1
|
McCerery R, Hall L, Omanakuttan J, Chai HZ, Lawrence J, Woodward J, Pearce DA. Preparation protocol for epifluorescence microscopy when working close to the detection limit. Lett Appl Microbiol 2025; 78:ovaf026. [PMID: 39987441 DOI: 10.1093/lambio/ovaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/15/2025] [Accepted: 02/21/2025] [Indexed: 02/24/2025]
Abstract
Working with low density, low biomass material can be challenging, especially when working near the detection limit. Although background contamination is a universal consideration in microbiological research, its impact is increased when the cells under assessment approach the same concentration as the background contamination. The aim of this work was to identify and remove laboratory sources of background contamination in the cell mounting process for epifluorescence microscopy to improve the reliability of cell counting for low biomass samples. Microscope slides and coverslips were assessed before and after autoclaving, washing with detergent and rinsing with ethanol solution. The solutions used in sample mounting; 4',6-diamidino-2-phenylindole, phosphate buffered saline, and immersion oil, were tested before and after autoclaving as well as both single and triple filtering with a 0.2 µm membrane filter. Using a combination of detergent and ethanol rinses of glassware and triple filtering of all solutions, we were able to reduce the background contamination by almost two orders of magnitude, down from 1 × 104(±4.3 × 103) cells to 302(±312) cells per filter paper. This method was then validated with low biomass glacial sediment samples from Renardbreen, Svalbard, with cell concentrations of 1.8 × 105(±2.9 × 104) cells g-1, close to the reported detection limit of epifluorescence microscopy.
Collapse
Affiliation(s)
- Rebecca McCerery
- Department of Geography and Environmental Sciences, Faculty of Engineering and Environment, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, United Kingdom
| | - Lewis Hall
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, United Kingdom
| | - Jithin Omanakuttan
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, United Kingdom
| | - Hui Zhi Chai
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, United Kingdom
| | - James Lawrence
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, United Kingdom
| | - John Woodward
- Department of Geography and Environmental Sciences, Faculty of Engineering and Environment, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, United Kingdom
| | - David A Pearce
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, United Kingdom
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 OET, United Kingdom
| |
Collapse
|
2
|
Tobias-Hünefeldt SP, van Beusekom JEE, Russnak V, Dähnke K, Streit WR, Grossart HP. Seasonality, rather than estuarine gradient or particle suspension/sinking dynamics, determines estuarine carbon distributions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171962. [PMID: 38537819 DOI: 10.1016/j.scitotenv.2024.171962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
Estuaries are important components of the global carbon cycle; exchanging carbon between aquatic, atmospheric, and terrestrial environments, representing important loci for blue carbon storage and greenhouse gas emissions. However, how estuarine gradients affect sinking/suspended particles, and dissolved organic matter dynamic interactions remains unexplored. We fractionated suspended/sinking particles to assess and characterise carbon fate differences. We investigated bacterial colonisation (SYBR Green I) and exopolymer concentrations (TEP/CSP) with microscopy staining techniques. C/H/N and dry weight analysis identified particle composition differences. Meanwhile, nutrient and carbon analysis, and excitation and emission matrix evaluations with a subsequent parallel factor (PARAFAC) analysis characterised dissolved organic matter. The lack of clear salinity driven patterns in our study are presumably due to strong mixing forces and high particle heterogeneity along the estuary, with only density differences between suspended and sinking particles. Elbe estuary particles' organic portion is made up of marine-like (sinking) and terrestrial-like (suspended) signatures. Salinity did not have a significant role in microbial degradation and carbon composition, although brackish estuary portions were more biologically active. Indicative of increased degradation rates, leading to decreased greenhouse gas emissions, which are especially relevant for estuaries, with their disproportionate greenhouse gas emissions. Bacterial colonisation decreased seawards, indicative of decreased degradation, and shifts in microbial community composition and functions. Our findings span diverse strands of research, concerning steady carbon contributions from both marine and terrestrial sources, carbon aromaticity, humification index, and bioavailability. Their integration highlights the importance of the Elbe estuary as a model system, providing robust information for future policy decisions affecting dissolved and particulate matter dynamics within the Elbe Estuary.
