1
|
Ramalhosa P, Monteiro JG, Rech S, Gestoso I, Álvarez S, Gizzi F, Parretti P, Castro N, Almeida S, Jiménez JL, Ros M, Cardoso C, Lima MJ, Caldeira R, Robalo JI, Carlton JT, Canning-Clode J. The role of marine debris as a vector, dispersal agent, and substrate for non-indigenous species on Oceanic Islands (Northeast Atlantic). MARINE POLLUTION BULLETIN 2025; 214:117732. [PMID: 40020396 DOI: 10.1016/j.marpolbul.2025.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Marine debris (MD) can be a transport vector for diverse marine communities, including non-indigenous species (NIS). This study assessed MD potential role as a substrate for colonization and dispersal vector for NIS in the Madeira Archipelago (NE Atlantic) by examining three MD categories: floating (FMD), seafloor (SMD), and beached (BMD). Opportunistic sampling, conducted in collaboration with local maritime stakeholders, documented MD sightings with photographs and GPS coordinates. A total of 92 MD items were inspected, revealing 108 fouling species across 11 phyla, with 13 % identified as NIS. SMD exhibited the highest proportion of NIS (9.6 %), followed by BMD (4.4 %) and FMD (3.9 %). Notably, the study provides evidence that FMD functions as both a substrate and a dispersal vector for NIS in Madeira waters. Combining biogeographic analyses, oceanographic modelling, and MD identification marks, this study highlighted the North Atlantic Subtropical Gyre's currents as key pathways, transporting MD items from the Wider Caribbean, the North American east coast, and the Iberian Peninsula to Madeira within 2-3 years. These findings emphasize Madeira's dual role as both a recipient and exporter of MD, with implications for NIS introductions and secondary spread. This study underscores the urgent need for standardized monitoring, stakeholder engagement, and proactive MD management strategies to mitigate NIS introductions and protect sensitive marine ecosystems like Macaronesia from the ecological risks of biological invasions.
Collapse
Affiliation(s)
- Patrício Ramalhosa
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal; Faculty of Life Sciences, Universidade da Madeira, Funchal, Portugal; OOM- Oceanic Observatory of Madeira, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação, Funchal, Portugal.
| | - João G Monteiro
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal; Faculty of Life Sciences, Universidade da Madeira, Funchal, Portugal
| | - Sabine Rech
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal; Faculty of Life Sciences, Universidade da Madeira, Funchal, Portugal; Center for Ecology and Sustainable Management of Oceanic Islands ESMOI, Universidad Catolica del Norte, Coquimbo, Chile
| | - Ignacio Gestoso
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal; Department of Biology, Faculty of Marine and Environmental Sciences of University of Cádiz, Puerto Real, Spain
| | - Soledad Álvarez
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal; Faculty of Life Sciences, Universidade da Madeira, Funchal, Portugal
| | - Francesca Gizzi
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal; Faculty of Life Sciences, Universidade da Madeira, Funchal, Portugal
| | - Paola Parretti
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal; Faculty of Life Sciences, Universidade da Madeira, Funchal, Portugal
| | - Nuno Castro
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal; AQUALOGUS, Engineering and Environment Lda, Lisbon, Portugal
| | - Silvia Almeida
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal; Faculty of Life Sciences, Universidade da Madeira, Funchal, Portugal
| | - Jesús Lopez Jiménez
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal
| | - Macarena Ros
- Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Cláudio Cardoso
- OOM- Oceanic Observatory of Madeira, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação, Funchal, Portugal
| | - Maria João Lima
- OOM- Oceanic Observatory of Madeira, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação, Funchal, Portugal
| | - Rui Caldeira
- OOM- Oceanic Observatory of Madeira, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação, Funchal, Portugal
| | - Joana I Robalo
- MARE - Marine and Environmental Sciences Centre / ARNET-Aquatic Research Network, ISPA Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisboa, Portugal
| | | | - João Canning-Clode
- MARE- Marine and Environmental Sciences Centre /ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Portugal; Faculty of Life Sciences, Universidade da Madeira, Funchal, Portugal; Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, USA
| |
Collapse
|
2
|
Lavrador AS, Amaral FG, Moutinho J, Vieira PE, Costa FO, Duarte S. Comprehensive DNA metabarcoding-based detection of non-indigenous invertebrates in recreational marinas through a multi-substrate approach. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106660. [PMID: 39088889 DOI: 10.1016/j.marenvres.2024.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
eDNA metabarcoding has been increasingly employed in the monitoring of marine invertebrate non-indigenous species (NIS), in particular using filtered seawater. However, comprehensive detection of all NIS may require a diversity of sampling substrates. To assess the effectiveness of 5 sample types (hard and artificial substrates, water, zooplankton) on the recovery of invertebrates' diversity, two marinas were monitored over three time points, using COI and 18S rRNA genes as DNA metabarcoding markers. We detected a total of 628 species and 23 NIS, with only up to 9% species and 17% of NIS detected by all sample types. Hard and artificial substrates were similar to each other but displayed the most significant difference in invertebrate recovery when compared to water eDNA and zooplankton. Five NIS are potential first records for Portugal. No NIS were detected in all sample types and seasons, highlighting the need for varied sampling approaches, and consideration of temporal variation for comprehensive marine NIS surveillance.
