1
|
Makris G, Sandoval-Denis M, Crous PW, Kanetis LI. Kalmusia variispora (Didymosphaeriaceae, Dothideomycetes) Associated with the Grapevine Trunk Disease Complex in Cyprus. Pathogens 2025; 14:428. [PMID: 40430749 PMCID: PMC12113838 DOI: 10.3390/pathogens14050428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Grapevine trunk diseases (GTDs) are widespread worldwide, causing serious economic losses to the vitiviniculture industry. The etiology of the complex pathogenic mycobiome associated with this group of diseases is critical to implementing appropriate management strategies. Diseased grapevines exhibiting typical GTD symptoms were collected from vineyards in different provinces of Cyprus, resulting in 19 pycnidial isolates. A subsequent multilocus sequence analysis of six genetic loci (ITS, LSU, SSU, b-tub, tef1-a, and rpb2) identified them as Kalmusia variispora, and twelve representative isolates are included in the phylogenetic analyses. According to pathogenicity trials on two-year-old potted vines (cv. Mavro), all tested isolates were pathogenic, exhibiting light to dark brown discoloration and lesions of varying levels, ranging from 4 to 12.3 cm long. The capacity of K. variispora isolates to produce cell-wall-degrading exoenzymes was qualitatively estimated on solid media. Cellulase, pectinase, and laccase production were evident for all the tested isolates, except isolate CBS 151329, where the latter enzyme was undetected. The severity of the symptoms was consistent with the laccase-producing capacity. The present study confirmed the association of K. variispora with grapevines as a pathogen and represents the first description of this ascomycete as a GTD causal agent in Cyprus. This highly virulent species may play a significant role in the GTD complex, and its biological cycle and epidemiology should be further investigated.
Collapse
Affiliation(s)
- Georgios Makris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus;
| | - Marcelo Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (M.S.-D.); (P.W.C.)
| | - Pedro W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (M.S.-D.); (P.W.C.)
| | - Loukas I. Kanetis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus;
| |
Collapse
|
2
|
Castillo-Novales D, Vega-Celedón P, Larach A, Seeger M, Besoain X. Native Bacteria Are Effective Biocontrol Agents at a Wide Range of Temperatures of Neofusicoccum parvum, Associated with Botryosphaeria Dieback on Grapevine. PLANTS (BASEL, SWITZERLAND) 2025; 14:1043. [PMID: 40219111 PMCID: PMC11990564 DOI: 10.3390/plants14071043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Botryosphaeria dieback, a significant grapevine trunk disease (GTD) caused by various pathogens, represents a serious threat to viticulture. Biocontrol emerges as a promising sustainable alternative to chemical control, aligning toward environmentally friendly viticultural practices. This study evaluated the in vitro, in vivo, and in situ biocontrol potential of Chilean native bacteria isolated from wild flora and endophytic communities of grapevine against Neofusicoccum parvum. In vitro biocontrol assays screened 15 bacterial strains at 10, 22, and 30 °C, identifying four Pseudomonas strains with >30% mycelial growth inhibition. In diffusible agar and double plate assays, plant growth-promoting bacteria AMCR2b and GcR15a, which were isolated from native flora, achieved significant inhibition of N. parvum growth, with reductions of up to ~50% (diffusible agar) and up to ~46% (double plate). In vivo experiments on grapevine cuttings revealed that strains AMCR2b and GcR15a inhibited mycelial growth (17-90%); younger grapevines (1-5 years) were more susceptible to N. parvum. In situ trials using Vitis vinifera L. cv. Cabernet Sauvignon and Sauvignon Blanc demonstrated higher fungal susceptibility in Sauvignon Blanc. These results highlight the potential of Pseudomonas sp. AMCR2b and GcR15a to be effective biocontrol agents against GTDs at a wide range of temperatures, contributing to sustainable viticulture.
Collapse
Affiliation(s)
- Diyanira Castillo-Novales
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Paulina Vega-Celedón
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Alejandra Larach
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Ximena Besoain
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| |
Collapse
|
3
|
Krošelj S, Mikulic-Petkovsek M, Kjuder D, Pavlin A, Likar M, Škvarč A, Biniari K, Rusjan D. Health Status and Disinfection Prior to Grafting Affect the Phenolic Profile of Grapevine Hetero-Grafts and Grafting Yield. PLANTS (BASEL, SWITZERLAND) 2025; 14:444. [PMID: 39943006 PMCID: PMC11820403 DOI: 10.3390/plants14030444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025]
Abstract
Grapevine trunk disease (GTD) is a major threat to grapevine propagation, severely affecting the growth and development of young vines. As one of the most destructive plant diseases in the world, GTD spreads easily through propagation material and threatens the sustainability of vineyards. While effective, biologically friendly treatments remain unavailable. This study investigated the graft yield, the growth potential of grapevine hetero-grafts, and phenolic responses focusing on (i) GTD scion health status (healthy-HLT; asymptomatic-ASYM; symptomatic-SYM) and (ii) disinfection methods. Grafting with HLT scions achieved the highest yield rates, particularly with Serenade® ASO (75%) and BioAction ES (79%), while infected scions showed lower yields. The growth potential of the scions was not affected by the disinfection method or the health status of the scions. Phenolic composition varied between scions, graft callus, rootstock canes, and roots, with scion health status strongly influencing most metabolites. Higher levels of flavanols were observed in HLT scions treated with BioAction ES and Serenade® ASO, with these treatments resulting in 1.6 and 1.5 times higher procyanidin dimer levels, respectively, compared to Beltanol. Flavanols and stilbenes were lower in the callus tissue of grafts with healthy scions compared to infected scions. Rootstock also showed higher levels of catechin and procyanidin dimers in grafts with HLT scions. These results indicate that the health status of scion GTD and the disinfection methods significantly influence the graft yield and phenolic composition, providing valuable insights for GTD management.