Collapse
Affiliation(s)
- Sven P Tobias-Hünefeldt
- Dept. Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Zur Alten Fischerhuette 2, D-16775 Stechlin, Germany; Dept. of Microbiology and Biotechnology, University of Hamburg, Ohnhorststraße 18, Hamburg 22609, Germany.
| | - Justus E E van Beusekom
- Inst. of Carbon Cycles, Helmholtz Centre Hereon, Max-Planck-Straße 1, Geesthacht 21502, Germany
| | - Vanessa Russnak
- Inst. of Carbon Cycles, Helmholtz Centre Hereon, Max-Planck-Straße 1, Geesthacht 21502, Germany
| | - Kirstin Dähnke
- Inst. of Carbon Cycles, Helmholtz Centre Hereon, Max-Planck-Straße 1, Geesthacht 21502, Germany
| | - Wolfgang R Streit
- Dept. of Microbiology and Biotechnology, University of Hamburg, Ohnhorststraße 18, Hamburg 22609, Germany
| | - Hans-Peter Grossart
- Dept. Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Zur Alten Fischerhuette 2, D-16775 Stechlin, Germany; Inst. of Biology and Biochemistry, Potsdam University, Maulbeerallee 2, 14469 Potsdam, Germany.
| |
Collapse
|
3
|
Franco Meléndez K, Schuster L, Donahey MC, Kairalla E, Jansen MA, Reisch C, Rivers AR. MicroMPN: methods and software for high-throughput screening of microbe suppression in mixed populations. Microbiol Spectr 2024; 12:e0357823. [PMID: 38353567 PMCID: PMC10923211 DOI: 10.1128/spectrum.03578-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Screening assays are used to test if one or more microbes suppress a pathogen of interest. In the presence of more than one microbe, the screening method must be able to accurately distinguish viable pathogen cells from non-viable and non-target microbes in a sample. Current screening methods are time-consuming and require special reagents to detect viability in mixed microbial communities. Screening assays performed using soil or other complex matrices present additional challenges for screening. Here, we develop an experimental workflow based on the most probable number (MPN) assay for testing the ability of synthetic microbial communities to suppress a soil-borne pathogen. Our approach, fluorMPN, uses a fluorescently labeled pathogen and microplate format to enable high-throughput comparative screening. In parallel, we developed a command-line tool, MicroMPN, which significantly reduces the complexity of calculating MPN values from microplates. We compared the performance of the fluorMPN assay with spotting on agar and found that both methods produced strongly correlated counts of equal precision. The suppressive effect of synthetic communities on the pathogen was equally recoverable by both methods. The application of this workflow for discriminating which communities lead to pathogen reduction helps narrow down candidates for additional characterization. Together, the resources offered here are meant to facilitate and simplify the application of MPN-based assays for comparative screening projects. IMPORTANCE We created a unified set of software and laboratory protocols for screening microbe libraries to assess the suppression of a pathogen in a mixed microbial community. Existing methods of fluorescent labeling were combined with the most probable number (MPN) assay in a microplate format to enumerate the reduction of a pathogenic soil microbe from complex soil matrices. This work provides a fluorescent expression vector available from Addgene, step-by-step laboratory protocols hosted by protocols.io, and MicroMPN, a command-line software for processing plate reader outputs. MicroMPN simplifies MPN estimation from 96- and 384-well microplates. The microplate screening assay is amenable to robotic automation with standard liquid handling robots, further reducing the hands-on processing time. This tool was designed to evaluate synthetic microbial communities for use as microbial inoculates or probiotics. The fluorMPN method is also useful for screening chemical and antimicrobial libraries for pathogen suppression in complex bacterial communities like soil.
Collapse
Affiliation(s)
- Karla Franco Meléndez
- United States Department of Agriculture, Agricultural Research Service, Genomics and Bioinformatics Research Unit, Gainesville, Florida, USA
| | - Layla Schuster
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Melinda Chue Donahey
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Emily Kairalla
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - M. Andrew Jansen
- United States Department of Agriculture, Agricultural Research Service, Systematic Entomology Laboratory, Electron and Confocal Microscopy Unit, Beltsville, Maryland, USA
| | - Christopher Reisch
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Adam R. Rivers
- United States Department of Agriculture, Agricultural Research Service, Genomics and Bioinformatics Research Unit, Gainesville, Florida, USA
| |
Collapse
|
4
|
Occurrence and Characterization of Small Microplastics (<100 μm), Additives, and Plasticizers in Larvae of Simuliidae. TOXICS 2022; 10:toxics10070383. [PMID: 35878288 PMCID: PMC9321584 DOI: 10.3390/toxics10070383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 01/02/2023]
Abstract
This study is the first to investigate the ingestion of microplastics (MPs), plasticizers, additives, and particles of micro-litter < 100 μm by larvae of Simuliidae (Diptera) in rivers. Blackflies belong to a small cosmopolitan insect family whose larvae are present alongside river courses, often with a torrential regime, up to their mouths. Specimens of two species of blackfly larvae, Simulium equinum and Simulium ornatum, were collected in two rivers in Central Italy, the Mignone and the Treja. Small microplastics (SMPs, <100 μm), plasticizers, additives, and other micro-litter components, e.g., natural and non-plastic synthetic fibers (APFs) ingested by blackfly larvae were, for the first time, quantified and concurrently identified via MicroFTIR. The pretreatment allowed for simultaneous extraction of the ingested SMPs and APFs. Strong acids or strong oxidizing reagents and the application of temperatures well above the glass transition temperature of polyamide 6 and 6.6 (55−60 °C) were not employed to avoid further denaturation/degradation of polymers and underestimating the quantification. Reagent and procedural blanks did not show any SMPs or APFs. The method’s yield was >90%. Differences in the abundances of the SMPs and APFs ingested by the two species under exam were statistically significant. Additives and plasticizers can be specific to a particular polymer; thus, these compounds can be proxies for the presence of plastic polymers in the environment.