Collapse
Affiliation(s)
- Ana S Lavrador
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Fábio G Amaral
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Jorge Moutinho
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Pedro E Vieira
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Filipe O Costa
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sofia Duarte
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
3
|
Castro N, Félix PM, Gestoso I, Costa JL, Canning-Clode J. Management of non-indigenous species in Macaronesia: Misconceptions and alerts to decision-makers. MARINE POLLUTION BULLETIN 2024; 204:116506. [PMID: 38796992 DOI: 10.1016/j.marpolbul.2024.116506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Human-induced pressures have led to substantial changes in marine ecosystems worldwide, with the introduction of non-indigenous species (NIS) emerging as a significant threat to ecological, economic, and social aspects. The Macaronesian islands, comprising the Azores, Madeira, Canary Islands, and Cabo Verde archipelagos, are regions where the regional economy is dependent on marine resources (e.g., marine traffic, ecotourism and fisheries). Despite their importance, concerted efforts to manage marine biological invasions in Macaronesia have been scarce. In this context, the current study aims to contribute to the much-needed debate on biosecurity measures in this unique insular ecosystem to prevent and mitigate the impact of NIS. By adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria, this work validated and analyzed 260 documents providing insights into the management of NIS in Macaronesia until 2022. These documents revealed the presence of 29 Invasive Alien Species (IAS), most of which are misconceptions regarding this terminology. Most studies focused on the stages of early detection, rapid response, and eradication across the archipelagos. Cabo Verde had comparatively fewer studies. The most common techniques include monitoring/sampling, literature reviews, and taxonomic reviews. NIS introduction pathways were mainly attributed to transport (stowaway) and unaided migration, with ship fouling, ballast water, rafting, ocean currents, and tropicalization being also identified as significant contributors. This systematic review highlights the current efforts to establish robust biosecurity protocols in Macaronesia and emphasizes the urgent need to safeguard the region's ecological, economic, and social well-being.
Collapse
Affiliation(s)
- Nuno Castro
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Faculty of Life Sciences, University of Madeira, Funchal, Portugal; MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - Pedro M Félix
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ignacio Gestoso
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Faculty of Life Sciences, University of Madeira, Funchal, Portugal; Department of Biology, Faculty of Marine and Environmental Sciences & Marine Research Institute (INMAR), University of Cadiz (UCA), Puerto Real, Cadiz, Spain; Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - José L Costa
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - João Canning-Clode
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Faculty of Life Sciences, University of Madeira, Funchal, Portugal; Smithsonian Environmental Research Center, Edgewater, MD, USA
| |
Collapse
|
4
|
Souto J, Ramalhosa P, Ferrario J, Png-Gonzalez L, Álvarez S, Gestoso I, Nogueira N, Canning-Clode J. New species and new records of bryozoan species from fouling communities in the Madeira Archipelago (NE Atlantic). MARINE BIODIVERSITY : A JOURNAL OF THE SENCKENBERG RESEARCH INSTITUTE 2023; 53:49. [PMID: 37424747 PMCID: PMC10329086 DOI: 10.1007/s12526-023-01355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/30/2023] [Accepted: 04/27/2023] [Indexed: 07/11/2023]
Abstract
Hull fouling is considered to be the most significant vector of introduction of marine non-indigenous species (NIS) in the Madeira Archipelago (NE Atlantic) because these islands provide a vital passage route for many ships. The transfer of species between boat hulls and artificial substrates in marinas is known to be high. Bryozoans are among the most common groups of marine invertebrates growing on this type of substrate. In recent years, significant advances have been made in our knowledge about the biodiversity of bryozoans in the Madeira Archipelago. Nonetheless, the currently recognized numbers remain far from reflecting the actual bryozoan species richness. In this context, we examine bryozoan samples stemming from NIS monitoring surveys on artificial substrates along the southern coast of the Madeira Archipelago, in four recreational marinas and in two offshore aquaculture farms. This has yielded new information about ten bryozoan species. Two of them, Crisia noronhai sp. nov. and Amathia maderensis sp. nov., are described for the first time, although at least the first one was previously recorded from Madeira but misidentified. Bugula ingens, Cradoscrupocellaria insularis, Scruparia ambigua, and Celleporaria brunnea are recorded for the first time in Madeira. Moreover, the material of C. brunnea was compared with the type, and a biometric analysis was performed with material from the Atlantic and Mediterranean. All samples identified as C. brunnea in both regions are the same species, and the variations described in the literature apparently reflect high intracolonial variability. Finally, we provide new information for the descriptions of 4 additional bryozoans, namely, Crisia sp. aff. elongata, Cradoscrupocellaria bertholletii, Scrupocaberea maderensis, and Tricellaria inopinata.
