1
|
Oliveira-Júnior O, Gabbett TJ, Bittencourt NFN, Quintão RC, Reis GF, Claudino JG, Lasmar RCP, Leopoldino AAO. Potential financial loss and risk factors for hamstring muscle injuries in elite male Brazilian soccer players: a season-long prospective cohort pilot study. Front Sports Act Living 2024; 6:1360452. [PMID: 39381257 PMCID: PMC11458431 DOI: 10.3389/fspor.2024.1360452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
Purpose The aim of this pilot study was to analyze the potential financial loss and a range of potential risk factors for hamstring muscle injuries in elite Brazilian soccer. Methods Thirty-four male players (age: 25 ± 6 years; stature: 180 ± 8 cm; body mass: 78 ± 9 kg; minutes played in matches: 2243 ± 1423 min) from an elite professional soccer club were monitored during a 12-month season. Muscle injury was identified by magnetic resonance imaging and the severity was defined according to the number of days away: minimal (1-3 days), mild (4-7 days), moderate (8-28 days), severe (>28 days). Potential financial loss due to the team's under achievements was determined. Dorsiflexion range of motion, eccentric knee flexor strength and isokinetic tests were performed during the pre-season. Association between dependent variables and the occurrence of injury was evaluated. Results Nine hamstring muscle injuries with moderate severity were found in 8 athletes. Recovery time was 22 days off the field on average. Potential financial loss was $-43.2 million USD and earnings on merit money was 21%. Previous injury, increased flexor deficit 60° /sec and increased flexor fatigue index 300°/sec were all associated with a greater chance of hamstring muscle injury. Ankle dorsiflexion range of motion was significantly lower in the injured group (35.6 ± 3° vs. 39.1 ± 4.9°; p = 0.017, effect size = -0.74). Conclusion High financial burden was found in elite Brazilian soccer during one full season. Injured athletes had high hamstring fatigue index, knee flexor strength deficit, ankle range of motion restriction and previous hamstring muscle injury when compared to non-injured athletes. Therefore, preventive approaches in professional soccer players with previous hamstring injuries should be a priority.
Collapse
Affiliation(s)
- Otaviano Oliveira-Júnior
- Post Graduate Program in Health Sciences, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Brazil
- Medical Department of Professional Soccer, Clube Atlético Mineiro, Belo Horizonte, Brazil
| | - Tim J. Gabbett
- Gabbett Performance Solutions, Brisbane, QLD, Australia
- Health Innovation and Transformation Centre, Federation University, Ballarat, VIC, Australia
| | - Natalia F. N. Bittencourt
- Soccer Science Center, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Roberto C. Quintão
- Medical Department of Professional Soccer, Clube Atlético Mineiro, Belo Horizonte, Brazil
| | - Guilherme F. Reis
- Medical Department of Professional Soccer, Clube Atlético Mineiro, Belo Horizonte, Brazil
| | - João G. Claudino
- Sports Science, School of Applied Sciences (FCA), University of Campinas (Unicamp), Limeira, São Paulo, Brazil
| | - Rodrigo C. P. Lasmar
- Medical Department of Professional Soccer, Clube Atlético Mineiro, Belo Horizonte, Brazil
| | - Amanda A. O. Leopoldino
- Post Graduate Program in Health Sciences, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Afonso J, Andrade R, Rocha-Rodrigues S, Nakamura FY, Sarmento H, Freitas SR, Silva AF, Laporta L, Abarghoueinejad M, Akyildiz Z, Chen R, Pizarro A, Ramirez-Campillo R, Clemente FM. What We Do Not Know About Stretching in Healthy Athletes: A Scoping Review with Evidence Gap Map from 300 Trials. Sports Med 2024; 54:1517-1551. [PMID: 38457105 PMCID: PMC11239752 DOI: 10.1007/s40279-024-02002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Stretching has garnered significant attention in sports sciences, resulting in numerous studies. However, there is no comprehensive overview on investigation of stretching in healthy athletes. OBJECTIVES To perform a systematic scoping review with an evidence gap map of stretching studies in healthy athletes, identify current gaps in the literature, and provide stakeholders with priorities for future research. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 and PRISMA-ScR guidelines were followed. We included studies comprising healthy athletes exposed to acute and/or chronic stretching interventions. Six databases were searched (CINAHL, EMBASE, PubMed, Scopus, SPORTDiscus, and Web of Science) until 1 January 2023. The relevant data were narratively synthesized; quantitative data summaries were provided for key data items. An evidence gap map was developed to offer an overview of the existing research and relevant gaps. RESULTS Of ~ 220,000 screened records, we included 300 trials involving 7080 athletes [mostly males (~ 65% versus ~ 20% female, and ~ 15% unreported) under 36 years of age; tiers 2 and 3 of the Participant Classification Framework] across 43 sports. Sports requiring extreme range of motion (e.g., gymnastics) were underrepresented. Most trials assessed the acute effects of stretching, with chronic effects being scrutinized in less than 20% of trials. Chronic interventions averaged 7.4 ± 5.1 weeks and never exceeded 6 months. Most trials (~ 85%) implemented stretching within the warm-up, with other application timings (e.g., post-exercise) being under-researched. Most trials examined static active stretching (62.3%), followed by dynamic stretching (38.3%) and proprioceptive neuromuscular facilitation (PNF) stretching (12.0%), with scarce research on alternative methods (e.g., ballistic stretching). Comparators