1
|
Newman LA, Useckaite Z, Wu T, Sorich MJ, Rowland A. Establishing the capacity to monitor proteins relevant to the study of drug exposure and response using liver-derived extracellular vesicles. Br J Clin Pharmacol 2024; 90:3146-3159. [PMID: 39078327 PMCID: PMC11602949 DOI: 10.1111/bcp.16187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
AIMS Drug exposure and response is determined by pharmacokinetic (PK) and pharmacodynamic (PD) profiles. Interindividual differences in abundance of drug metabolizing enzymes (DMEs) and drug target proteins underpin PK and PD variability and impact treatment efficacy and tolerability. Extracellular vesicles (EVs) carry protein cargo inherited from originating cells and may be useful for defining differences in key proteins related to hepatic drug metabolism and the treatment of metabolic-associated fatty liver disease (MAFLD). We sought to quantify these proteins in liver-derived EVs and establish the profile relative to paired tissue. METHODS EVs were recovered from human liver tissue samples (LT-EV, n = 11). Targeted liquid chromatography with tandem mass spectrometry (LC-MS/MS) assays were employed for absolute quantification of proteins in EV isolates and matched liver tissue. RESULTS DMEs and MAFLD drug targets were readily detected and quantified in LT-EVs. Twelve of 15 DMEs exhibited moderate to strong correlation (Spearman ⍴ = 0.618-0.973) between tissue and EVs. Correlation in protein abundance was influenced by the extent of extra-hepatic expression of the target. CONCLUSIONS This study provides evidence that key proteins related to PK and PD profiles can be measured in liver-derived EVs and abundance of liver-enriched DMEs are robustly correlated between paired tissue and EVs. The robust detection of protein markers related to drug PD profile in MAFLD opens the possibility to track within-subject changes in MAFLD and lays the foundation for future development of a liver-derived EV liquid biopsy to assess markers of drug exposure and response in vivo.
Collapse
Affiliation(s)
- Lauren A. Newman
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Zivile Useckaite
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Ting Wu
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Michael J. Sorich
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Andrew Rowland
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| |
Collapse
|
2
|
Useckaite Z, Newman LA, Hopkins AM, Klebe S, Colella AD, Chegeni N, Williams R, Sorich MJ, Rodrigues AD, Chataway TK, Rowland A. Proteomic profiling of paired human liver homogenate and tissue derived extracellular vesicles. Proteomics 2024; 24:e2300025. [PMID: 38037300 DOI: 10.1002/pmic.202300025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Advances in technologies to isolate extracellular vesicles (EVs) and detect/quantify their cargo underpin the novel potential of these circulating particles as a liquid biopsy to understand physiology and disease. One organ of particular interest in terms of utilizing EVs as a liquid biopsy is the liver. The extent to which EVs originating from the liver reflect the functional status of this organ remains unknown. This is an important knowledge gap that underpins the utility of circulating liver derived EVs as a liquid biopsy. The primary objective of this study was to characterize the proteomic profile of EVs isolated from the extracellular space of liver tissue (LEV) and compare this profile to that of paired tissue (LH). LCMS analyses detected 2892 proteins in LEV and 2673 in LH. Of the 2673 proteins detected in LH, 1547 (58%) were also detected in LEV. Bioinformatic analyses demonstrated comparable representation of proteins in terms of biological functions and cellular compartments. Although, enriched representation of membrane proteins and associated functions was observed in LEV, while representation of nuclear proteins and associated functions was depleted in LEV. These data support the potential use of circulating liver derived EVs as a liquid biopsy for this organ.
Collapse
Affiliation(s)
- Zivile Useckaite
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lauren A Newman
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Sonja Klebe
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Alex D Colella
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Flinders Proteomics Facility, Flinders University, Adelaide, South Australia, Australia
| | - Nusha Chegeni
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Flinders Proteomics Facility, Flinders University, Adelaide, South Australia, Australia
| | - Ruth Williams
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - A David Rodrigues
- Pharmacokinetics & Drug Metabolism, Medicine Design, Worldwide Research & Development, Pfizer Inc, Groton, Connecticut, USA
| | - Tim K Chataway
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Flinders Proteomics Facility, Flinders University, Adelaide, South Australia, Australia
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Keingeski MB, Longo L, Brum da Silva Nunes V, Figueiró F, Dallemole DR, Pohlmann AR, Vier Schmitz TM, da Costa Lopez PL, Álvares-da-Silva MR, Uribe-Cruz C. Extracellular Vesicles and Their Correlation with Inflammatory Factors in an Experimental Model of Steatotic Liver Disease Associated with Metabolic Dysfunction. Metab Syndr Relat Disord 2024; 22:394-401. [PMID: 38498801 DOI: 10.1089/met.2023.0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Background/Aims: Extracellular vesicles (EVs) are promising as a biomarker of metabolic dysfunction associated steatotic liver disease (MASLD). The objective is to study EVs and their involvement in MASLD concerning the disease's pathogenesis and progression characteristics. Methods: Male adult Sprague Dawley rats were randomly assigned into two experimental models of MASLD: MASLD-16 and MASLD-28, animals received a choline-deficient high-fat diet (CHFD) and Control-16 and Control-28, animals received a standard diet (SD) for 16 and 28 weeks, respectively. Biological samples from these animal models were used, as well as previously registered variables. EVs from hepatic tissue were characterized using confocal microscopy. EVs were isolated through differential ultracentrifugation from serum and characterized using NanoSight. The data from the EVs were correlated with biochemical, molecular, and histopathological parameters. Results: Liver EVs were identified through the flotillin-1 protein. EVs were isolated from the serum of all groups. There was a decrease of EVs concentration in MASLD-28 in comparison with Control-28 (P < 0.001) and a significant increase in EVs concentration in Control-28 compared with Control-16 (P < 0.001). There was a strong correlation between serum EVs concentration with hepatic gene expression of interleukin (Il)6 (r2 = 0.685, P < 0.05), Il1b (r2 = 0.697, P < 0.05) and tumor necrosis factor-alpha (Tnfa; r2 = 0.636, P < 0.05) in MASLD-16. Moreover, there was a strong correlation between serum EVs size and Il10 in MASLD-28 (r2 = 0.762, P < 0.05). Conclusion: The concentration and size of EVs correlated with inflammatory markers, suggesting their involvement in the systemic circulation, cellular communication, and development and progression of MASLD, demonstrating that EVs have the potential to serve as noninvasive biomarkers for MASLD diagnosis and prognosis.