Collapse
|
5
|
Ho QN, Fettweis M, Spencer KL, Lee BJ. Flocculation with heterogeneous composition in water environments: A review. WATER RESEARCH 2022; 213:118147. [PMID: 35149367 DOI: 10.1016/j.watres.2022.118147] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/18/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Flocculation is a key process for controlling the fate and transport of suspended particulate matter (SPM) in water environments and has received considerable attention in the field of water science (e.g., oceanography, limnology, and hydrology), remaining an active area of research. The research on flocculation has been conducted to elucidate the SPM dynamics and to diagnose various environmental issues. The flocculation, sedimentation, and transportation of SPM are closely linked to the compositional and structural properties of flocs. In fact, flocs are highly heterogeneous in terms of composition. However, the lack of comprehensive research on floc composition and structure has led to misconceptions regarding the temporal and spatial dynamics of SPM. This review summarizes the current understanding of the heterogeneous composition of flocs (e.g., minerals, organic matter, metals, microplastic, engineered nanoparticles) and its effect on their structure and on their fate and transport within aquatic environments. Furthermore, the effects of human activities (e.g., pollutant discharge, construction) on floc composition are discussed.
Collapse
Key Words
- AB, Alcian Blue
- CBB, Coomassie Brilliant Blue
- CSPs, Coomassie stainable particles
- DOM, Dissolved organic matter
- ENPs, Engineered nanoparticles
- EPS, Extracellular polymeric substances
- FA, Fulvic acids
- Flocculation
- HA, Humic acids
- HS, Humic substances
- Heterogeneous composition
- Hm, Humin
- LB-EPS, Loosely bound EPS
- MPs, Microplastics
- Microplastics
- OM, Organic matter
- OWFs, Offshore wind farms
- Organic matter
- POM, Particulate organic matter
- SPM, Suspended particulate matter
- Suspended particle matter
- TB-EPS, Tightly bound EPS
- TEP, Transparent exopolymer particles
- TOC, Total organic carbon
Collapse
Affiliation(s)
- Que Nguyen Ho
- Energy Environment Institute, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, Korea
| | - Michael Fettweis
- Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Bruxelles, Belgium
| | - Kate L Spencer
- School of Geography, Queen Mary University of London, London E1 4NS, UK
| | - Byung Joon Lee
- Energy Environment Institute, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, Korea; Department of Advanced Science and Technology Convergence, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, Korea.
| |
Collapse
|
6
|
Kao YT, Calabrese S, Borst N, Lehnert M, Lai YK, Schlenker F, Juelg P, Zengerle R, Garstecki P, von Stetten F. Microfluidic One-Pot Digital Droplet FISH Using LNA/DNA Molecular Beacons for Bacteria Detection and Absolute Quantification. BIOSENSORS 2022; 12:bios12040237. [PMID: 35448297 PMCID: PMC9032532 DOI: 10.3390/bios12040237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 02/06/2023]
Abstract
We demonstrate detection and quantification of bacterial load with a novel microfluidic one-pot wash-free fluorescence in situ hybridization (FISH) assay in droplets. The method offers minimal manual workload by only requiring mixing of the sample with reagents and loading it into a microfluidic cartridge. By centrifugal microfluidic step emulsification, our method partitioned the sample into 210 pL (73 µm in diameter) droplets for bacterial encapsulation followed by in situ permeabilization, hybridization, and signal detection. Employing locked nucleic acid (LNA)/DNA molecular beacons (LNA/DNA MBs) and NaCl-urea based hybridization buffer, the assay was characterized with Escherichia coli, Klebsiella pneumonia, and Proteus mirabilis. The assay performed with single-cell sensitivity, a 4-log dynamic range from a lower limit of quantification (LLOQ) at ~3 × 103 bacteria/mL to an upper limit of quantification (ULOQ) at ~3 × 107 bacteria/mL, anda linearity R2 = 0.976. The total time-to-results for detection and quantification was around 1.5 hours.
Collapse
Affiliation(s)
- Yu-Ting Kao
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (Y.-T.K.); (N.B.); (Y.-K.L.); (R.Z.)