Collapse
Affiliation(s)
- Javier Souto
- Institut Für Paläontologie, Geozentrum, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Patrício Ramalhosa
- MARE (Marine and Environmental Sciences Centre)/ARNET (Aquatic Research Network), Agência Regional Para o Desenvolvimento da Investigação Tecnologia E Inovação (ARDITI) Funchal, Madeira, Portugal
| | - Jasmine Ferrario
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy
| | - Lydia Png-Gonzalez
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente S/N, 07015 Palma, Spain
| | - Soledad Álvarez
- MARE (Marine and Environmental Sciences Centre)/ARNET (Aquatic Research Network), Agência Regional Para o Desenvolvimento da Investigação Tecnologia E Inovação (ARDITI) Funchal, Madeira, Portugal
| | - Ignacio Gestoso
- MARE (Marine and Environmental Sciences Centre)/ARNET (Aquatic Research Network), Agência Regional Para o Desenvolvimento da Investigação Tecnologia E Inovação (ARDITI) Funchal, Madeira, Portugal
- Department of Biology, Faculty of Marine and Environmental Sciences of University of Cádiz, Puerto Real, Spain
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037 USA
| | - Natacha Nogueira
- Interdisciplinary Centre of Marine and Environmental Research, Av. General Norton de Matos, 4450-238 Matosinhos, Portugal
- Regional Directorate for the Sea, Lota Do Funchal 1º Piso, Rua Virgílio Teixeira, 9004-562 Funchal, Madeira Portugal
| | - João Canning-Clode
- MARE (Marine and Environmental Sciences Centre)/ARNET (Aquatic Research Network), Agência Regional Para o Desenvolvimento da Investigação Tecnologia E Inovação (ARDITI) Funchal, Madeira, Portugal
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037 USA
| |
Collapse
|
5
|
Castro N, Gestoso I, Ramalhosa P, Lopes E, Almeida C, Costa A, Parente M, Cacabelos E, Herrera R, Costa JL, Canning-Clode J. Testing differences of marine non-indigenous species diversity across Macaronesia using a standardised approach. MARINE POLLUTION BULLETIN 2023; 192:115021. [PMID: 37209662 DOI: 10.1016/j.marpolbul.2023.115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023]
Abstract
The introduction of non-indigenous species (NIS) induces severe impacts on marine biodiversity and ecosystems. Macaronesia is an ecologically relevant region where several NIS were detected recently. For the first time, a standard experimental approach was designed to examine biofouling assemblages and investigate NIS across the region. In this context, sessile biofouling assemblages were examined in four recreational marinas in all the Macaronesian archipelagos from 2018 to 2020: the Azores, Madeira, Canary Islands, and Cabo Verde. We hypothesised that NIS numbers, abundance, and recruitment differed in each location due to abiotic and biotic features. From the Azores (higher latitudes) to Cabo Verde (lower latitudes), NIS recruitment and percentage cover decreased following a partial latitude gradient. The present study unveiled 25 NIS, with new records for the Azores (two cryptogenic species), Canary Islands (one NIS and two cryptogenic species), and Cabo Verde (three NIS and three cryptogenic species). The present research represents a pioneer and relevant step in advancing our current understanding of marine biological invasions in Macaronesia, employing a standard and low-cost approach.