Collapse
Affiliation(s)
- Melina Belén Keingeski
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Larisse Longo
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Vitória Brum da Silva Nunes
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fabrício Figueiró
- Laboratory of Cancer Immunobiochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Danieli Rosane Dallemole
- Graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Adriana Raffin Pohlmann
- Graduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Thalia Michele Vier Schmitz
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Patrícia Luciana da Costa Lopez
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mário Reis Álvares-da-Silva
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil
| | - Carolina Uribe-Cruz
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Laboratory of Hepatology and Gastroenterology, Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Investigación de la Facultad de Ciencias de la Salud, (UCAMI) Universidad Católica de las Misiones, Posadas, Argentina
| |
Collapse
|
4
|
Jiang W, Jin Q, Li C, Xun Y. A Plasma Exosomal Metabolic Profiling of Nonalcoholic Fatty Liver Disease Patients Complicated with Impaired Fasting Glucose. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:125-135. [PMID: 38454244 PMCID: PMC10895878 DOI: 10.5152/tjg.2024.22739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/03/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND/AIMS Nonalcoholic fatty liver disease is considered as the hepatic manifestation of metabolic syndrome. Detection of circulating exosomes together with metabolomic analysis of their cargo would provide early signals for metabolic derangements and complications associated with nonalcoholic fatty liver disease. Therefore, this study profiled exosomal metabolome of patients with nonalcoholic fatty liver disease and impaired fasting glucose. MATERIALS AND METHODS Plasma exosomes were extracted from nonalcoholic fatty liver disease patients with or without impaired fasting glucose through differential ultracentrifugation. Their metabolite profiles were examined by ultrahigh-performance liquid chrom atography-quadrupole time-of-flight mass spectrometry. Pathway analysis was carried out on platform MetaboAnalyst 4.0. RESULTS Thirty-nine patients were enrolled, including nonalcoholic fatty liver disease-alone group (n = 26) and age-and gender-comparable nonalcoholic fatty liver disease plus impaired fasting glucose group (n = 13). Although less than and different from their plasma counterparts, a total of 10 significantly differential exosomal metabolites were identified. Nonalcoholic fatty liver disease plus impaired fasting glucose group had higher concentrations of linoleic acid, palmitamide, stearamide, and oleamide, as well as a lower concentration of phosphatidylethanolamine [20:5(5Z,8Z,11Z,14Z,17Z)/20:5(5Z,8Z,11Z,14Z,17Z)]. Pathway analysis showed an obviously changed metabolism of linoleic acid. CONCLUSION Metabolomic analysis of plasma exosomes revealed a distinct change in fatty acids and related pathways in nonalcoholic fatty liver disease patients with impaired fasting glucose. These preliminary results provide a metabolomic snapshot and basis for further investigation of exosome biology for these patients.
Collapse
Affiliation(s)
- Weiyun Jiang
- Department of Liver Disease, Hangzhou Sixth People’s Hospital/Xixi Hospital of Hangzhou Afflicted to Zhejiang University, Hangzhou, China
| | - Qiaofei Jin
- Department of Liver Disease, Hangzhou Sixth People’s Hospital/Xixi Hospital of Hangzhou Afflicted to Zhejiang University, Hangzhou, China
| | - Chunqing Li
- Department of Liver Disease, Hangzhou Sixth People’s Hospital/Xixi Hospital of Hangzhou Afflicted to Zhejiang University, Hangzhou, China
| | - Yunhao Xun
- Department of Liver Disease, Hangzhou Sixth People’s Hospital/Xixi Hospital of Hangzhou Afflicted to Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Zhang W, Zhang J, Shi H, Liu F, Yu H, Shi H. Exosome GLUT1 derived from hepatocyte identifies the risk of non-alcoholic steatohepatitis and fibrosis. Hepatol Int 2023; 17:1170-1181. [PMID: 37278869 DOI: 10.1007/s12072-023-10520-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/11/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND AIMS It is particularly important to identify the progression of non-alcoholic fatty liver disease (NAFLD) for prognosis evaluation and treatment guidance. The aim of this study was to explore the clinic use of exosomal protein-based detection as a valuable non-invasive diagnostic method for NAFLD. METHODS Exosomes were extracted from plasma of patients with NAFLD using Optima XPN-100 ultrafast centrifuge. The patients were recruited from outpatients and inpatients of Beijing Youan Hospital Affiliated to Capital Medical University. The exosomes were stained with fluorescent-labeled antibody and determined by ImageStream® X MKII imaging flow cytometry. Generalized linear logistic regression model was used to evaluate the diagnostic value of hepatogenic exosomes in NAFLD and liver fibrosis. RESULTS The percentage of hepatogenic exosomes glucose transporter 1 (GLUT1) in patients with non-alcoholic steatohepatitis (NASH) was significantly higher than that in patients with non-alcoholic fatty liver (NAFL). According to liver biopsy, we found that the percentage of hepatogenic exosomes GLUT1 in patients with advanced NASH (F2-4) was significantly higher than that in patients with early NASH (F0-1), and the same trend was observed in exosomes with CD63 and ALB. Compared with other clinical fibrosis scoring criteria (FIB-4, NFS, etc.), the diagnostic performance of hepatogenic exosomes GLUT1 was the highest and the area under the receiver-operating curves (AUROC) was 0.85 (95% CI 0.77-0.93). Furthermore, the AUROC of hepatogenic exosomes GLUT1 combined with fibrosis scoring was as high as 0.86-0.91. CONCLUSION Hepatogenic exosome GLUT1 can be a molecular biomarker for early warning of NAFLD to distinguish the NAFL and NASH, and it also can be used as a novel non-invasive diagnostic biomarker for the staging liver fibrosis in NAFLD.
Collapse
Affiliation(s)
- Wenyan Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- State Clinical Drug Trial Institute, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Department of Infectious Diseases, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, China
| | - Jing Zhang
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Honglin Shi
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, 100069, China
| | - Fang Liu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, 100069, China
| | - Haibin Yu
- State Clinical Drug Trial Institute, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Hongbo Shi
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, 100069, China.
| |
Collapse
|
6
|
Weston WC, Hales KH, Hales DB. Flaxseed Reduces Cancer Risk by Altering Bioenergetic Pathways in Liver: Connecting SAM Biosynthesis to Cellular Energy. Metabolites 2023; 13:945. [PMID: 37623888 PMCID: PMC10456508 DOI: 10.3390/metabo13080945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
This article illustrates how dietary flaxseed can be used to reduce cancer risk, specifically by attenuating obesity, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). We utilize a targeted metabolomics dataset in combination with a reanalysis of past work to investigate the "metabo-bioenergetic" adaptations that occur in White Leghorn laying hens while consuming dietary flaxseed. Recently, we revealed how the anti-vitamin B6 effects of flaxseed augment one-carbon metabolism in a manner that accelerates S-adenosylmethionine (SAM) biosynthesis. Researchers recently showed that accelerated SAM biosynthesis activates the cell's master energy sensor, AMP-activated protein kinase (AMPK). Our paper provides evidence that flaxseed upregulates mitochondrial fatty acid oxidation and glycolysis in liver, concomitant with the attenuation of lipogenesis and polyamine biosynthesis. Defatted flaxseed likely functions as a metformin homologue by upregulating hepatic glucose uptake and pyruvate flux through the pyruvate dehydrogenase complex (PDC) in laying hens. In contrast, whole flaxseed appears to attenuate liver steatosis and body mass by modifying mitochondrial fatty acid oxidation and lipogenesis. Several acylcarnitine moieties indicate Randle cycle adaptations that protect mitochondria from metabolic overload when hens consume flaxseed. We also discuss a paradoxical finding whereby flaxseed induces the highest glycated hemoglobin percentage (HbA1c%) ever recorded in birds, and we suspect that hyperglycemia is not the cause. In conclusion, flaxseed modifies bioenergetic pathways to attenuate the risk of obesity, type 2 diabetes, and NAFLD, possibly downstream of SAM biosynthesis. These findings, if reproducible in humans, can be used to lower cancer risk within the general population.