Collapse
Affiliation(s)
- Saša Krošelj
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (M.M.-P.); (D.R.)
| | - Maja Mikulic-Petkovsek
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (M.M.-P.); (D.R.)
| | - Domen Kjuder
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (M.M.-P.); (D.R.)
| | - Anja Pavlin
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (M.M.-P.); (D.R.)
| | - Matevž Likar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia;
| | - Andreja Škvarč
- Chamber of Agriculture and Forestry of Slovenia, Agriculture and Forestry Institute Nova Gorica, SI-5101 Nova Gorica, Slovenia;
| | - Katerina Biniari
- Laboratory of Viticulture, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Denis Rusjan
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (M.M.-P.); (D.R.)
| |
Collapse
|
4
|
Hasanaliyeva G, Furiosi M, Rossi V, Caffi T. Cover crops lower the dispersal of grapevine foliar pathogens from the ground and contribute to early-season disease management. FRONTIERS IN PLANT SCIENCE 2024; 15:1498848. [PMID: 39588085 PMCID: PMC11586201 DOI: 10.3389/fpls.2024.1498848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024]
Abstract
Currently, fungicides are widely used to control grapevine foliar diseases. This study explored the possibility of decreasing the use of fungicides to control these diseases using cover crops in the inter-row of vineyards. In small-scale experiments, we found that cover crops (namely horseradish Armoracia rusticana) were able to (i) reduce the numbers of airborne conidia of Botrytis cinerea (originating from an inoculum source above the soil) escaping the cover canopy by >85% with respect to the base soil and (ii) reduce the number of raindrops impacting the soil by 46%-74%, depending on the cover crop height and rain-originated splash droplets that escaped from the ground by 75%-95%, which reduced splash-borne inoculum. In two organic vineyards, for 2 years, fall- (mixture of Lolium perenne, Onobrychis viciifolia, and Trifolium repens) or spring-sown (a mixture of Vicia sativa and Sinapis sp.) cover crops could significantly delay (by 14-30 days) and reduce (till >90%) the development of downy and powdery mildew epidemics. This effect was more evident in plots untreated with fungicides than in treated plots. Cover crops also delayed the onset of epidemics depending on the type of cover crop and disease. Cover crops did not negatively affect grape yield and quality. Overall, the results showed that the introduction of cover crops in vineyard management can significantly contribute to disease control by lowering the load from ground to grapevine canopies of pathogen inocula, delaying disease onset, and reducing diseases severity during the season.
Collapse
Affiliation(s)
- Gultekin Hasanaliyeva
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Margherita Furiosi
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center for Plant Health Modelling (PHeM), Department of Sustainable Crop Production, Piacenza, Italy
| | - Vittorio Rossi
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center for Plant Health Modelling (PHeM), Department of Sustainable Crop Production, Piacenza, Italy
| | - Tito Caffi
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center for Plant Health Modelling (PHeM), Department of Sustainable Crop Production, Piacenza, Italy
| |
Collapse
|
5
|
Picot A, Prévost C, Belair M, Coton E, Pensec F. Development of a Multiplex PCR Assay to Detect Neofusicoccum parvum and Botryosphaeria dothidea in Walnut. Curr Microbiol 2024; 81:432. [PMID: 39472323 DOI: 10.1007/s00284-024-03954-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/12/2024] [Indexed: 11/21/2024]
Abstract
In walnut orchards, frequent symptoms of cankers and dieback (fruit blight, twig and branch cankers up to tree death) are caused by different agents, in particular by Botryosphaeriaceae, primarily Neofusicoccum parvum and Botryosphaeria dothidea. This study aimed at developing a sensitive, rapid, specific and internally controlled multiplex PCR assay for the detection of these species. The ability of the multiplex PCR, with an internal inhibition control (i.e. E. coli DNA), to specifically and successfully detect members of the two targeted species was validated using 11 different isolates for each fungal target (inclusivity) and 20 tree-associated fungal species different from B. dothidea or N. parvum (exclusivity). Applicability to plant materials was further investigated and showed an absence of amplification for asymptomatic husk or twig samples while the amplification profiles of symptomatic tissues ranged from no amplification to amplification of both species, in correlation with the observed fungal contamination level. In conclusion, we developed a rapid diagnostic tool for simultaneous detection of two major fungal pathogens of walnut. Although this protocol was tailored for walnut husks and twigs, applicability to any plant sample contaminated by these pathogens can be considered.
Collapse
Affiliation(s)
- Adeline Picot
- Laboratoire Universitaire de Biodiversité Et Écologie Microbienne, Univ Brest, INRAE, 29280, Plouzané, France
| | - Claire Prévost
- Laboratoire Universitaire de Biodiversité Et Écologie Microbienne, Univ Brest, INRAE, 29280, Plouzané, France
| | - Marie Belair
- Laboratoire Universitaire de Biodiversité Et Écologie Microbienne, Univ Brest, INRAE, 29280, Plouzané, France
| | - Emmanuel Coton
- Laboratoire Universitaire de Biodiversité Et Écologie Microbienne, Univ Brest, INRAE, 29280, Plouzané, France
| | - Flora Pensec
- Laboratoire Universitaire de Biodiversité Et Écologie Microbienne, Univ Brest, INRAE, 29280, Plouzané, France.