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| | - Silvia Calabrese
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (S.C.); (M.L.); (F.S.); (P.J.)
| | - Nadine Borst
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (Y.-T.K.); (N.B.); (Y.-K.L.); (R.Z.)
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (S.C.); (M.L.); (F.S.); (P.J.)
| | - Michael Lehnert
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (S.C.); (M.L.); (F.S.); (P.J.)
| | - Yu-Kai Lai
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (Y.-T.K.); (N.B.); (Y.-K.L.); (R.Z.)
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland;
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (S.C.); (M.L.); (F.S.); (P.J.)
| | - Franziska Schlenker
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (S.C.); (M.L.); (F.S.); (P.J.)
| | - Peter Juelg
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (S.C.); (M.L.); (F.S.); (P.J.)
| | - Roland Zengerle
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (Y.-T.K.); (N.B.); (Y.-K.L.); (R.Z.)
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (S.C.); (M.L.); (F.S.); (P.J.)
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| | - Felix von Stetten
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (Y.-T.K.); (N.B.); (Y.-K.L.); (R.Z.)
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (S.C.); (M.L.); (F.S.); (P.J.)
- Correspondence: ; Tel.: +49-761-203-73243
| |
Collapse
|
7
|
Schwarze J, Koc J, Koschitzki F, Gardner H, Hunsucker KZ, Swain GW, Rosenhahn A. Reduction of biofilm accumulation by constant and alternating potentials in static and dynamic field experiments. BIOFOULING 2022; 38:119-130. [PMID: 35240893 DOI: 10.1080/08927014.2022.2027923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The application of electric fields to conductive coatings is an environmentally friendly way to reduce biofilm formation. In particular alternating potentials (APs) have received increasing attention in recent studies. Here, an electrochemical rotating disk setup for dynamic field exposure experiments was developed to study how APs alter the attachment of fouling organisms in a multispecies ocean environment. A specific focus of the device design was proper integration of the potentiostat in the strongly corroding saltwater environment. The effect of APs on the accumulation of fouling organisms in short term field exposures was studied. Potentials on conductive gold surfaces were periodically switched between -0.3 V and 0.3 V or between -0.8 V and 0.6 V at a frequency of 0.5 Hz. APs were capable of significantly reducing the attachment of marine fouling organisms compared with the conductive samples immersed at open circuit potentials.
Collapse
Affiliation(s)
- Jana Schwarze
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Julian Koc
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Florian Koschitzki
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Harrison Gardner
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL, USA
| | - Kelli Z Hunsucker
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL, USA
| | - Geoffrey W Swain
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL, USA
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
8
|
Ronin D, Boyer J, Alban N, Natoli RM, Johnson A, Kjellerup BV. Current and novel diagnostics for orthopedic implant biofilm infections: a review. APMIS 2021; 130:59-81. [PMID: 34862649 DOI: 10.1111/apm.13197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Biofilm infections involving orthopedic implants are a global problem. They contribute to severe complications and mortality, as well as increased use of antibiotic treatments and development of antibiotic-resistant microorganisms. More than 1 million hip and knee arthroplasties are performed each year in the United States. These hard-to-treat infections lead to patient distress, increased morbidity, and high financial costs to both patients and healthcare systems. There is a need to improve the diagnosis of such biofilm infections to allow for earlier detection and treatment. Current diagnostics rely on clinical signs for infections such as loss of function, fever, rubor, patient history of the predisposing condition, persisting infection, failure of antibiotic treatment, and documentation of antibiotic failure. Below, we present a framework which outlines the data gaps in the conventional laboratory techniques used in clinical diagnostics; we also discuss promising novel diagnostic methods which are currently used solely in research. It is critical to assess these novel infection diagnostic techniques and address the data gaps and clinical hesitance preventing application in a clinical setting. Additionally, the combination of conventional and novel diagnostic technologies would streamline the diagnostic process of biofilm infections associated with orthopedic implants.