Collapse
Affiliation(s)
- William C. Weston
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Karen H. Hales
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Dale B. Hales
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| |
Collapse
|
7
|
Jiang W, Xu Y, Chen JC, Lee YH, Hu Y, Liu CH, Chen E, Tang H, Zhang H, Wu D. Role of extracellular vesicles in nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1196831. [PMID: 37534206 PMCID: PMC10392952 DOI: 10.3389/fendo.2023.1196831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that affects approximately one-quarter of the global population and is becoming increasingly prevalent worldwide. The lack of current noninvasive tools and efficient treatment is recognized as a significant barrier to the clinical management of these conditions. Extracellular vesicles (EVs) are nanoscale vesicles released by various cells and deliver bioactive molecules to target cells, thereby mediating various processes, including the development of NAFLD. SCOPE OF REVIEW There is still a long way to actualize the application of EVs in NAFLD diagnosis and treatment. Herein, we summarize the roles of EVs in NAFLD and highlight their prospects for clinical application as a novel noninvasive diagnostic tool as well as a promising therapy for NAFLD, owing to their unique physiochemical characteristics. We summarize the literatures on the mechanisms by which EVs act as mediators of intercellular communication by regulating metabolism, insulin resistance, inflammation, immune response, intestinal microecology, and fibrosis in NAFLD. We also discuss future challenges that must be resolved to improve the therapeutic potential of EVs. MAJOR CONCLUSIONS The levels and contents of EVs change dynamically at different stages of diseases and this phenomenon may be exploited for establishing sensitive stage-specific markers. EVs also have high application potential as drug delivery systems with low immunogenicity and high biocompatibility and can be easily engineered. Research on the mechanisms and clinical applications of EVs in NAFLD is in its initial phase and the applicability of EVs in NAFLD diagnosis and treatment is expected to grow with technological progress.
Collapse
Affiliation(s)
- Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Youhui Xu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jou-Chen Chen
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yi-Hung Lee
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yushin Hu
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Enqiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Qin L, Wu J, Sun X, Huang X, Huang W, Weng C, Cai J. The regulatory role of metabolic organ-secreted factors in the nonalcoholic fatty liver disease and cardiovascular disease. Front Cardiovasc Med 2023; 10:1119005. [PMID: 37180779 PMCID: PMC10169694 DOI: 10.3389/fcvm.2023.1119005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic disease characterized by an excessive accumulation of fat in the liver, which is becoming a major global health problem, affecting about a quarter of the population. In the past decade, mounting studies have found that 25%-40% of NAFLD patients have cardiovascular disease (CVD), and CVD is one of the leading causes of death in these subjects. However, it has not attracted enough awareness and emphasis from clinicians, and the underlying mechanisms of CVD in NAFLD patients remain unclear. Available research reveals that inflammation, insulin resistance, oxidative stress, and glucose and lipid metabolism disorders play indispensable roles in the pathogenesis of CVD in NAFLD. Notably, emerging evidence indicates that metabolic organ-secreted factors, including hepatokines, adipokines, cytokines, extracellular vesicles, and gut-derived factors, are also involved in the occurrence and development of metabolic disease and CVD. Nevertheless, few studies have focused on the role of metabolic organ-secreted factors in NAFLD and CVD. Therefore, in this review, we summarize the relationship between metabolic organ-secreted factors and NAFLD as well as CVD, which is beneficial for clinicians to comprehensive and detailed understanding of the association between both diseases and strengthen management to improve adverse cardiovascular prognosis and survival.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunyan Weng
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
9
|
De Nunzio V, Carrieri L, Scavo MP, Lippolis T, Cofano M, Caponio GR, Tutino V, Rizzi F, Depalo N, Osella AR, Notarnicola M. Plasma-Derived Exosomes from NAFLD Patients Modulate the Cannabinoid Receptors' Expression in Cultured HepaRG Cells. Int J Mol Sci 2023; 24:ijms24021739. [PMID: 36675254 PMCID: PMC9862025 DOI: 10.3390/ijms24021739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Exosomes produced by hepatocytes upon lipotoxic insult play a relevant role in pathogenesis of nonalcoholic fatty liver disease (NAFLD), suggesting an inflammatory response by the activation of monocytes and macrophages and accelerating the disease progression. In the pathogenesis of NAFLD and liver fibrosis, the endogenous cannabinoids and their major receptors CB1 and CB2 appear to be highly involved. This study aimed at evaluating the expression of cannabinoids receptors (CB1R and CB2R) in plasma-derived exosomes extracted from patients with NAFLD, as well as investigating the in vitro effects of the circulating exosomes in cultured human HepaRG cells following their introduction into the culture medium. The results demonstrated that plasma-derived exosomes from NAFLD patients are vehicles for the transport of CB1R and are able to modulate CB receptors' expression in HepaRG cells. In particular, circulating exosomes from NAFLD patients are inflammatory drivers for HepaRG cells, acting through CB1R activation and the downregulation of CB2R. Moreover, CB1R upregulation was associated with increased expression levels of PPAR-γ, a well-known mediator of liver tissue injury. In conclusion, this study provides evidence for CB1R transport by exosomes and suggests that the in vitro effects of circulating exosomes from NAFLD patients are mediated by the expression of cannabinoid receptors.
