQR]: 2.0 [1.5, 2.4] vs. 2.0 [1.7, 2.3], P = .40). 705 (IQR 677-741) livers were discarded annually in the United States since 2005, translating to the potential for 398 additional transplants nationally. The median cost to identify a transplantable graft with machine perfusion was $28,099 USD. CONCLUSIONS Normothermic machine perfusion of discarded livers could identify a significant number of transplantable grafts, significantly improving access to liver transplantation.
Collapse
Affiliation(s)
- Siavash Raigani
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, MA, USA
| | - Reinier J De Vries
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, MA, USA.,Department of Surgery, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Cailah Carroll
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, MA, USA
| | - Ya-Wen Chen
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Codman Center for Clinical Effectiveness in Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - David C Chang
- Codman Center for Clinical Effectiveness in Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Stuti G Shroff
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Korkut Uygun
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, MA, USA
| | - Heidi Yeh
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|