Collapse
Affiliation(s)
- Nuno Castro
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - Ignacio Gestoso
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Department of Biology, Faculty of Marine and Environmental Sciences of University of Cádiz, Puerto Real, Spain; Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Patrício Ramalhosa
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal
| | - Evandro Lopes
- ISECMAR-UTA, Instituto de Engenharias e Ciências do Mar da Universidade Técnica do Atlântico, CP 163 Mindelo, São Vicente, Cabo Verde; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores - Faculdade de Ciências e Tecnologias, Universidade dos Açores, R. Mãe de Deus 13A, 9500-321 Ponta Delgada, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Corrine Almeida
- ISECMAR-UTA, Instituto de Engenharias e Ciências do Mar da Universidade Técnica do Atlântico, CP 163 Mindelo, São Vicente, Cabo Verde
| | - Ana Costa
- InBIO Associate Laboratory, CIBIO, Research Center in Biodiversity and Genetic Resources, Universidade dos Açores, Ponta Delgada, Portugal; Faculty of Sciences and Technologies, University of the Azores, Ponta Delgada, Portugal
| | - Manuela Parente
- InBIO Associate Laboratory, CIBIO, Research Center in Biodiversity and Genetic Resources, Universidade dos Açores, Ponta Delgada, Portugal; Faculty of Sciences and Technologies, University of the Azores, Ponta Delgada, Portugal
| | - Eva Cacabelos
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Hydrosphere S.L Environmental laboratory for the study of aquatic ecosystems, Vigo, Spain; Marine Research Institute (IIM-CSIC), Vigo, Spain
| | - Rogélio Herrera
- Viceconsejería de Medio Ambiente del Gobierno de Canarias, Las Palmas, Spain
| | - José L Costa
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - João Canning-Clode
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Smithsonian Environmental Research Center, Edgewater, MD, USA
| |
Collapse
|
6
|
Sempere-Valverde J, Ramalhosa P, Chebaane S, Espinosa F, Monteiro JG, Bernal-Ibáñez A, Cacabelos E, Gestoso I, Guerra-García JM, Canning-Clode J. Location and building material determine fouling assemblages within marinas: A case study in Madeira Island (NE Atlantic, Portugal). MARINE POLLUTION BULLETIN 2023; 187:114522. [PMID: 36623468 DOI: 10.1016/j.marpolbul.2022.114522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Marinas are hubs for non-indigenous species (NIS) and constitute the nodes of a network of highly modified water bodies (HMWB) connected by recreational maritime traffic. Floating structures, such as pontoons, are often the surfaces with higher NIS abundance inside marinas and lead the risk for NIS introduction, establishment and spread. However, there is still little information on how the location within the marina and the substratum type can influence the recruitment of fouling assemblages depending on water parameters and substratum chemical composition. In this study, fouling recruitment was studied using an experimental approach with three materials (basalt, concrete and HDPE plastic) in two sites (close and far to the entrance) in two marinas of Madeira Island (NE Atlantic, Portugal). The structure of benthic assemblages after 6- and 12-months colonization, as well as biotic abundance, NIS abundance, richness, diversity, assemblages' volume, biomass and assemblages' morphology were explored. Differences between marinas were the main source of variation for both 6- and 12-month assemblages, with both marinas having different species composition and biomass. The inner and outer sites of both marinas varied in terms of structure and heterogeneity of assemblages and heterogeneity of morphological traits, but assemblages did not differ among substrata. However, basalt had a higher species richness and diversity while concrete showed a higher bioreceptivity in terms of total biotic coverage than the rest of materials. Overall, differences between and within marinas could be related to their structural morphology. This study can be valuable for management of urban ecosystems, towards an increase in the environmental and ecological status of existing marinas and their HMWB and mitigation coastal ecosystems degradation.
Collapse
Affiliation(s)
- Juan Sempere-Valverde
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes S/N, 41012 Sevilla, Spain; MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal.
| | - Patrício Ramalhosa
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal
| | - Sahar Chebaane
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Free Espinosa
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes S/N, 41012 Sevilla, Spain
| | - João Gama Monteiro
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Faculty of Life Sciences, Universidade da Madeira, Portugal
| | - Alejandro Bernal-Ibáñez
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Eva Cacabelos
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal
| | - Ignacio Gestoso
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, USA; Department of Biology, Faculty of Marine and Environmental Sciences of University of Cádiz, Puerto Real, Spain
| | - José Manuel Guerra-García
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes S/N, 41012 Sevilla, Spain
| | - João Canning-Clode
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, USA
| |
Collapse
|
7
|
From Plates to Baits: Using a Remote Video Foraging System to Study the Impact of Foraging on Fouling Non-Indigenous Species. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Marinas are a gateway for the introduction and establishment of non-indigenous species (NIS). In these habitats, competition and predation are crucial determinants for NIS establishment and invasiveness. However, fish trophic preferences and biotic effects inside marinas are poorly known. This study proposes a novel method that combines the deployment of settlement plates to recruit different assemblages, followed by their use as bait in remote underwater video systems. This combined approach, addressed as a remote video foraging system (RVFS), can record fish foraging behaviour, including feeding choices and their impacts on fouling assemblage composition. An experimental RVFS trial carried out in a marina of Madeira Island, Portugal (NE Atlantic), identified the Mediterranean parrotfish, Sparisoma cretense, as the most important fouling grazer in the area. S. cretense behaved as a generalist and increased the heterogeneity of fouling assemblages, which can hamper NIS dominance of the fouling and reduce the pressure of propagules from the marina to the natural environment. The RVFS tool was useful to understand the trophic links between foragers and fouling and has the potential to provide relevant information for the management of NIS introductions, establishment and spread.
Collapse
|