Collapse
Affiliation(s)
- Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Livianna Carrieri
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Maria Principia Scavo
- Laboratory of Personalized Medicine, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Tamara Lippolis
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Miriam Cofano
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Giusy Rita Caponio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Valeria Tutino
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Federica Rizzi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
- Institute for Chemical-Physical Processes (IPCF), Council National Research (CNR) Bari, Via Orabona 4, 70125 Bari, Italy
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes (IPCF), Council National Research (CNR) Bari, Via Orabona 4, 70125 Bari, Italy
| | - Alberto Ruben Osella
- Laboratory of Epidemiolgy and Biostatistics, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
- Correspondence: ; Tel.: +39-080-4994342
| |
Collapse
|
10
|
A Physiologically Based Pharmacokinetic Model to Predict the Impact of Metabolic Changes Associated with Metabolic Associated Fatty Liver Disease on Drug Exposure. Int J Mol Sci 2022; 23:ijms231911751. [PMID: 36233052 PMCID: PMC9570165 DOI: 10.3390/ijms231911751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) is the most common chronic liver disease, with an estimated prevalence of between 20 and 30% worldwide. Observational data supported by in vitro and pre-clinical animal models of MAFLD suggest meaningful differences in drug disposition in MAFLD patients. This study aimed to build a physiologically based pharmacokinetic (PBPK) model reflecting observed changes in physiological and molecular parameters relevant to drug disposition that are associated with MAFLD. A comprehensive literature review and meta-analysis was conducted to identify all studies describing in vivo physiological changes along with in vitro and pre-clinical model changes in CYP 1A2, 2C9, 2C19, 2D6 and 3A4 protein abundance associated with MAFLD. A MAFLD population profile was constructed in Simcyp (version 19.1) by adapting demographic and physiological covariates from the Sim-Healthy population profile based on a meta-analysis of observed data from the published literature. Simulations demonstrated that single dose and steady state area under the plasma concentration time curve (AUC) for caffeine, clozapine, omeprazole, metoprolol, dextromethorphan and midazolam, but not s-warfarin or rosiglitazone, were increased by >20% in the MAFLD population compared to the healthy control population. These findings indicate that MAFLD patients are likely to be experience meaningfully higher exposure to drugs that are primarily metabolized by CYP 1A2, 2C19, 2D6 and 3A4, but not CYP2C9. Closer monitoring of MAFLD patients using drugs primarily cleared by CYP 1A2, 2C19 and 3A4 is warranted as reduced metabolic activity and increased drug exposure are likely to result in an increased incidence of toxicity in this population.
Collapse
|
11
|
Newman LA, Useckaite Z, Rowland A. Addressing MISEV guidance using targeted LC-MS/MS: A method for the detection and quantification of extracellular vesicle-enriched and contaminant protein markers from blood. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e56. [PMID: 38938773 PMCID: PMC11080780 DOI: 10.1002/jex2.56] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are membrane-bound nanosized particles released by cells into bodily fluids containing an array of molecular cargo. Several characteristics, including stability and accessibility in biofluids such as blood and urine, make EVs and associated cargo attractive biomarkers and therapeutic tools. To promote robust characterisation of EV isolates, the minimal requirements for the study of extracellular vesicles (MISEV) guidelines recommend the analysis of proteins in EV samples, including positive EV-associated markers and negative contaminant markers based on commonly co-isolated components of the starting material. Western blot is conventionally used to address the guidelines; however, this approach is limited in terms of quantitation and throughput and requires larger volumes than typically available for patient samples. The increasing application of EVs as liquid biopsy in clinical contexts requires a high-throughput multiplexed approach for analysis of protein markers from small volumes of starting material. Here, we document the development and validation of a targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for the quantification of markers associated with EVs and non-vesicle contaminants from human blood samples. The assay was highly sensitive, requiring only a fraction of the sample consumed for immunoblots, fully quantitative and high throughput. Application of the assay to EVs isolated by size exclusion chromatography (SEC) and precipitation revealed differences in yield, purity and recovery of subpopulations.
Collapse
Affiliation(s)
- Lauren A. Newman
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth Australia
| | - Zivile Useckaite
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth Australia
| | - Andrew Rowland
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth Australia
| |
Collapse
|
12
|
MicroRNAs in non-alcoholic fatty liver disease: Progress and perspectives. Mol Metab 2022; 65:101581. [PMID: 36028120 PMCID: PMC9464960 DOI: 10.1016/j.molmet.2022.101581] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a spectrum of disease ranging from simple hepatic steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) which may progress to cirrhosis and liver cancer. NAFLD is rapidly becoming a global health challenge, and there is a need for improved diagnostic- and prognostic tools and for effective pharmacotherapies to treat NASH. The molecular mechanisms of NAFLD development and progression remain incompletely understood, though ample evidence supports a role of microRNAs (miRNAs) - small non-coding RNAs regulating gene expression - in the progression of metabolic liver disease. SCOPE OF REVIEW In this review, we summarise the currently available liver miRNA profiling studies in people with various stages of NAFLD. We further describe the mechanistic role of three of the most extensively studied miRNA species, miR-34a, miR-122 and miR-21, and highlight selected findings on novel NAFLD-linked miRNAs. We also examine the literature on exosomal microRNAs (exomiRs) as inter-hepatocellular or -organ messengers in NAFLD. Furthermore, we address the status for utilizing circulating NAFLD-associated miRNAs as minimally invasive tools for disease diagnosis, staging and prognosis as well as their potential use as NASH pharmacotherapeutic targets. Finally, we reflect on future directions for research in the miRNA field. MAJOR CONCLUSIONS NAFLD is associated with changes in hepatic miRNA expression patterns at early, intermediate and late stages, and specific miRNA species appear to be involved in steatosis development and NAFL progression to NASH and cirrhosis. These miRNAs act either within or between hepatocytes and other liver cell types such as hepatic stellate cells and Kupffer cells or as circulating inter-organ messengers carrying signals between the liver and extra-hepatic metabolic tissues, including the adipose tissues and the cardiovascular system. Among circulating miRNAs linked to NAFLD, miR-34a, miR-122 and miR-192 are the best candidates as biomarkers for NAFLD diagnosis and staging. To date, no miRNA-targeting pharmacotherapy has been approved for the treatment of NASH, and no such therapy is currently under clinical development. Further research should be conducted to translate the contribution of miRNAs in NAFLD into innovative therapeutic strategies.
Collapse
|
13
|
Liu H, Niu Q, Wang T, Dong H, Bian C. Lipotoxic hepatocytes promote nonalcoholic fatty liver disease progression by delivering microRNA-9-5p and activating macrophages. Int J Biol Sci 2022; 17:3745-3759. [PMID: 35261562 PMCID: PMC8898344 DOI: 10.7150/ijbs.57610] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/07/2021] [Indexed: 12/26/2022] Open
Abstract
M1-polarized macrophages are involved in chronic inflammatory diseases, including nonalcoholic fatty liver disease (NAFLD). However, the mechanisms responsible for the activation of macrophages in NAFLD have not been fully elucidated. This study aimed at investigating the physiological mechanisms by which extracellular vesicles (EVs)-encapsulated microRNA-9-5p (miR-9-5p) derived from lipotoxic hepatocytes might activate macrophages in NALFD. After blood sample and cell collection, EVs were isolated and identified followed by co-culture with macrophages. Next, the palmitic acid-induced cell and high fat diet-induced mouse NALFD models were established to explore the in vitro and in vivo effects of EVs-loaded miR-9-5p on NAFLD as evidenced by inflammatory cell infiltration and inflammatory reactions in macrophages. Additionally, the targeting relationship between miR-9-5p and transglutaminase 2 (TGM2) was identified using dual-luciferase reporter gene assay. miR-9-5p was upregulated in the NAFLD-EVs, which promoted M1 polarization of THP-1 macrophages. Furthermore, miR-9-5p could target TGM2 to inhibit its expression. Downregulated miR-9-5p in NAFLD-EVs alleviated macrophage inflammation and M1 polarization as evidenced by reduced levels of macrophage inflammatory factors, positive rates of CD86+ CD11b+, and levels of macrophage surface markers in vitro. Moreover, the effect of silencing of miR-9-5p was replicated in vivo, supported by reductions in TG, TC, AST and ALT levels and attenuated pathological changes. Collectively, lipotoxic hepatocytes-derived EVs-loaded miR-9-5p downregulated the expression of TGM2 and facilitated M1 polarization of macrophages, thereby promoting the progression of NAFLD. This highlights a potential therapeutic target for treating NAFLD.