Collapse
Affiliation(s)
- Dana Ronin
- Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Jessica Boyer
- Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Nathan Alban
- Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Roman M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aaron Johnson
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Birthe Veno Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
9
|
Patterns of Structural and Functional Bacterioplankton Metacommunity along a River under Anthropogenic Pressure. SUSTAINABILITY 2021. [DOI: 10.3390/su132011518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacteria, an integral part of aquatic ecosystems, are responsible for the circulation of matter and flow of energy. Since bacterioplankton rapidly responds to any natural and human-induced disturbances in the environment, it can serve as a bioindicator of these changes. Knowing factors that shape the microbial community structure may help the sustainable management of the water environment. However, the identification of environmental signals affecting the structure and function of bacterioplankton is still a challenge. The study analyses the impact of environmental variables on basic microbial parameters, which determines the effectiveness of ecological processes in rivers. Measurements of bacterioplankton abundance (BA) and extracellular enzyme activity (EEA) were based on fluorescent markers. The bacterial community structure was determined by 16S rRNA gene amplicon sequencing (Illumina). The results indicate spatial variation in bacterioplankton abundance. Temporal variation was not significant. Lipase and aminopeptidase had the highest level of activity. EEA was not correlated with bacterial abundance but was significantly correlated with temperature. Moreover, differences in lipase, α-glucosidase and β-glucosidase activity levels between spring and summer were noted. At the same time, the location of sampling site had a significant influence on aminopeptidase activity. The taxonomic analysis of bacterioplankton communities in the Brda River indicated that, although different numbers of OTUs were recorded in the studied river sections, bacterioplankton biodiversity did not change significantly along the river with distance downstream. Anthropogenically modified river sections were characterized by the dominance of Flavobacterium (Bacterioidetes) and hgcl clade (Actinobacteria) taxa, known for their ability to produce extracellular enzymes. PCoA analysis revealed that the sites located in the lower river course (urban area) had the most similar bacterial community structure (β-diversity). The study provides new insight into the changes in microbial communities along the river and emphasizes the potential impact of anthropogenization on these processes.
Collapse
|
10
|
Zhong ZP, Tian F, Roux S, Gazitúa MC, Solonenko NE, Li YF, Davis ME, Van Etten JL, Mosley-Thompson E, Rich VI, Sullivan MB, Thompson LG. Glacier ice archives nearly 15,000-year-old microbes and phages. MICROBIOME 2021; 9:160. [PMID: 34281625 PMCID: PMC8290583 DOI: 10.1186/s40168-021-01106-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Glacier ice archives information, including microbiology, that helps reveal paleoclimate histories and predict future climate change. Though glacier-ice microbes are studied using culture or amplicon approaches, more challenging metagenomic approaches, which provide access to functional, genome-resolved information and viruses, are under-utilized, partly due to low biomass and potential contamination. RESULTS We expand existing clean sampling procedures using controlled artificial ice-core experiments and adapted previously established low-biomass metagenomic approaches to study glacier-ice viruses. Controlled sampling experiments drastically reduced mock contaminants including bacteria, viruses, and free DNA to background levels. Amplicon sequencing from eight depths of two Tibetan Plateau ice cores revealed common glacier-ice lineages including Janthinobacterium, Polaromonas, Herminiimonas, Flavobacterium, Sphingomonas, and Methylobacterium as the dominant genera, while microbial communities were significantly different between two ice cores, associating with different climate conditions during deposition. Separately, ~355- and ~14,400-year-old ice were subject to viral enrichment and low-input quantitative sequencing, yielding genomic sequences for 33 vOTUs. These were virtually all unique to this study, representing 28 novel genera and not a single species shared with 225 environmentally diverse viromes. Further, 42.4% of the vOTUs were identifiable temperate, which is significantly higher than that in gut, soil, and marine viromes, and indicates that temperate phages are possibly favored in glacier-ice environments before being frozen. In silico host predictions linked 18 vOTUs to co-occurring abundant bacteria (Methylobacterium, Sphingomonas, and Janthinobacterium), indicating that these phages infected ice-abundant bacterial groups before being archived. Functional genome annotation revealed four virus-encoded auxiliary metabolic genes, particularly two motility genes suggest viruses potentially facilitate nutrient acquisition for their hosts. Finally, given their possible importance to methane cycling in ice, we focused on Methylobacterium viruses by contextualizing our ice-observed viruses against 123 viromes and prophages extracted from 131 Methylobacterium genomes, revealing that the archived viruses might originate from soil or plants. CONCLUSIONS Together, these efforts further microbial and viral sampling procedures for glacier ice and provide a first window into viral communities and functions in ancient glacier environments. Such methods and datasets can potentially enable researchers to contextualize new discoveries and begin to incorporate glacier-ice microbes and their viruses relative to past and present climate change in geographically diverse regions globally. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Funing Tian
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Natalie E Solonenko
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Yueh-Fen Li
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Mary E Davis
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ellen Mosley-Thompson
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
- Department of Geography, Ohio State University, Columbus, OH, USA
| | - Virginia I Rich
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
- Department of Microbiology, Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA.
- Department of Microbiology, Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA.
| | - Lonnie G Thompson
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, USA.