| |
Collapse
|
6
|
Franco GC, Leiva J, Nand S, Lee DM, Hajkowski M, Dick K, Withers B, Soto L, Mingoa BR, Acholonu M, Hutchins A, Neely L, Anand A. Soil Microbial Communities and Wine Terroir: Research Gaps and Data Needs. Foods 2024; 13:2475. [PMID: 39200402 PMCID: PMC11354026 DOI: 10.3390/foods13162475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Microbes found in soil can have a significant impact on the taste and quality of wine, also referred to as wine terroir. To date, wine terroir has been thought to be associated with the physical and chemical characteristics of the soil. However, there is a fragmented understanding of the contribution of vineyard soil microbes to wine terroir. Additionally, vineyards can play an important role in carbon sequestration since the promotion of healthy soil and microbial communities directly impacts greenhouse gas emissions in the atmosphere. We review 24 studies that explore the role of soil microbial communities in vineyards and their influence on grapevine health, grape composition, and wine quality. Studies spanning 2015 to 2018 laid a foundation by exploring soil microbial biogeography in vineyards, vineyard management effects, and the reservoir function of soil microbes for grape-associated microbiota. On the other hand, studies spanning 2019 to 2023 appear to have a more specific and targeted approach, delving into the relationships between soil microbes and grape metabolites, the microbial distribution at different soil depths, and microbial influences on wine flavor and composition. Next, we identify research gaps and make recommendations for future work. Specifically, most of the studies utilize targeted sequencing (16S, 26S, ITS), which only reveals community composition. Utilizing high-throughput omics approaches such as shotgun sequencing (to infer function) and transcriptomics (for actual function) is vital to determining the specific mechanisms by which soil microbes influence grape chemistry. Going forward, understanding the long-term effects of vineyard management practices and climate change on soil microbiology, grapevine trunk diseases, and the role of bacteriophages in vineyard soil and wine-making would be a fruitful investigation. Overall, the studies presented shed light on the importance of soil microbiomes and their interactions with grapevines in shaping wine production. However, there are still many aspects of this complex ecosystem that require further exploration and understanding to support sustainable viticulture and enhance wine quality.
Collapse
Affiliation(s)
- Gabriela Crystal Franco
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Jasmine Leiva
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Sanjiev Nand
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Danica Marvi Lee
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Michael Hajkowski
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Katherine Dick
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Brennan Withers
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - LuzMaria Soto
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Benjamin-Rafael Mingoa
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Michael Acholonu
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Amari Hutchins
- Department of Biology, Howard University, 2400 6th St NW, Washington, DC 20059, USA;
| | - Lucy Neely
- Neely Winery, Spring Ridge Vineyard, 555 Portola Road, Portola Valley, CA 94028, USA;
| | - Archana Anand
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| |
Collapse
|
7
|
Kenfaoui J, Amiri S, Goura K, Radouane N, Mennani M, Belabess Z, Tahiri A, Fontaine F, Barka EA, Ghadraoui LE, Lahlali R. Uncovering the hidden diversity of fungi associated with grapevine trunk diseases in the Moroccan vineyards. TROPICAL PLANT PATHOLOGY 2024; 49:662-688. [DOI: 10.1007/s40858-024-00656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/22/2024] [Indexed: 01/05/2025]
|
8
|
Ji T, Salotti I, Altieri V, Li M, Rossi V. Seasonal Periodicity of the Airborne Spores of Fungi Causing Grapevine Trunk Diseases: An Analysis of 247 Studies Published Worldwide. PLANT DISEASE 2024; 108:1501-1513. [PMID: 37874281 DOI: 10.1094/pdis-04-23-0709-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Grapevine trunk diseases (GTDs) are among the most devastating grapevine diseases globally. GTDs are caused by numerous fungi belonging to different taxa, which release spores into the vineyard and infect wood tissue, mainly through wounds caused by viticultural operations. The timing of operations to avoid infection is critical concerning the periodicity of GTD spores in vineyards, and many studies have been conducted in different grape-growing areas worldwide. However, these studies provide conflicting and fragmented information. To synthesize current knowledge, we conducted a systematic literature review, extracted quantitative data from published papers, and used these data to identify trends and knowledge gaps that need to be addressed in future studies. Our database included 26 papers covering 247 studies and 3,529 spore sampling records concerning a total of 29 fungal taxa responsible for Botryosphaeria dieback (BD), Esca complex (EC), and Eutypa dieback (ED). We found a clear seasonality in the presence and abundance of BD spores, with a peak from fall to spring, more in the northern hemisphere than in the southern hemisphere, but not for EC and ED. Spores of these fungi were present throughout the growing season in both hemispheres, possibly because of higher variability in spore types, sporulation conditions, and spore release mechanisms in EC and ED fungi than in BD. Our analysis has limitations because of knowledge gaps and data availability for some fungi (e.g., basidiomycetes, which cause EC). These limitations are discussed to facilitate further research.
Collapse
Affiliation(s)
- Tao Ji
- Department of Horticulture, Agricultural College of Shihezi University/Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi 832003, China
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, Piacenza 29122, Italy
| | - Irene Salotti
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, Piacenza 29122, Italy
| | - Valeria Altieri
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, Piacenza 29122, Italy
| | - Ming Li
- National Engineering Research Center for Information Technology in Agriculture (NERCITA)/Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Vittorio Rossi
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, Piacenza 29122, Italy
| |
Collapse
|
9
|
Ji T, Altieri V, Salotti I, Li M, Rossi V. Role of Rain in the Spore Dispersal of Fungal Pathogens Associated with Grapevine Trunk Diseases. PLANT DISEASE 2024; 108:1041-1052. [PMID: 37822098 DOI: 10.1094/pdis-03-23-0403-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Grapevine trunk diseases are caused by a complex of fungi that belong to different taxa, which produce different spore types and have different spore dispersal mechanisms. It is commonly accepted that rainfall plays a key role in spore dispersal, but there is conflicting information in the literature on the relationship between rain and spore trapping in aerobiology studies. We conducted a systematic literature review, extracted quantitative data from published papers, and used the pooled data for Bayesian analysis of the effect of rain on spore trapping. We selected 17 papers covering 95 studies and 8,778 trapping periods, concerning a total of 26 fungal taxa causing Botryosphaeria dieback (BD), Esca complex (EC), and Eutypa dieback (ED). Results confirmed the role of rain in the spore dispersal of these fungi but revealed differences among the different fungi. Rain was a good predictor of spore trapping for ED (AUROC = 0.820) and BD (0.766) but not for the ascomycetes involved in EC (0.569) and not for the only basidiomycetes, Fomitiporella viticola, studied as for spore discharge (AUROC not significant). Prediction of spore trapping was more accurate for negative prognosis than for positive prognosis; a rain cutoff of ≥0.2 mm provided an overall accuracy of ≥0.61 for correct prognoses. Spores trapped in rainless periods accounted for only <10% of the total spores. Our analysis had some drawbacks, which were mainly caused by knowledge gaps and limited data availability; these drawbacks are discussed to facilitate further research.