Collapse
Affiliation(s)
- Hanyun Liu
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| | - Qinghui Niu
- Department of Liver Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| | - Ting Wang
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| | - Hongjing Dong
- Department of Liver Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| | - Cheng Bian
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| |
Collapse
|
14
|
Newman LA, Muller K, Rowland A. Circulating cell-specific extracellular vesicles as biomarkers for the diagnosis and monitoring of chronic liver diseases. Cell Mol Life Sci 2022; 79:232. [PMID: 35397694 PMCID: PMC8995281 DOI: 10.1007/s00018-022-04256-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022]
Abstract
AbstractChronic liver diseases represent a burgeoning health problem affecting billions of people worldwide. The insufficient performance of current minimally invasive tools is recognised as a significant barrier to the clinical management of these conditions. Extracellular vesicles (EVs) have emerged as a rich source of circulating biomarkers closely linked to pathological processes in originating tissues. Here, we summarise the contribution of EVs to normal liver function and to chronic liver pathologies; and explore the use of circulating EV biomarkers, with a particular focus on techniques to isolate and analyse cell- or tissue-specific EVs. Such approaches present a novel strategy to inform disease status and monitor changes in response to treatment in a minimally invasive manner. Emerging technologies that support the selective isolation and analysis of circulating EVs derived only from hepatic cells, have driven recent advancements in EV-based biomarker platforms for chronic liver diseases and show promise to bring these techniques to clinical settings.
Collapse
Affiliation(s)
- Lauren A Newman
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Kate Muller
- Department of Gastroenterology and Hepatology, College of Medicine and Public Health, Flinders Medical Centre, Adelaide, SA, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
15
|
Marie S, Tripp DKK, Cherrington NJ. Strategies to Diagnose Nonalcoholic Steatohepatitis: A Novel Approach to Take Advantage of Pharmacokinetic Alterations. Drug Metab Dispos 2022; 50:492-499. [PMID: 34531312 PMCID: PMC9014462 DOI: 10.1124/dmd.121.000413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/13/2021] [Indexed: 11/22/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD) and is diagnosed by a liver biopsy. Because of the invasiveness of a biopsy, the majority of patients with NASH are undiagnosed. Additionally, the prevalence of NAFLD and NASH creates the need for a simple screening method to differentiate patients with NAFLD versus NASH. Noninvasive strategies for diagnosing NAFLD versus NASH have been developed, typically relying on imaging techniques and endogenous biomarker panels. However, each technique has limitations, and none can accurately predict the associated functional impairment of drug metabolism and disposition. The function of several drug-metabolizing enzymes and drug transporters has been described in NASH that impacts drug pharmacokinetics. The aim of this review is to give an overview of the existing noninvasive strategies to diagnose NASH and to propose a novel strategy based on altered pharmacokinetics using an exogenous biomarker whose disposition and elimination pathways are directly impacted by disease progression. Altered disposition of safe and relatively inert exogenous compounds may provide the sensitivity and specificity needed to differentiate patients with NAFLD and NASH to facilitate a direct indication of hepatic impairment on drug metabolism and prevent subsequent adverse drug reactions. SIGNIFICANCE STATEMENT: This review provides an overview of the main noninvasive techniques (imaging and panels of biomarkers) used to diagnose NAFLD and NASH along with a biopsy. Pharmacokinetic changes have been identified in NASH, and this review proposes a new approach to predict NASH and the related risk of adverse drug reactions based on the assessment of drug elimination disruption using exogenous biomarkers.
Collapse
Affiliation(s)
- Solène Marie
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - David K K Tripp
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| |
Collapse
|
16
|
Newman LA, Useckaite Z, Johnson J, Sorich MJ, Hopkins AM, Rowland A. Selective Isolation of Liver-Derived Extracellular Vesicles Redefines Performance of miRNA Biomarkers for Non-Alcoholic Fatty Liver Disease. Biomedicines 2022; 10:biomedicines10010195. [PMID: 35052873 PMCID: PMC8773667 DOI: 10.3390/biomedicines10010195] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Definitive diagnosis of the progressive form, non-alcoholic steatohepatitis (NASH), requires liver biopsy, which is highly invasive and unsuited to early disease or tracking changes. Inadequate performance of current minimally invasive tools is a critical barrier to managing NAFLD burden. Altered circulating miRNA profiles show potential for minimally invasive tracking of NAFLD. The selective isolation of the circulating extracellular vesicle subset that originates from hepatocytes presents an important opportunity for improving the performance of miRNA biomarkers of liver disease. The expressions of miR-122, -192, and -128-3p were quantified in total cell-free RNA, global EVs, and liver-specific EVs from control, NAFL, and NASH subjects. In ASGR1+ EVs, each miR biomarker trended positively with disease severity and expression was significantly higher in NASH subjects compared with controls. The c-statistic defining the performance of ASGR1+ EV derived miRNAs was invariably >0.78. This trend was not observed in the alternative sources. This study demonstrates the capacity for liver-specific isolation to transform the performance of EV-derived miRNA biomarkers for NAFLD, robustly distinguishing patients with NAFL and NASH.
Collapse
Affiliation(s)
- Lauren A. Newman
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.A.N.); (Z.U.); (M.J.S.); (A.M.H.)
| | - Zivile Useckaite
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.A.N.); (Z.U.); (M.J.S.); (A.M.H.)
| | - Jillian Johnson
- Early Clinical Development, Pfizer Global Research and Development, Groton, CT 06340, USA;
| | - Michael J. Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.A.N.); (Z.U.); (M.J.S.); (A.M.H.)
| | - Ashley M. Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.A.N.); (Z.U.); (M.J.S.); (A.M.H.)
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.A.N.); (Z.U.); (M.J.S.); (A.M.H.)