were mostly limited to passive controls, with ~ 25% of trials including active controls (e.g., strength training). The lower limbs were primarily targeted by interventions (~ 75%). Reporting of dose was heterogeneous in style (e.g., 10 repetitions versus 10 s for dynamic stretching) and completeness of information (i.e., with disparities in the comprehensiveness of the provided information). Most trials (~ 90%) reported performance-related outcomes (mainly strength/power and range of motion); sport-specific outcomes were collected in less than 15% of trials. Biomechanical, physiological, and neural/psychological outcomes were assessed sparsely and heterogeneously; only five trials investigated injury-related outcomes. CONCLUSIONS There is room for improvement, with many areas of research on stretching being underexplored and others currently too heterogeneous for reliable comparisons between studies. There is limited representation of elite-level athletes (~ 5% tier 4 and no tier 5) and underpowered sample sizes (≤ 20 participants). Research was biased toward adult male athletes of sports not requiring extreme ranges of motion, and mostly assessed the acute effects of static active stretching and dynamic stretching during the warm-up. Dose-response relationships remain largely underexplored. Outcomes were mostly limited to general performance testing. Injury prevention and other effects of stretching remain poorly investigated. These relevant research gaps should be prioritized by funding policies. REGISTRATION OSF project ( https://osf.io/6auyj/ ) and registration ( https://osf.io/gu8ya ).
Collapse
Affiliation(s)
- José Afonso
- Faculty of Sport, Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), University of Porto, Porto, Portugal.
| | - Renato Andrade
- Clínica Espregueira-FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal
| | - Sílvia Rocha-Rodrigues
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Alvares, 4900-347, Viana do Castelo, Portugal
- Tumour and Microenvironment Interactions Group, INEB-Institute of Biomedical Engineering, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-153, Porto, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347, Viana do Castelo, Portugal
| | - Fábio Yuzo Nakamura
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Maia, Maia, Portugal
| | - Hugo Sarmento
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - Sandro R Freitas
- Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Portugal
| | - Ana Filipa Silva
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Alvares, 4900-347, Viana do Castelo, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347, Viana do Castelo, Portugal
| | - Lorenzo Laporta
- Núcleo de Estudos em Performance Analysis Esportiva (NEPAE/UFSM), Universidade Federal de Santa Maria, Avenida Roraima, nº 1000, Cidade Universitária, Bairro Camobi, Santa Maria, RS, CEP: 97105-900, Brazil
| | | | - Zeki Akyildiz
- Sports Science Faculty, Department of Coaching Education, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Rongzhi Chen
- Faculty of Sport, Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), University of Porto, Porto, Portugal
| | - Andreia Pizarro
- Faculty of Sport, Research Center in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Rua das Taipas, 135, 4050-600, Porto, Portugal
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy. Faculty of Rehabilitation Sciences, Universidad Andres Bello, 7591538, Santiago, Chile
| | - Filipe Manuel Clemente
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Alvares, 4900-347, Viana do Castelo, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347, Viana do Castelo, Portugal
- Gdańsk University of Physical Education and Sport, 80-336, Gdańsk, Poland
| |
Collapse
|
3
|
Warneke K, Konrad A, Wilke J. The knowledge of movement experts about stretching effects: Does the science reach practice? PLoS One 2024; 19:e0295571. [PMID: 38277378 PMCID: PMC10817148 DOI: 10.1371/journal.pone.0295571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/22/2023] [Indexed: 01/28/2024] Open
Abstract
OBJECTIVE Stretching is performed with numerous purposes in multiple settings such as prevention, rehabilitation, fitness training and sports. Its patterns of use substantially depend on the education and beliefs of health care and exercise professionals as they represent the multiplicators recommending and prescribing interventions to clients, patients and athletes. This study investigated movement experts' knowledge about the scientific evidence on stretching effects. DESIGN Survey study. PARTICIPANTS A total of 117 exercise and health professionals (physiotherapists, sports scientists, coaches) attending a training convention in Austria (male: n = 44, female: n = 73, 36±11 years) completed a digital survey. With its 22 items, the questionnaire addressed the movement experts' awareness of the evidence on stretching effects regarding a variety of related topics selected based on the findings of topical systematic reviews. RESULTS The majority of the individuals (57-88%) assumed positive effects of stretching on recovery, prevention of muscle injury, range of motion, muscular imbalance and artery elasticity. No or adverse effects were mostly claimed on bone injury prevention, maximal/explosive strength, and delayed-onset muscle soreness. In only 10 of 22 items, participants' classifications were in accord with the scientific evidence. CONCLUSIONS The awareness of research findings on stretching effects among exercise and health professionals is alarmingly low. Future studies may hence be geared to improve implementation and science communication.