Collapse
Affiliation(s)
- Tao Ji
- Department of Horticulture, Agricultural College of Shihezi University/Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang, China
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Valeria Altieri
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Irene Salotti
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Ming Li
- National Engineering Research Center for Information Technology in Agriculture (NERCITA)/Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Vittorio Rossi
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
10
|
Brandenburg EM, Voegele RT, Fischer M, Behrens FH. Arthropods as Vectors of Grapevine Trunk Disease Pathogens: Quantification of Phaeomoniella chlamydospora on Arthropods and Mycobiome Analysis of Earwig Exoskeletons. J Fungi (Basel) 2024; 10:237. [PMID: 38667908 PMCID: PMC11051531 DOI: 10.3390/jof10040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Viticulture worldwide is challenged by grapevine trunk diseases (GTDs). Involvement of arthropods in the dissemination process of GTD pathogens, notably esca pathogens, is indicated after detection of associated pathogens on arthropod exoskeletons, and demonstration of transmission under artificial conditions. The present study is the first to quantify spore loads via qPCR of the esca-relevant pathogen Phaeomoniella chlamydospora on arthropods collected in German vineyards, i.e., European earwigs (Forficula auricularia), ants (Formicidae), and two species of jumping spiders (Marpissa muscosa and Synageles venator). Quantification of spore loads showed acquisition on exoskeletons, but most arthropods carried only low amounts. The mycobiome on earwig exoskeletons was described for the first time to reveal involvement of earwigs in the dispersal of GTDs in general. Metabarcoding data support the potential risk of earwigs as vectors for predominantly Pa. chlamydospora and possibly Eutypa lata (causative agent of Eutypa dieback), as respective operational taxonomical unit (OTU) assigned genera had relative abundances of 6.6% and 2.8% in total reads, even though with great variation between samples. Seven further GTD-related genera were present at a very low level. As various factors influence the successful transmission of GTD pathogens, we hypothesize that arthropods might irregularly act as direct vectors. Our results highlight the importance of minimizing and protecting pruning wounds in the field.
Collapse
Affiliation(s)
- Elisa Maria Brandenburg
- Julius Kühn-Institute (JKI), Institute for Plant Protection in Fruit Crops and Viticulture, 76833 Siebeldingen, Germany; (M.F.); (F.H.B.)
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Ralf Thomas Voegele
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Michael Fischer
- Julius Kühn-Institute (JKI), Institute for Plant Protection in Fruit Crops and Viticulture, 76833 Siebeldingen, Germany; (M.F.); (F.H.B.)
| | - Falk Hubertus Behrens
- Julius Kühn-Institute (JKI), Institute for Plant Protection in Fruit Crops and Viticulture, 76833 Siebeldingen, Germany; (M.F.); (F.H.B.)
| |
Collapse
|
11
|
Larach A, Vega-Celedón P, Castillo-Novales D, Tapia L, Cuneo I, Cádiz F, Seeger M, Besoain X. Diplodia seriata Biocontrol Is Altered via Temperature and the Control of Bacteria. Microorganisms 2024; 12:350. [PMID: 38399754 PMCID: PMC10892200 DOI: 10.3390/microorganisms12020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Grapevine trunk diseases (GTDs) attack the vine's wood, devastating vineyards worldwide. Chile is the world's fourth-largest wine exporter, and Cabernet Sauvignon is one of the most economically important red wine varieties. Botryosphaeria dieback is an important GTD, and Diplodia seriata is one of the main pathogenic species. Biocontrol studies of these pathogens are commonly carried out at different incubation times but at a single temperature. This study aimed to evaluate the biocontrol effect of Chilean PGPB and grapevine endophytic bacteria against D. seriata at different temperatures. We analyzed the biocontrol effect of Pseudomonas sp. GcR15a, Pseudomonas sp. AMCR2b and Rhodococcus sp. PU4, with three D. seriata isolates (PUCV 2120, PUCV 2142 and PUCV 2183) at 8, 22 and 35 °C. Two dual-culture antagonism methods (agar plug diffusion and double plate) were used to evaluate the in vitro effect, and an in vivo test was performed with Cabernet Sauvignon cuttings. In vitro, the greatest inhibitions were obtained using the agar plug diffusion method and at a temperature of 8 °C, where Rhodococcus sp. PU4 obtains a 65% control (average) and Pseudomonas sp. GcR15a a 57% average. At 22 °C, only strains of Pseudomonas sp. show control. At 35 °C, one Pseudomonas strain shows the highest control (38%), on average, similar to tebuconazole (33%), and then Rhodococcus sp. (30%). In vivo, a biocontrol effect is observed against two D. seriata isolates, while the PUCV 2142 proves to be more resistant to control. The biocontrol ability at low temperatures is promising for effective control in the field, where infections occur primarily in winter.
Collapse
Affiliation(s)
- Alejandra Larach
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile; (P.V.-C.); (D.C.-N.); (L.T.); (I.C.); (F.C.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Millennium Nucleus BioGEM, Valparaíso 2390123, Chile
| | - Paulina Vega-Celedón
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile; (P.V.-C.); (D.C.-N.); (L.T.); (I.C.); (F.C.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
| | - Diyanira Castillo-Novales
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile; (P.V.-C.); (D.C.-N.); (L.T.); (I.C.); (F.C.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Millennium Nucleus BioGEM, Valparaíso 2390123, Chile
| | - Lorena Tapia
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile; (P.V.-C.); (D.C.-N.); (L.T.); (I.C.); (F.C.)
| | - Italo Cuneo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile; (P.V.-C.); (D.C.-N.); (L.T.); (I.C.); (F.C.)
| | - Fabiola Cádiz
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile; (P.V.-C.); (D.C.-N.); (L.T.); (I.C.); (F.C.)