- Correspondence: ; Tel.: +61-882-047-546
| |
Collapse
|
17
|
Torre P, Motta BM, Sciorio R, Masarone M, Persico M. Inflammation and Fibrogenesis in MAFLD: Role of the Hepatic Immune System. Front Med (Lausanne) 2021; 8:781567. [PMID: 34957156 PMCID: PMC8695879 DOI: 10.3389/fmed.2021.781567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) is the definition recently proposed to better circumscribe the spectrum of conditions long known as non-alcoholic fatty liver disease (NAFLD) that range from simple steatosis without inflammation to more advanced liver diseases. The progression of MAFLD, as well as other chronic liver diseases, toward cirrhosis, is driven by hepatic inflammation and fibrogenesis. The latter, result of a "chronic wound healing reaction," is a dynamic process, and the understanding of its underlying pathophysiological events has increased in recent years. Fibrosis progresses in a microenvironment where it takes part an interplay between fibrogenic cells and many other elements, including some cells of the immune system with an underexplored or still unclear role in liver diseases. Some therapeutic approaches, also acting on the immune system, have been probed over time to evaluate their ability to improve inflammation and fibrosis in NAFLD, but to date no drug has been approved to treat this condition. In this review, we will focus on the contribution of the liver immune system in the progression of NAFLD, and on therapies under study that aim to counter the immune substrate of the disease.
Collapse
Affiliation(s)
- Pietro Torre
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| | - Benedetta Maria Motta
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Roberta Sciorio
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| | - Mario Masarone
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| | - Marcello Persico
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| |
Collapse
|
18
|
Abstract
Hepatic fibrosis is a reversible wound healing process following liver injury. Although this process is necessary for maintaining liver integrity, severe excessive extracellular matrix accumulation (ECM) could lead to permanent scar formation and destroy the liver structure. The activation of hepatic stellate cells (HSCs) is a key event in hepatic fibrosis. Previous studies show that most antifibrotic therapies focus on the apoptosis of HSCs and the prevention of HSC activation. Noncoding RNAs (ncRNAs) play a substantial role in HSC activation and are likely to be biomarkers or therapeutic targets for the treatment of hepatic fibrosis. This review summarizes and discusses the previously reported ncRNAs, including the microRNAs, long noncoding RNAs, and circular RNAs, highlighting their regulatory roles and interactions in the signaling pathways that regulate HSC activation in hepatic fibrosis.
Collapse
|
19
|
Useckaite Z, Rodrigues AD, Hopkins AM, Newman LA, Johnson J, Sorich MJ, Rowland A. Role of Extracellular Vesicle-Derived Biomarkers in Drug Metabolism and Disposition. Drug Metab Dispos 2021; 49:961-971. [PMID: 34353847 DOI: 10.1124/dmd.121.000411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022] Open
Abstract
Extracellular vesicles (EVs) are small, nonreplicating, lipid-encapsulated particles that contain a myriad of protein and nucleic acid cargo derived from their tissue of origin. The potential role of EV-derived biomarkers to the study of drug metabolism and disposition (DMD) has gained attention in recent years. The key trait that makes EVs an attractive biomarker source is their capacity to provide comparable insights to solid organ biopsy through an appreciably less invasive collection procedure. Blood-derived EVs exist as a heterogenous milieu of biologically distinct particles originating from different sources through different biogenesis pathways. Furthermore, blood (plasma and serum) contains an array of vesicular and nonvesicular contaminants, such as apoptotic bodies, plasma proteins, and lipoproteins that are routinely coisolated with EVs, albeit to a different extent depending on the isolation technique. The following minireview summarizes current studies reporting DMD biomarkers and addresses elements of EV isolation and quantification relevant to the application of EV-derived DMD biomarkers. Evidence based-best practice guidance aligned to Minimum Information for the Study of Extracellular Vesicles and EV-TRACK reporting standards are summarized in the context of DMD studies. SIGNIFICANCE STATEMENT: Extracellular vesicle (EV)-derived protein and nucleic acid cargo represent a potentially game-changing source of novel DMD biomarkers with the capacity to define within- and between-individual variability in drug exposure irrespective of etiology. However, robust translation of EV-derived biomarkers requires the generation of transparent reproducible evidence. This review outlines the critical elements of data generation and reporting relevant to achieving this evidence in a drug metabolism and disposition context.
Collapse
Affiliation(s)
- Zivile Useckaite
- College of Medicine and Public Health, Flinders University, Adelaide, Australia (Z.U., A.M.H., L.A.N., M.J.S., A.R.); and Pfizer Worldwide Research and Development, Groton, Connecticut (A.D.R., J.J.)
| | - A David Rodrigues
- College of Medicine and Public Health, Flinders University, Adelaide, Australia (Z.U., A.M.H., L.A.N., M.J.S., A.R.); and Pfizer Worldwide Research and Development, Groton, Connecticut (A.D.R., J.J.)
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, Australia (Z.U., A.M.H., L.A.N., M.J.S., A.R.); and Pfizer Worldwide Research and Development, Groton, Connecticut (A.D.R., J.J.)
| | - Lauren A Newman
- College of Medicine and Public Health, Flinders University, Adelaide, Australia (Z.U., A.M.H., L.A.N., M.J.S., A.R.); and Pfizer Worldwide Research and Development, Groton, Connecticut (A.D.R., J.J.)
| | - Jillian Johnson
- College of Medicine and Public Health, Flinders University, Adelaide, Australia (Z.U., A.M.H., L.A.N., M.J.S., A.R.); and Pfizer Worldwide Research and Development, Groton, Connecticut (A.D.R., J.J.)
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, Australia (Z.U., A.M.H., L.A.N., M.J.S., A.R.); and Pfizer Worldwide Research and Development, Groton, Connecticut (A.D.R., J.J.)
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, Australia (Z.U., A.M.H., L.A.N., M.J.S., A.R.); and Pfizer Worldwide Research and Development, Groton, Connecticut (A.D.R., J.J.)
| |
Collapse
|
20
|
Zaiou M, Amrani R, Rihn B, Hajri T. Dietary Patterns Influence Target Gene Expression through Emerging Epigenetic Mechanisms in Nonalcoholic Fatty Liver Disease. Biomedicines 2021; 9:1256. [PMID: 34572442 PMCID: PMC8468830 DOI: 10.3390/biomedicines9091256] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to the pathologic buildup of extra fat in the form of triglycerides in liver cells without excessive alcohol intake. NAFLD became the most common cause of chronic liver disease that is tightly associated with key aspects of metabolic disorders, including insulin resistance, obesity, diabetes, and metabolic syndrome. It is generally accepted that multiple mechanisms and pathways are involved in the pathogenesis of NAFLD. Heredity, sedentary lifestyle, westernized high sugar saturated fat diet, metabolic derangements, and gut microbiota, all may interact on a on genetically susceptible individual to cause the disease initiation and progression. While there is an unquestionable role for gene-diet interaction in the etiopathogenesis of NAFLD, it is increasingly apparent that epigenetic processes can orchestrate many aspects of this interaction and provide additional mechanistic insight. Exciting research demonstrated that epigenetic alterations in chromatin can influence gene expression chiefly at the transcriptional level in response to unbalanced diet, and therefore predispose an individual to NAFLD. Thus, further discoveries into molecular epigenetic mechanisms underlying the link between nutrition and aberrant hepatic gene expression can yield new insights into the pathogenesis of NAFLD, and allow innovative epigenetic-based strategies for its early prevention and targeted therapies. Herein, we outline the current knowledge of the interactive role of a high-fat high-calories diet and gene expression through DNA methylation and histone modifications on the pathogenesis of NAFLD. We also provide perspectives on the advancement of the epigenomics in the field and possible shortcomings and limitations ahead.