- School of Earth Sciences, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
11
|
Lee J, Kim HS, Jo HY, Kwon MJ. Revisiting soil bacterial counting methods: Optimal soil storage and pretreatment methods and comparison of culture-dependent and -independent methods. PLoS One 2021; 16:e0246142. [PMID: 33566842 PMCID: PMC7875414 DOI: 10.1371/journal.pone.0246142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/13/2021] [Indexed: 11/19/2022] Open
Abstract
Although a number of different methods have been used to quantify soil bacteria, identifying the optimal method(s) for soil bacterial abundance is still in question. No single method exists for undertaking an absolute microbial count using culture-dependent methods (CDMs) or even culture-independent methods (CIMs). This study investigated soil storage and pretreatment methods for optimal bacterial counts. Appropriate storage temperature (4°C) and optimal pretreatment methods (sonication time for 3 min and centrifugation at 1400 g) were necessary to preserve bacterial cell viability and eliminate interference from soil particles. To better estimate soil bacterial numbers under various cellular state and respiration, this study also evaluated three CDMs (i.e., colony forming unit, spotting, and most probable number (MPN) and three CIMs (i.e., flow cytometry (FCM), epifluorescence microscopy (EM) count, and DNA quantitation). Each counting method was tested using 72 soil samples collected from a local arable farm site at three different depths (i.e., 10-20, 90-100, and 180-190 cm). Among all CDMs, MPN was found to be rapid, simple, and reliable. However, the number of bacteria quantified by MPN was 1-2 orders lower than that quantified by CIMs, likely due to the inability of MPN to count anaerobic bacteria. The DNA quantitation method appeared to overestimate soil bacterial numbers, which may be attributed to DNA from dead bacteria and free DNA in the soil matrix. FCM was found to be ineffective in counting soil bacteria as it was difficult to separate the bacterial cells from the soil particles. Dyes used in FCM stained the bacterial DNA and clay particles. The EM count was deemed a highly effective method as it provided information on soil mineral particles, live bacteria, and dead bacteria; however, it was a time-consuming and labor-intensive process. Combining both types of methods was considered the best approach to acquire better information on the characteristics of indigenous soil microorganisms (aerobic versus anaerobic, live versus dead).
Collapse
Affiliation(s)
- Jeonggil Lee
- KU-KIST Green School, Korea University, Seoul, Republic of Korea
| | - Han-Suk Kim
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea
| | - Ho Young Jo
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea
| | - Man Jae Kwon
- KU-KIST Green School, Korea University, Seoul, Republic of Korea
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
12
|
Laxman K, Sathe P, Al Abri M, Dobretsov S, Dutta J. Disinfection of Bacteria in Water by Capacitive Deionization. Front Chem 2020; 8:774. [PMID: 33110910 PMCID: PMC7489198 DOI: 10.3389/fchem.2020.00774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/24/2020] [Indexed: 11/27/2022] Open
Abstract
Clean water is one of the primary UN sustainable development goals for 2,030 and sustainable water deionization and disinfection is the backbone of that goal. Capacitive deionization (CDI) is an upcoming technique for water deionization and has shown substantial promise for large scale commercialization. In this study, activated carbon cloth (ACC) electrode based CDI devices are used to study the removal of ionic contaminants in water and the effect of ion concentrations on the electrosorption and disinfection functions of the CDI device for mixed microbial communities in groundwater and a model bacterial strain Escherichia coli. Up to 75 % of microbial cells could be removed in a single pass through the CDI unit for both synthetic and groundwater, while maintaining the salt removal activity. Mortality of the microbial cells were also observed during the CDI cell regeneration and correlated with the chloride ion concentrations. The power consumption and salt removal capacity in the presence and absence of salt were mapped and shown to be as low as 0.1 kWh m−3 and 9.5 mg g−1, respectively. The results indicate that CDI could be a viable option for single step deionization and microbial disinfection of brackish water.
Collapse
Affiliation(s)
- Karthik Laxman
- Functional Materials Group, Department of Applied Physics, School of Engineering Sciences (SCI), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Priyanka Sathe
- Nanotechnology Research Centre, Sultan Qaboos University, Muscat, Oman.,Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mohammed Al Abri
- Nanotechnology Research Centre, Sultan Qaboos University, Muscat, Oman.,Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman.,Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat, Oman
| | - Joydeep Dutta
- Functional Materials Group, Department of Applied Physics, School of Engineering Sciences (SCI), KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
13
|
Krause LMK, Koc J, Rosenhahn B, Rosenhahn A. Fully Convolutional Neural Network for Detection and Counting of Diatoms on Coatings after Short-Term Field Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10022-10030. [PMID: 32663392 DOI: 10.1021/acs.est.0c01982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While the use of deep learning is a valuable technology for automatic detection systems for medical data and images, the biofouling community is still lacking an analytical tool for the detection and counting of diatoms on samples after short-term field exposure. In this work, a fully convolutional neural network was implemented as a fast and simple approach to detect diatoms on two-channel (fluorescence and phase-contrast) microscopy images by predicting bounding boxes. The developed approach performs well with only a small number of trainable parameters and a F1 score of 0.82. Counting diatoms was evaluated on a data set of 600 microscopy images of three different surface chemistries (hydrophilic and hydrophobic) and is very similar to counting by humans while demanding only a fraction of the analysis time.