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Millennium Nucleus BioGEM, Valparaíso 2390123, Chile
| | - Ximena Besoain
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile; (P.V.-C.); (D.C.-N.); (L.T.); (I.C.); (F.C.)
- Millennium Nucleus BioGEM, Valparaíso 2390123, Chile
| |
Collapse
|
12
|
Leal C, Trotel-Aziz P, Gramaje D, Armengol J, Fontaine F. Exploring Factors Conditioning the Expression of Botryosphaeria Dieback in Grapevine for Integrated Management of the Disease. PHYTOPATHOLOGY 2024; 114:21-34. [PMID: 37505093 DOI: 10.1094/phyto-04-23-0136-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Species from the Botryosphaeriaceae family are the causal agents of Botryosphaeria dieback (BD), a worldwide grapevine trunk disease. Because of their lifestyle and their adaptation to a wide range of temperatures, these fungi constitute a serious threat to vineyards and viticulture, especially in the actual context of climate change. Grapevine plants from both nurseries and vineyards are very susceptible to infections by botryosphaeriaceous fungi due to several cuts and wounds made during their propagation process and their entire life cycle, respectively. When decline becomes chronic or apoplectic, it reduces the longevity of the vineyard and affects the quality of the wine, leading to huge economic losses. Given the environmental impact of fungicides, and their short period of effectiveness in protecting pruning wounds, alternative strategies are being developed to fight BD fungal pathogens and limit their propagation. Among them, biological control has been recognized as a promising and sustainable alternative. However, there is still no effective strategy for combating this complex disease, conditioned by both fungal life traits and host tolerance traits, in relationships with the whole microbiome/microbiota. To provide sound guidance for an effective and sustainable integrated management of BD, by combining the limitation of infection risk, tolerant grapevine cultivars, and biological control, this review explores some of the factors conditioning the expression of BD in grapevine. Among them, the lifestyle of BD-associated pathogens, their pathogenicity factors, the cultivar traits of tolerance or susceptibility, and the biocontrol potential of Bacillus spp. and Trichoderma spp. are discussed.
Collapse
Affiliation(s)
- Catarina Leal
- University of Reims Champagne-Ardenne, Research Unit Résistance Induite et Bioprotection des Plantes RIBP EA 4707, INRAE USC 1488, SFR Condorcet FR CNRS 3417, Reims, France
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Patricia Trotel-Aziz
- University of Reims Champagne-Ardenne, Research Unit Résistance Induite et Bioprotection des Plantes RIBP EA 4707, INRAE USC 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - David Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas-Universidad de la Rioja-Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain
| | - Josep Armengol
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Florence Fontaine
- University of Reims Champagne-Ardenne, Research Unit Résistance Induite et Bioprotection des Plantes RIBP EA 4707, INRAE USC 1488, SFR Condorcet FR CNRS 3417, Reims, France
| |
Collapse
|
13
|
Barka EA, Jeandet P, Lahlali R. The Hidden World within Plants 2.0. Microorganisms 2023; 11:2903. [PMID: 38138046 PMCID: PMC10745288 DOI: 10.3390/microorganisms11122903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Interactions between plants and microorganisms are complex, with some microorganisms causing damage by employing strategies that hinder plant growth and reproduction, while others positively influence plant growth through various physiological activities [...].
Collapse
Affiliation(s)
- Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes, USC INRAe 1488, Université de Reims Champagne-Ardenne, 51100 Reims, France;
| | - Philippe Jeandet
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes, USC INRAe 1488, Université de Reims Champagne-Ardenne, 51100 Reims, France;
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Menkes 50001, Morocco
| |
Collapse
|
14
|
Saucedo-Bazalar M, Masias P, Nouchi-Moromizato E, Santos C, Mialhe E, Cedeño V. MALDI mass spectrometry-based identification of antifungal molecules from endophytic Bacillus strains with biocontrol potential of Lasiodiplodia theobromae, a grapevine trunk pathogen in Peru. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100201. [PMID: 37752899 PMCID: PMC10518354 DOI: 10.1016/j.crmicr.2023.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
Lasiodiplodia theobromae, a grapevine trunk pathogen, is becoming a significant threat to vineyards worldwide. In Peru, it is responsible for Botryosphaeria dieback in many grapevine-growing areas and it has spread rapidly due to its high transmissibility; hence, control measures are urgent. It is known that some endophytic bacteria are strong inhibitors of phytopathogens because they produce a wide range of antimicrobial molecules. However, studies of antimicrobial features from endophytic bacteria are limited to traditional confrontation methods. In this study, a MALDI mass spectrometry-based approach was performed to identify and characterize the antifungal molecules from Bacillus velezensis M1 and Bacillus amyloliquefaciens M2 grapevine endophytic strains. Solid medium antagonism assays were performed confronting B. velezensis M1 - L. theobromae and B. amyloliquefaciens M2 - L. theobromae for antifungal lipopeptides identification. By a MALDI TOF MS it was possible identify mass spectra for fengycin, iturin and surfactin protoned isoforms. Masses spectrums for mycobacillin and mycosubtilin were also identified. Using MALDI Imaging MS we were able to visualize and relate lipopeptides mass spectra of fengycin (1463.9 m/z) and mycobacillin (1529.6 m/z) in the interaction zone during confrontations. The presence of lipopeptides-synthesis genes was confirmed by PCR. Liquid medium antagonism assays were performed for a proteomic analysis during the confrontation of B. velezensis M1 - L. theobromae. Different peptide sequences corresponding to many antifungal proteins and enzymes were identified by MALDI TOF MS/MS. Oxalate decarboxylase bacisubin and flagellin, reported as antifungal proteins, were identified at 99 % identity through peptide mapping. MALDI mass spectrometry-based identification of antifungal molecules would allow the early selection of endophytic bacteria with antifungal features. This omics tool could lead to measures for prevention of grapevine diseases and other economically important crops in Peru.