Collapse
Affiliation(s)
- Mohamed Zaiou
- The Jean-Lamour Institute, UMR 7198 CNRS, University of Lorraine, F-54000 Nancy, France;
| | - Rim Amrani
- Department of Neonatology, University Mohammed First, Oujda 60000, Morocco;
| | - Bertrand Rihn
- The Jean-Lamour Institute, UMR 7198 CNRS, University of Lorraine, F-54000 Nancy, France;
| | - Tahar Hajri
- Department of Human Ecology, Delaware State University, Dover, DE 1191, USA;
| |
Collapse
|
21
|
Kostallari E, Valainathan S, Biquard L, Shah VH, Rautou PE. Role of extracellular vesicles in liver diseases and their therapeutic potential. Adv Drug Deliv Rev 2021; 175:113816. [PMID: 34087329 PMCID: PMC10798367 DOI: 10.1016/j.addr.2021.05.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023]
Abstract
More than eight hundred million people worldwide have chronic liver disease, with two million deaths per year. Recurring liver injury results in fibrogenesis, progressing towards cirrhosis, for which there doesn't exists any cure except liver transplantation. Better understanding of the mechanisms leading to cirrhosis and its complications is needed to develop effective therapies. Extracellular vesicles (EVs) are released by cells and are important for cell-to-cell communication. EVs have been reported to be involved in homeostasis maintenance, as well as in liver diseases. In this review, we present current knowledge on the role of EVs in non-alcoholic fatty liver disease and non-alcoholic steatohepatitis, alcohol-associated liver disease, chronic viral hepatitis, primary liver cancers, acute liver injury and liver regeneration. Moreover, therapeutic strategies involving EVs as targets or as tools to treat liver diseases are summarized.
Collapse
Affiliation(s)
- Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States.
| | - Shantha Valainathan
- Université de Paris, AP-HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de recherche sur l'inflammation, Inserm, UMR 1149, Paris, France
| | - Louise Biquard
- Université de Paris, Centre de recherche sur l'inflammation, Inserm, UMR 1149, Paris, France.
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States.
| | - Pierre-Emmanuel Rautou
- Université de Paris, AP-HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de recherche sur l'inflammation, Inserm, UMR 1149, Paris, France.
| |
Collapse
|
22
|
Fang Z, Dou G, Wang L. MicroRNAs in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int J Biol Sci 2021; 17:1851-1863. [PMID: 33994867 PMCID: PMC8120467 DOI: 10.7150/ijbs.59588] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), or, more accurately, metabolic associated fatty liver disease, accounts for a large proportion of chronic liver disorders worldwide and is closely associated with other conditions such as cardiovascular disease, obesity, and type 2 diabetes mellitus. NAFLD ranges from simple steatosis to nonalcoholic steatohepatitis (NASH) and can progress to cirrhosis and, eventually, also hepatocellular carcinoma. The morbidity and mortality associated with NAFLD are increasing rapidly year on year. Consequently, there is an urgent need to understand the etiology and pathogenesis of NAFLD and identify effective therapeutic targets. MicroRNAs (miRNAs), important epigenetic factors, have recently been proposed to participate in NAFLD pathogenesis. Here, we review the roles of miRNAs in lipid metabolism, inflammation, apoptosis, fibrosis, hepatic stellate cell activation, insulin resistance, and oxidative stress, key factors that contribute to the occurrence and progression of NAFLD. Additionally, we summarize the role of miRNA-enriched extracellular vesicles in NAFLD. These miRNAs may comprise suitable therapeutic targets for the treatment of this condition.
Collapse
Affiliation(s)
- Zhiqiang Fang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Guorui Dou
- Department of Ophthalmology, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
23
|
Villard A, Boursier J, Andriantsitohaina R. Bacterial and eukaryotic extracellular vesicles and nonalcoholic fatty liver disease: new players in the gut-liver axis? Am J Physiol Gastrointest Liver Physiol 2021; 320:G485-G495. [PMID: 33471632 DOI: 10.1152/ajpgi.00362.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The liver and intestine communicate in a bidirectional way through the biliary tract, portal vein, and other components of the gut-liver axis. The gut microbiota is one of the major contributors to the production of several proteins and bile acids. Imbalance in the gut bacterial community, called dysbiosis, participates in the development and progression of several chronic liver diseases, such as nonalcoholic fatty liver disease (NAFLD). NAFLD is currently considered the main chronic liver disease worldwide. Dysbiosis contributes to NAFLD development and progression, notably by a greater translocation of pathogen-associated molecular patterns (PAMPs) in the blood. Lipopolysaccharide (LPS) is a PAMP that activates Toll-like receptor 4 (TLR4), induces liver inflammation, and participates in the development of fibrogenesis. LPS can be transported by bacterial extracellular vesicles (EVs). EVs are spherical structures produced by eukaryotic and prokaryotic cells that transfer information to distant cells and may represent new players in NAFLD development and progression. The present review summarizes the role of eukaryotic EVs, either circulating or tissue-derived, in NAFLD features, such as liver inflammation, angiogenesis, and fibrosis. Circulating EV levels are dynamic and correlate with disease stage and severity. However, scarce information is available concerning the involvement of bacterial EVs in liver disease. The present review highlights a potential role of bacterial EVs in insulin resistance and liver inflammation, although the mechanism involved has not been elucidated. In addition, because of their distinct signatures, eukaryotic and prokaryotic EVs may also represent a promising NAFLD diagnostic tool as a "liquid biopsy" in the future.
Collapse
Affiliation(s)
- Alexandre Villard
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, Université d'Angers, Université Bretagne Loire, Angers, France.,EA 3859, Hémodynamique, Interaction Fibrose et Invasivité Tumorales Hépatiques (HIFIH), Angers, France
| | - Jérôme Boursier
- EA 3859, Hémodynamique, Interaction Fibrose et Invasivité Tumorales Hépatiques (HIFIH), Angers, France
| | - Ramaroson Andriantsitohaina
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, Université d'Angers, Université Bretagne Loire, Angers, France
| |
Collapse
|
24
|
Newman LA, Fahmy A, Sorich MJ, Best OG, Rowland A, Useckaite Z. Importance of between and within Subject Variability in Extracellular Vesicle Abundance and Cargo when Performing Biomarker Analyses. Cells 2021; 10:cells10030485. [PMID: 33668220 PMCID: PMC7996254 DOI: 10.3390/cells10030485] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022] Open
Abstract
Small extracellular vesicles (sEV) have emerged as a potential rich source of biomarkers in human blood and present the intriguing potential for a 'liquid biopsy' to track disease and the effectiveness of interventions. Recently, we have further demonstrated the potential for EV derived biomarkers to account for variability in drug exposure. This study sought to evaluate the variability in abundance and cargo of global and liver-specific circulating sEV, within (diurnal) and between individuals in a cohort of healthy subjects (n = 10). We present normal ranges for EV concentration and size and expression of generic EV protein markers and the liver-specific asialoglycoprotein receptor 1 (ASGR1) in samples collected in the morning and afternoon. EV abundance and cargo was generally not affected by fasting, except CD9 which exhibited a statistically significant increase (p = 0.018). Diurnal variability was observed in the expression of CD81 and ASGR1, which significantly decreased (p = 0.011) and increased (p = 0.009), respectively. These results have potential implications for study sampling protocols and normalisation of biomarker data when considering the expression of sEV derived cargo as a biomarker strategy. Specifically, the novel finding that liver-specific EVs exhibit diurnal variability in healthy subjects should have broad implications in the study of drug metabolism and development of minimally invasive biomarkers for liver disease.