Collapse
Affiliation(s)
- Konstantin Warneke
- Institute of Sport Science, Alpen-Adria-University Klagenfurt, Klagenfurt am Wörthersee, Austria
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Jan Wilke
- Institute of Sport Science, Alpen-Adria-University Klagenfurt, Klagenfurt am Wörthersee, Austria
| |
Collapse
|
4
|
Cho Y, Jang H, Kwon S, Oh H. Aerobic, muscle-strengthening, and flexibility physical activity and risks of all-cause and cause-specific mortality: a population-based prospective cohort of Korean adults. BMC Public Health 2023; 23:1148. [PMID: 37316812 DOI: 10.1186/s12889-023-15969-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Studies have shown that aerobic and muscle-strengthening physical activities reduce mortality risk. However, little is known about the joint associations of the two activity types and whether other type of physical activity, such as flexibility activity, can provide similar mortality risk reduction. OBJECTIVES We examined the independent associations of aerobic, muscle-strengthening, and flexibility physical activities with all-cause and cause-specific mortality in a population-based prospective cohort of Korean men and women. We also examined the joint associations of aerobic and muscle-strengthening activities, the two physical activity types that are recommended by the current World Health Organization physical activity guidelines. DESIGN This analysis included 34,379 Korea National Health and Nutrition Examination Survey 2007-2013 participants (aged 20-79 years) with mortality data linkage through December 31, 2019. Engagement in walking, aerobic, muscle-strengthening, and flexibility physical activities was self-reported at baseline. Cox proportional hazards model was performed to estimate hazard ratios (HRs) and 95% confidence intervals (CIs), adjusting for potential confounders. RESULTS Flexibility physical activity (≥ 5 vs. 0 d/wk) was inversely associated with all-cause (HR [95% CI] = 0.80 [0.70-0.92]; P-trend < 0.001) and cardiovascular mortality (0.75 [0.55-1.03], P-trend = 0.02). Moderate- to vigorous-intensity aerobic physical activity (≥ 50.0 vs. 0 MET-h/wk) was also associated with lower all-cause (HR [95% CI] = 0.82 [0.70-0.95]; P-trend < 0.001) and cardiovascular mortality (0.55 [0.37-0.80]; P-trend < 0.001). Similar inverse associations were observed with total aerobic physical activity, including walking. Muscle-strengthening activity (≥ 5 vs. 0 d/wk) was inversely associated with all-cause mortality (HR [95% CI] = 0.83 [0.68-1.02]; P-trend = 0.01) but was not associated with cancer or cardiovascular mortality. Compared to participants meeting the highest guidelines for both moderate- to vigorous-intensity aerobic and muscle-strengthening physical activities, those not meeting in any guideline were associated with higher all-cause (1.34 [1.09-1.64]) and cardiovascular mortality (1.68 [1.00-2.82]). CONCLUSIONS Our data suggest that aerobic, muscle-strengthening, and flexibility activities are associated with lower risk of mortality.
Collapse
Affiliation(s)
- Yoonkyoung Cho
- Interdisciplinary Program in Precision Public Health, College of Health Science, Graduate School of Korea University, Seoul, Republic of Korea
| | - Hajin Jang
- Interdisciplinary Program in Precision Public Health, College of Health Science, Graduate School of Korea University, Seoul, Republic of Korea
| | - Sohyeon Kwon
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hannah Oh
- Interdisciplinary Program in Precision Public Health, College of Health Science, Graduate School of Korea University, Seoul, Republic of Korea.
- Department of Health Policy and Management, College of Health Science, Korea University, Seoul, Republic of Korea.