Collapse
Affiliation(s)
- Manuel Saucedo-Bazalar
- Departamento de Biología y Bioquímica, Universidad Nacional de Tumbes, Av. Universitaria s/n, Pampa Grande, Tumbes, Peru
- Programa de Maestría en Biotecnología Molecular, Escuela de Posgrado, Universidad Nacional de Tumbes, Av. Universitaria s/n, Pampa Grande, Tumbes, Peru
| | | | - Estefanía Nouchi-Moromizato
- Programa de Maestría en Biotecnología Molecular, Escuela de Posgrado, Universidad Nacional de Tumbes, Av. Universitaria s/n, Pampa Grande, Tumbes, Peru
| | | | - Eric Mialhe
- INCABIOTEC SAC, Jr. Filipinas 212, Tumbes, Peru
| | - Virna Cedeño
- INCABIOTEC SAC, Jr. Filipinas 212, Tumbes, Peru
- CONCEPTO AZUL, Circunvalación Norte, 528 B, Urdesa, Guayaquil, Ecuador
- CEBIOMICS S.A. Calle 28 #2624 y Avenida Flavio Reyes, Manta, Ecuador
| |
Collapse
|
15
|
Larach A, Vega-Celedón P, Salgado E, Salinas A, Riquelme N, Castillo-Novales D, Sanhueza P, Seeger M, Besoain X. Higher Virulence of Diplodia seriata Isolates on Vines of cv. Cabernet Sauvignon Associated with 10-Year-Old Wood Compared to Young Tissue. PLANTS (BASEL, SWITZERLAND) 2023; 12:2984. [PMID: 37631195 PMCID: PMC10459257 DOI: 10.3390/plants12162984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Botryosphaeria dieback (BD) occurs in young and old plants. In the field, the prevalence and severity of the disease increase proportionally with the age of vineyards. Among the pathogens that cause BD, Diplodia seriata is the most prevalent species in Chile and other countries with a Mediterranean climate. To date, no information is available on the susceptibility of adult wood to infection by this pathogen since most of the pathogenicity tests have been carried out on 1- or 2-year-old shoots or detached canes. Therefore, a pathogenicity test was carried out on plants under field conditions, with inoculations in 1-year-old shoots and 2- and 10-year-old wood in grapevine cv. Cabernet Sauvignon. A pathogenicity test was carried out with two isolates of D. seriata. The results for the plants show that D. seriata was significantly more aggressive on the 10-year-old than on the one- or two-year-old tissue, where the lesions were 4.3 and 2.3 cm on average, respectively. These results were compared with the lesions obtained from two-year-old canes after the isolates were activated in grape berries. Also, the Chilean isolates of D. seriata were compared phylogenetically with those from other countries, and no major differences were found between them. Our results are consistent with the damage observed in the field, contributing to the knowledge of the epidemiology of this disease in Mediterranean climates. In the future, the effect observed in cv. Cabernet Sauvignon with D. seriata on virulence at different tissue ages should be tested for other BD-causing agents and wine varieties.
Collapse
Affiliation(s)
- Alejandra Larach
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.L.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
| | - Paulina Vega-Celedón
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.L.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
| | - Eduardo Salgado
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.L.)
| | - Aldo Salinas
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.L.)
| | - Natalia Riquelme
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.L.)
| | - Diyanira Castillo-Novales
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.L.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
| | - Paulina Sanhueza
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.L.)
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
| | - Ximena Besoain
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.L.)
| |
Collapse
|
16
|
Boiu-Sicuia OA, Toma RC, Diguță CF, Matei F, Cornea CP. In Vitro Evaluation of Some Endophytic Bacillus to Potentially Inhibit Grape and Grapevine Fungal Pathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:2553. [PMID: 37447114 DOI: 10.3390/plants12132553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Romania has a long history of grapevine culturing and winemaking. However, like any agricultural sector, viticulture faces devastating biological threats. Fungi responsible for grapevine trunk diseases (GTDs) and grape spoilage lead to considerable yield losses and a decline in grapevine quality. In the actual context, many countries, including Romania, have reoriented their approaches to minimize chemical inputs, which have been proven to be toxic and to have negative impacts on the environment, and to replace them with sustainable biocontrol strategies for the wine-growing sector. Within biocontrol strategies, Bacillus spp. is a well-known plant-protective bacteria with antifungal properties. Within this paper, six endophytic bacteria from various plant sources were studied. The bacterial strains were identified as B. pumilus, B. subtilis, and B. velezensis by sequencing their 16S rDNA region. Regardless of the in vitro test methods (using living bacterial cells, bacterial-cell-free supernatant (CFS), and volatile active compounds (VOCs)), B. velezensis strains revealed strong and broad antifungal activity against grape and grapevine fungal pathogens such as Aspergillus spp., Botrytis cinerea, Penicillium expansum, Diplodia seriata, Eutypa lata, Fusarium spp., Clonostachys rosea, Neofusicoccum parvum, and Stereum hirsutum. The functional antifungal genes encoding for difficidin, fengycin, iturins, macrolactin, and mycosubtilin were molecularly detected, which could support the proven antifungal activity of the endophytic strains. Lytic enzymes involved in fungal growth inhibition, such as chitinase, cellulase, and proteases, were also revealed to be produced by some of these bacterial strains. Various other in vitro tests, such as phosphate and phytate solubilization, phytohormone synthesis, the production of enzymes involved in the polyamine biosynthetic pathway, and pH as well as temperature tolerance tests were carried out to reveal the plant-beneficial potential of these bacterial strains. These results revealed that the B. velezensis strains, especially BAHs1, are the most suitable endophytes for grapevine biologic control, which could lead to the future development of sustainable management strategies.