Collapse
|
25
|
Srinivas AN, Suresh D, Santhekadur PK, Suvarna D, Kumar DP. Extracellular Vesicles as Inflammatory Drivers in NAFLD. Front Immunol 2021; 11:627424. [PMID: 33603757 PMCID: PMC7884478 DOI: 10.3389/fimmu.2020.627424] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent chronic liver disease in most parts of the world affecting one-third of the western population and a growing cause for end-stage liver diseases such as hepatocellular carcinoma (HCC). Majorly driven by obesity and diabetes mellitus, NAFLD is more of a multifactorial disease affected by extra-hepatic organ crosstalk. Non-alcoholic fatty liver (NAFL) progressed to non-alcoholic steatohepatitis (NASH) predisposes multiple complications such as fibrosis, cirrhosis, and HCC. Although the complete pathogenic mechanisms of this disease are not understood, inflammation is considered as a key driver to the onset of NASH. Lipotoxicity, inflammatory cytokines, chemokines, and intestinal dysbiosis trigger both hepatic and systemic inflammatory cascades simultaneously activating immune responses. Over a few years, extracellular vesicles studied extensively concerning the pathobiology of NAFLD indicated it as a key modulator in the setting of immune-mediated inflammation. Exosomes and microvesicles, the two main types of extracellular vesicles are secreted by an array of most mammalian cells, which are involved mainly in cell-cell communication that are unique to cell type. Various bioactive cargoes containing extracellular vesicles derived from both hepatic and extrahepatic milieu showed critical implications in driving steatosis to NASH reaffirming inflammation as the primary contributor to the whole process. In this mini-review, we provide brief insights into the inflammatory mediators of NASH with special emphasis on extracellular vesicles that acts as drivers of inflammation in NAFLD.
Collapse
Affiliation(s)
- Akshatha N Srinivas
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, India
| | - Diwakar Suresh
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, India
| | - Prasanna K Santhekadur
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, India
| | - Deepak Suvarna
- Department of Gastroenterology, JSS Medical College and Hospital, JSS Academy of Higher Education and Research, Mysuru, India
| | - Divya P Kumar
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, India
| |
Collapse
|
26
|
Vincent RK, Williams DM, Evans M. A look to the future in non-alcoholic fatty liver disease: Are glucagon-like peptide-1 analogues or sodium-glucose co-transporter-2 inhibitors the answer? Diabetes Obes Metab 2020; 22:2227-2240. [PMID: 32945071 DOI: 10.1111/dom.14196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/19/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022]
Abstract
The increasing prevalence of diabetes and non-alcoholic fatty liver disease (NAFLD) is a growing public health concern associated with significant morbidity, mortality and economic cost, particularly in those who progress to cirrhosis. Medical treatment is frequently limited, with no specific licensed treatments currently available for people with NAFLD. Its association with diabetes raises the possibility of shared mechanisms of disease progression and treatment. With the ever-growing interest in the non-glycaemic effects of diabetes medications, studies and clinical trials have investigated hepatic outcomes associated with the use of drug classes used for people with type 2 diabetes (T2D), such as glucagon-like peptide-1 (GLP-1) analogues or sodium-glucose co-transporter-2 (SGLT2) inhibitors. Studies exploring the use of GLP-1 analogues or SGLT2 inhibitors in people with NAFLD have observed improved measures of hepatic inflammation, liver enzymes and radiological features over short periods. However, these studies tend to have variable study populations and inconsistent reported outcomes, limiting comparison between drugs and drug classes. As these drugs appear to improve biomarkers of NAFLD, clinicians should consider their use in patients with NAFLD and T2D. However, further evidence with greater participant numbers and longer trial durations is required to support specific licensing for people with NAFLD. Larger trials would allow reporting of major adverse hepatic events, akin to cardiovascular and renal outcome trials, to be determined. This would provide a more meaningful evaluation of the impact of these drugs in NAFLD. Nevertheless, these drugs represent a future potential therapeutic avenue in this difficult-to-treat population and may beget significant health and economic impacts.
Collapse
Affiliation(s)
- Rebecca K Vincent
- Department of Gastroenterology, University Hospital Llandough, Cardiff, UK
| | - David M Williams
- Department of Diabetes and Endocrinology, University Hospital Llandough, Cardiff, UK
| | - Marc Evans
- Department of Diabetes and Endocrinology, University Hospital Llandough, Cardiff, UK
| |
Collapse
|
27
|
Jonas W, Schürmann A. Genetic and epigenetic factors determining NAFLD risk. Mol Metab 2020; 50:101111. [PMID: 33160101 PMCID: PMC8324682 DOI: 10.1016/j.molmet.2020.101111] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hepatic steatosis is a common chronic liver disease that can progress into more severe stages of NAFLD or promote the development of life-threatening secondary diseases for some of those affected. These include the liver itself (nonalcoholic steatohepatitis or NASH; fibrosis and cirrhosis, and hepatocellular carcinoma) or other organs such as the vessels and the heart (cardiovascular disease) or the islets of Langerhans (type 2 diabetes). In addition to elevated caloric intake and a sedentary lifestyle, genetic and epigenetic predisposition contribute to the development of NAFLD and the secondary diseases. SCOPE OF REVIEW We present data from genome-wide association studies (GWAS) and functional studies in rodents which describe polymorphisms identified in genes relevant for the disease as well as changes caused by altered DNA methylation and gene regulation via specific miRNAs. The review also provides information on the current status of the use of genetic and epigenetic factors as risk markers. MAJOR CONCLUSION With our overview we provide an insight into the genetic and epigenetic landscape of NAFLD and argue about the applicability of currently defined risk scores for risk stratification and conclude that further efforts are needed to make the scores more usable and meaningful.
Collapse
Affiliation(s)
- Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764, München-Neuherberg, Germany; University of Potsdam, Institute of Nutritional Sciences, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| |
Collapse
|