Collapse
Affiliation(s)
- Lutz M K Krause
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Julian Koc
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Bodo Rosenhahn
- Institute for Information Processing, Leibniz University Hannover, 30167 Hannover, Germany
| | - Axel Rosenhahn
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
14
|
Peng LH, Liang X, Chang RH, Mu JY, Chen HE, Yoshida A, Osatomi K, Yang JL. A bacterial polysaccharide biosynthesis-related gene inversely regulates larval settlement and metamorphosis of Mytilus coruscus. BIOFOULING 2020; 36:753-765. [PMID: 32847400 DOI: 10.1080/08927014.2020.1807520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Larval settlement and metamorphosis is essential for the development of marine invertebrates. Although polysaccharides are involved in larval settlement and metamorphosis of Mytilus coruscus, the molecular basis of polysaccharides underlying this progression remains largely unknown. Here, the roles of the polysaccharide biosynthesis-related gene 01912 of Pseudoalteromonas marina ECSMB14103 in the regulation of larval settlement and metamorphosis were examined by gene-knockout technique. Compared with biofilms (BFs) of the wild-type P. marina, Δ01912 BFs with a higher colanic acid (CA) content showed a higher inducing activity on larval settlement and metamorphosis. Deletion of the 01912 gene caused an increase in c-di-GMP levels, accompanied by a decrease in the motility, an increase in cell aggregation, and overproduction of CA. Thus, the bacterial polysaccharide biosynthesis-related gene 01912 may regulate mussel settlement by producing CA via the coordination of c-di-GMP. This work provides a deeper insight into the molecular mechanism of polysaccharides in modulating mussel settlement.
Collapse
Affiliation(s)
- Li-Hua Peng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Rui-Heng Chang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jia-Yi Mu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Hui-E Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Asami Yoshida
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Kiyoshi Osatomi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
15
|
Peng LH, Liang X, Xu JK, Dobretsov S, Yang JL. Monospecific Biofilms of Pseudoalteromonas Promote Larval Settlement and Metamorphosis of Mytilus coruscus. Sci Rep 2020; 10:2577. [PMID: 32054934 PMCID: PMC7018757 DOI: 10.1038/s41598-020-59506-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022] Open
Abstract
As a stage of life cycle, larval settlement and metamorphosis are critical processes for persistence of many marine invertebrate populations. Bacterial biofilms (BFs) could induce larval settlement and metamorphosis. Pseudoalteromonas, a widely distributed genus of marine bacteria, showed inductive effects on several invertebrates. However, how Pseudoalteromonas BFs induce settlement and metamorphosis of Mytilus coruscus remains unclear. Pseudoalteromonas marina BFs with the highest inducing activity were further investigated to define inductive cues. Surface-bound products of P. marina BFs could induce larval settlement and metamorphosis. P. marina BFs treated with formalin, antibiotics, ultraviolet irradiation, heat and ethanol significantly reduced inductive effects and cell survival rates. The confocal laser scanning microscopy and the biovolume analysis showed the dominance of α-polysaccharides on P. marina BFs. Treatment of BFs with amylases, proteases and lipase led to the decrease of inducing activity, suggesting that inductive cues of P. marina BFs may comprise of molecular domains of polysaccharides, proteins, and lipids. Finding inductive cues of BFs could put forward further studies about the mechanism of larval settlement and metamorphosis of marine invertebrates.
Collapse
Affiliation(s)
- Li-Hua Peng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jia-Kang Xu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman.
- Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat, Oman.
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
16
|
Hewson I. Technical pitfalls that bias comparative microbial community analyses of aquatic disease Ian Hewson. DISEASES OF AQUATIC ORGANISMS 2019; 137:109-124. [PMID: 31854329 DOI: 10.3354/dao03432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The accessibility of high-throughput DNA sequencing technologies has attracted the application of comparative microbial analyses to study diseases. These studies present a window into host microbiome diversity and composition that can be used to address ecological theory in the context of host biology and behavior. Recently, comparative microbiome studies have been used to study non-vertebrate aquatic diseases to elucidate microorganisms potentially involved in disease processes or in disease prevention. These investigations suffer from many well-described biases, especially prior to sequence analyses, that could lead to misleading conclusions. Microbiome-focused studies of aquatic metazoan diseases provide valuable documentation of microbial ecology, although, they are only a starting point for establishing disease etiology, which demands quantitative validation through targeted approaches. The microbiome approach to understanding disease is most useful after laboratory diagnostics guided by pathology have failed to identify a causative agent. This opinion piece presents several technical pitfalls which may affect wider interpretation of microbe-host interactions through comparative microbial community analyses and provides recommendations, based on studies in non-aquatic systems, for incorporation into future aquatic disease research.