Collapse
Affiliation(s)
- Oana-Alina Boiu-Sicuia
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
- Research-Development Institute for Plant Protection, 8 Ion Ionescu de la Brad Blvd., District 1, 013813 Bucharest, Romania
| | - Radu Cristian Toma
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Camelia Filofteia Diguță
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Florentina Matei
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Călina Petruța Cornea
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| |
Collapse
|
17
|
Langa-Lomba N, Grimplet J, Sánchez-Hernández E, Martín-Ramos P, Casanova-Gascón J, Julián-Lagunas C, González-García V. Metagenomic Study of Fungal Microbial Communities in Two PDO Somontano Vineyards (Huesca, Spain): Effects of Age, Plant Genotype, and Initial Phytosanitary Status on the Priming and Selection of their Associated Microorganisms. PLANTS (BASEL, SWITZERLAND) 2023; 12:2251. [PMID: 37375877 DOI: 10.3390/plants12122251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
The study of microbial communities associated with different plants of agronomic interest has allowed, in recent years, to answer a number of questions related to the role and influence of certain microbes in key aspects of their autoecology, such as improving the adaptability of the plant host to different abiotic or biotic stresses. In this study, we present the results of the characterization, through both high-throughput sequencing and classical microbiological methods, of the fungal microbial communities associated with grapevine plants in two vineyards of different ages and plant genotypes located in the same biogeographical unit. The study is configured as an approximation to the empirical demonstration of the concept of "microbial priming" by analyzing the alpha- and beta-diversity present in plants from two plots subjected to the same bioclimatic regime to detect differences in the structure and taxonomic composition of the populations. The results were compared with the inventories of fungal diversity obtained by culture-dependent methods to establish, where appropriate, correlations between both microbial communities. Metagenomic data showed a differential enrichment of the microbial communities in the two vineyards studied, including the populations of plant pathogens. This is tentatively explained due to factors such as the different time of exposure to microbial infection, different plant genotype, and different starting phytosanitary situation. Thus, results suggest that each plant genotype recruits differential fungal communities and presents different profiles of associated potential microbial antagonists or communities of pathogenic species.
Collapse
Affiliation(s)
- Natalia Langa-Lomba
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), EPS, University of Zaragoza, Carretera de Cuarte s/n, 22071 Huesca, Spain
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Jerome Grimplet
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50059 Zaragoza, Spain
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Eva Sánchez-Hernández
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - Pablo Martín-Ramos
- Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
| | - José Casanova-Gascón
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), EPS, University of Zaragoza, Carretera de Cuarte s/n, 22071 Huesca, Spain
| | - Carmen Julián-Lagunas
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50059 Zaragoza, Spain
| | - Vicente González-García
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50059 Zaragoza, Spain
| |
Collapse
|
18
|
Ji T, Salotti I, Altieri V, Li M, Rossi V. Temperature-Dependent Growth and Spore Germination of Fungi Causing Grapevine Trunk Diseases: Quantitative Analysis of Literature Data. PLANT DISEASE 2023:PDIS09222249RE. [PMID: 36366834 DOI: 10.1094/pdis-09-22-2249-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Grapevine trunk diseases (GTDs) are serious threats in all viticultural areas of the world, and their management is always complex and usually inadequate. Fragmented and inconsistent information on the epidemiology and environmental requirements of the causal fungi is among the reasons for poor disease control. Therefore, we conducted a quantitative analysis of literature data to determine the effects of temperature on mycelial growth and the effects of temperature and moisture duration on spore germination. Using the collected information, we then developed mathematical equations describing the response of mycelial growth to temperature, and the response of spore germination to temperature and moisture for the different species and disease syndromes. We considered 27 articles (selected from a total of 207 articles found through a systematic literature search) and 116 cases; these involved 43 fungal species belonging to three disease syndromes. The mycelial growth of the fungi causing Botryosphaeria dieback (BD) and the esca complex (EC) responded similarly to temperature, and preferred higher temperatures than those causing Eutypa dieback (ED) (with optimal temperature of 25.3, 26.5, and 23.3°C, respectively). At any temperature, the minimal duration of the moist period required for 50% spore germination was shorter for BD (3.0 h) than for EC (17.2 h) or ED (15.5 h). Mathematical equations were developed accounting for temperature-moisture relationships of GTD fungi, which showed concordance correlation coefficients ≥0.888; such equations should be useful for reducing the risk of infection.
Collapse
Affiliation(s)
- Tao Ji
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Irene Salotti
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Valeria Altieri
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Ming Li
- National Engineering Research Center for Information Technology in Agriculture (NERCITA) and Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Vittorio Rossi
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
19
|
Moretti S, Goddard ML, Puca A, Lalevée J, Di Marco S, Mugnai L, Gelhaye E, Goodell B, Bertsch C, Farine S. First Description of Non-Enzymatic Radical-Generating Mechanisms Adopted by Fomitiporia mediterranea: An Unexplored Pathway of the White Rot Agent of the Esca Complex of Diseases. J Fungi (Basel) 2023; 9:jof9040498. [PMID: 37108951 PMCID: PMC10143301 DOI: 10.3390/jof9040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Fomitiporia mediterranea (Fmed) is the primary Basidiomycota species causing white rot in European vineyards affected by the Esca complex of diseases (ECD). In the last few years, an increasing number of studies have highlighted the importance of reconsidering the role of Fmed in ECD etiology, justifying an increase in research interest related to Fmed's biomolecular pathogenetic mechanisms. In the context of the current re-evaluation of the binary distinction (brown vs. white rot) between biomolecular decay pathways induced by Basidiomycota species, our research aims to investigate the potential for non-enzymatic mechanisms adopted by Fmed, which is typically described as a white rot fungus. Our results demonstrate how, in liquid culture reproducing nutrient restriction conditions often found in wood, Fmed can produce low molecular weight compounds, the hallmark of the non-enzymatic "chelator-mediated Fenton" (CMF) reaction, originally described for brown rot fungi. CMF reactions can redox cycle with ferric iron, generating hydrogen peroxide and ferrous iron, necessary reactants leading to hydroxyl radical (•OH) production. These observations led to the conclusion that a non-enzymatic radical-generating CMF-like mechanism may be utilized by Fmed, potentially together with an enzymatic pool, to contribute to degrading wood constituents; moreover, indicating significant variability between strains.