- Korea University, 145 Anam-ro, Seongbuk-gu Hana Science Bldg B358, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Ramirez-Campillo R, Perez-Castilla A, Thapa RK, Afonso J, Clemente FM, Colado JC, de Villarreal ES, Chaabene H. Effects of Plyometric Jump Training on Measures of Physical Fitness and Sport-Specific Performance of Water Sports Athletes: A Systematic Review with Meta-analysis. SPORTS MEDICINE - OPEN 2022; 8:108. [PMID: 36036301 PMCID: PMC9424421 DOI: 10.1186/s40798-022-00502-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/06/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND A growing body of literature is available regarding the effects of plyometric jump training (PJT) on measures of physical fitness (PF) and sport-specific performance (SSP) in-water sports athletes (WSA, i.e. those competing in sports that are practiced on [e.g. rowing] or in [e.g. swimming; water polo] water). Indeed, incoherent findings have been observed across individual studies making it difficult to provide the scientific community and coaches with consistent evidence. As such, a comprehensive systematic literature search should be conducted to clarify the existent evidence, identify the major gaps in the literature, and offer recommendations for future studies. AIM To examine the effects of PJT compared with active/specific-active controls on the PF (one-repetition maximum back squat strength, squat jump height, countermovement jump height, horizontal jump distance, body mass, fat mass, thigh girth) and SSP (in-water vertical jump, in-water agility, time trial) outcomes in WSA, through a systematic review with meta-analysis of randomized and non-randomized controlled studies. METHODS The electronic databases PubMed, Scopus, and Web of Science were searched up to January 2022. According to the PICOS approach, the eligibility criteria were: (population) healthy WSA; (intervention) PJT interventions involving unilateral and/or bilateral jumps, and a minimal duration of ≥ 3 weeks; (comparator) active (i.e. standard sports training) or specific-active (i.e. alternative training intervention) control group(s); (outcome) at least one measure of PF (e.g. jump height) and/or SSP (e.g. time trial) before and after training; and (study design) multi-groups randomized and non-randomized controlled trials. The Physiotherapy Evidence Database (PEDro) scale was used to assess the methodological quality of the included studies. The DerSimonian and Laird random-effects model was used to compute the meta-analyses, reporting effect sizes (ES, i.e. Hedges' g) with 95% confidence intervals (95% CIs). Statistical significance was set at p ≤ 0.05. Certainty or confidence in the body of evidence for each outcome was assessed using Grading of Recommendations Assessment, Development, and Evaluation (GRADE), considering its five dimensions: risk of bias in studies, indirectness, inconsistency, imprecision, and risk of publication bias. RESULTS A total of 11,028 studies were identified with 26 considered eligible for inclusion. The median PEDro score across the included studies was 5.5 (moderate-to-high methodological quality). The included studies involved a total of 618 WSA of both sexes (330 participants in the intervention groups [31 groups] and 288 participants in the control groups [26 groups]), aged between 10 and 26 years, and from different sports disciplines such as swimming, triathlon, rowing, artistic swimming, and water polo. The duration of the training programmes in the intervention and control groups ranged from 4 to 36 weeks. The results of the meta-analysis indicated no effects of PJT compared to control conditions (including specific-active controls) for in-water vertical jump or agility (ES = - 0.15 to 0.03; p = 0.477 to 0.899), or for body mass, fat mass, and thigh girth (ES = 0.06 to 0.15; p = 0.452 to 0.841). In terms of measures of PF, moderate-to-large effects were noted in favour of the PJT groups compared to the control groups (including specific-active control groups) for one-repetition maximum back squat strength, horizontal jump distance, squat jump height, and countermovement jump height (ES = 0.67 to 1.47; p = 0.041 to < 0.001), in addition to a small effect noted in favour of the PJT for SSP time-trial speed (ES = 0.42; p = 0.005). Certainty of evidence across the included studies varied from very low-to-moderate. CONCLUSIONS PJT is more effective to improve measures of PF and SSP in WSA compared to control conditions involving traditional sport-specific training as well as alternative training interventions (e.g. resistance training). It is worth noting that the present findings are derived from 26 studies of moderate-to-high methodological quality, low-to-moderate impact of heterogeneity, and very low-to-moderate certainty of evidence based on GRADE. Trial registration The protocol for this systematic review with meta-analysis was published in the Open Science platform (OSF) on January 23, 2022, under the registration doi https://doi.org/10.17605/OSF.IO/NWHS3 (internet archive link: https://archive.org/details/osf-registrations-nwhs3-v1 ).
Collapse
Affiliation(s)
- Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
| | - Alejandro Perez-Castilla
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain
| | - Rohit K Thapa
- School of Physical Education and Sports, Rashtriya Raksha University, Gandhinagar, 382305, India
| | - José Afonso
- Centre for Research, Education, Innovation, and Intervention in Sport (CIFI2D), Faculty of Sport of the University of Porto, Rua Dr. Plácido Costa, 91, 4200-450, Porto, Portugal
| | - Filipe Manuel Clemente
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Álvares, 4900-347, Viana do Castelo, Portugal
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), Melgaço, Portugal
- Instituto de Telecomunicações, Delegação da Covilhã, 1049-001, Lisbon, Portugal
| | - Juan C Colado
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain
| | | | - Helmi Chaabene
- Department of Sports and Health Sciences, Faculty of Human Sciences, University of Potsdam, 14469, Potsdam, Germany.
| |
Collapse
|