Collapse
Affiliation(s)
- Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
17
|
Liang X, Peng LH, Zhang S, Zhou S, Yoshida A, Osatomi K, Bellou N, Guo XP, Dobretsov S, Yang JL. Polyurethane, epoxy resin and polydimethylsiloxane altered biofilm formation and mussel settlement. CHEMOSPHERE 2019; 218:599-608. [PMID: 30502698 DOI: 10.1016/j.chemosphere.2018.11.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
In many environments, biofilms are a major mode and an emergent form of microbial life. Biofilms play crucial roles in biogeochemical cycling and invertebrate recruitment in marine environments. However, relatively little is known about how marine biofilms form on different substrata and about how these biofilms impact invertebrate recruitment. Here, we performed a comparative analysis of a 28-day-old biofilm community on non-coated (a control glass) and coated substrata (polyurethane (PU), epoxy resin (EP) and polydimethylsiloxane (PDMS)) and examined the settlement of Mytilus coruscus plantigrades on these biofilms. PU, EP and PDMS deterred the development of marine biofilms by reducing the biofilm biomass including the biofilm dry weight, cell density of the bacteria and diatoms and chlorophyll a concentrations. Further analysis of bacterial community revealed that EP altered the bacterial community composition compared with that on the glass substrata by reducing the relative abundance of Ruegeria (Alphaproteobacteria) and by increasing the relative abundance of Methylotenera (Betaproteobacteria) and Cyanobacteria in the biofilms. However, bacterial communities developed on PU and PDMS, as well as glass and PU, EP and PDMS did not exhibit differences from each other. The M. coruscus settlement rates on biofilms on PU, EP and PDMS were reduced by 20-41% compared with those on the glass after 28 days. Thus, the tested coatings impacted the development of marine biofilms by altering the biofilm biomass and/or the bacterial community composition. The mussel settlements decreased in the biofilms that formed on the coatings compared with those on non-coated glass.
Collapse
Affiliation(s)
- Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Li-Hua Peng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Shuo Zhang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shuxue Zhou
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai, China
| | - Asami Yoshida
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Kiyoshi Osatomi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Nikoleta Bellou
- Hellenic Centre for Marine Research, Institute of Oceanography, Athens, Greece
| | - Xing-Pan Guo
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman; Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat, Oman.
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
18
|
Hsieh K, Zec HC, Chen L, Kaushik AM, Mach KE, Liao JC, Wang TH. Simple and Precise Counting of Viable Bacteria by Resazurin-Amplified Picoarray Detection. Anal Chem 2018; 90:9449-9456. [PMID: 29969556 DOI: 10.1021/acs.analchem.8b02096] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Simple, fast, and precise counting of viable bacteria is fundamental to a variety of microbiological applications such as food quality monitoring and clinical diagnosis. To this end, agar plating, microscopy, and emerging microfluidic devices for single bacteria detection have provided useful means for counting viable bacteria, but they also have their limitations ranging from complexity, time, and inaccuracy. We present herein our new method RAPiD (Resazurin-Amplified Picoarray Detection) for addressing this important problem. In RAPiD, we employ vacuum-assisted sample loading and oil-driven sample digitization to stochastically confine single bacteria in Picoarray, a microfluidic device with picoliter-sized isolation chambers (picochambers), in <30 s with only a few minutes of hands-on time. We add AlamarBlue, a resazurin-based fluorescent dye for bacterial growth, in our assay to accelerate the detection of "microcolonies" proliferated from single bacteria within picochambers. Detecting fluorescence in picochambers as an amplified surrogate for bacterial cells allows us to count hundreds of microcolonies with a single image taken via wide-field fluorescence microscopy. We have also expanded our method to practically test multiple titrations from a single bacterial sample in parallel. Using this expanded "multi-RAPiD" strategy, we can quantify viable cells in E. coli and S. aureus samples with precision in ∼3 h, illustrating RAPiD as a promising new method for counting viable bacteria for microbiological applications.
Collapse
Affiliation(s)
- Kuangwen Hsieh
- Department of Mechanical Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Helena C Zec
- Department of Biomedical Engineering , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States
| | - Liben Chen
- Department of Mechanical Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Aniruddha M Kaushik
- Department of Mechanical Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Kathleen E Mach
- Department of Urology , Stanford University School of Medicine , Stanford , California 94305 , United States
| | - Joseph C Liao
- Department of Urology , Stanford University School of Medicine , Stanford , California 94305 , United States
| | - Tza-Huei Wang
- Department of Mechanical Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States.,Department of Biomedical Engineering , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States
| |
Collapse
|
19
|
Lüskow F, Riisgård HU. <em>In Situ</em> Filtration Rates of Blue Mussels (<em>Mytilus edulis</em>) Measured by an Open-Top Chamber Method. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/ojms.2018.84022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|