Collapse
Affiliation(s)
- Samuele Moretti
- Laboratoire Vigne, Biotechnologies et Environnement UPR-3991, Université de Haute-Alsace, 33 rue de Herrlisheim, 68000 Colmar, France
| | - Mary-Lorène Goddard
- Laboratoire Vigne, Biotechnologies et Environnement UPR-3991, Université de Haute-Alsace, 33 rue de Herrlisheim, 68000 Colmar, France
- Laboratoire d'Innovation Moléculaire et Applications, Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, CEDEX, 68093 Mulhouse, France
| | - Alessandro Puca
- Laboratoire Vigne, Biotechnologies et Environnement UPR-3991, Université de Haute-Alsace, 33 rue de Herrlisheim, 68000 Colmar, France
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, P.le delle Cascine, 28, 50144 Firenze, Italy
| | - Jacques Lalevée
- Institut de Science des Materiaux IS2M, Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
| | - Stefano Di Marco
- Institute of Bioeconomy, CNR, Via Gobetti, 101, 40129 Bologna, Italy
| | - Laura Mugnai
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, P.le delle Cascine, 28, 50144 Firenze, Italy
| | - Eric Gelhaye
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | - Barry Goodell
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Christophe Bertsch
- Laboratoire Vigne, Biotechnologies et Environnement UPR-3991, Université de Haute-Alsace, 33 rue de Herrlisheim, 68000 Colmar, France
| | - Sibylle Farine
- Laboratoire Vigne, Biotechnologies et Environnement UPR-3991, Université de Haute-Alsace, 33 rue de Herrlisheim, 68000 Colmar, France
| |
Collapse
|
20
|
Del Frari G, Aggerbeck MR, Gobbi A, Ingrà C, Volpi L, Nascimento T, Ferrandino A, Hansen LH, Ferreira RB. Pruning Wound Protection Products Induce Alterations in the Wood Mycobiome Profile of Grapevines. J Fungi (Basel) 2023; 9:jof9040488. [PMID: 37108942 PMCID: PMC10141712 DOI: 10.3390/jof9040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Fungal pathogens involved in grapevine trunk diseases (GTDs) may infect grapevines throughout their lifetime, from nursery to vineyard, via open wounds in stems, canes or roots. In vineyards, pruning wound protection products (PWPPs) offer the best means to reduce the chance of infection by GTD fungi. However, PWPPs may affect non-target microorganisms that comprise the natural endophytic mycobiome residing in treated canes, disrupting microbial homeostasis and indirectly influencing grapevine health. Using DNA metabarcoding, we characterized the endophytic mycobiome of one-year-old canes of cultivars Cabernet Sauvignon and Syrah in two vineyards in Portugal and Italy and assessed the impact of established and novel PWPPs on the fungal communities of treated canes. Our results reveal a large fungal diversity (176 taxa), and we report multiple genera never detected before in grapevine wood (e.g., Symmetrospora and Akenomyces). We found differences in mycobiome beta diversity when comparing vineyards (p = 0.01) but not cultivars (p > 0.05). When examining PWPP-treated canes, we detected cultivar- and vineyard-dependent alterations in both alpha and beta diversity. In addition, numerous fungal taxa were over- or under-represented when compared to control canes. Among them, Epicoccum sp., a beneficial genus with biological control potential, was negatively affected by selected PWPPs. This study demonstrates that PWPPs induce alterations in the fungal communities of grapevines, requiring an urgent evaluation of their direct and indirect effects on plants health with consideration of factors such as climatic conditions and yearly variations, in order to better advise viticulturists and policy makers.
Collapse
Affiliation(s)
- Giovanni Del Frari
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | | | - Alex Gobbi
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Chiara Ingrà
- Department of Agricultural, Forestry, Food Sciences (DISAFA), University of Turin, Largo P. Braccini, 2, Grugliasco, 10095 Torino, Italy
| | - Lorenzo Volpi
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Teresa Nascimento
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Alessandra Ferrandino
- Department of Agricultural, Forestry, Food Sciences (DISAFA), University of Turin, Largo P. Braccini, 2, Grugliasco, 10095 Torino, Italy
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Ricardo Boavida Ferreira
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
21
|
Díaz GA, Reveglia P, Tomoiagă LL, Chedea VS. Editorial: Fungal pathogens causing the grapevine trunk diseases- biology and identification. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1186166. [PMID: 37746124 PMCID: PMC10512359 DOI: 10.3389/ffunb.2023.1186166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Gonzalo A. Díaz
- Laboratorio de Patología Frutal, Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - Pierluigi Reveglia
- Research Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| | - Liliana Lucia Tomoiagă
- Research Department, Research Station for Viticulture and Enology Blaj (SCDVV Blaj), Blaj, Romania
| | - Veronica Sanda Chedea
- Research Department, Research Station for Viticulture and Enology Blaj (SCDVV Blaj), Blaj, Romania
| |
Collapse
|
22
|
Laasli SE, Barka EA, Lahlali R. Plant and Trees Pathogens: Isolation, Characterization and Control Strategies (1.0). J Fungi (Basel) 2023; 9:jof9040416. [PMID: 37108871 PMCID: PMC10144702 DOI: 10.3390/jof9040416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Agricultural production is under constant threat from biotic and abiotic stresses [...]
Collapse
|
23
|
Díaz GA, Latorre BA. Duration of the susceptibility of pruning wounds of different ages to infections by Phaeomoniella chlamydospora on grapevine cv. Cabernet Sauvignon in Central Chile. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1026516. [PMID: 37746210 PMCID: PMC10512291 DOI: 10.3389/ffunb.2022.1026516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/03/2022] [Indexed: 09/26/2023]
Abstract
Grapevine trunk diseases (GTDs) are one of the most important phytosanitary problems that affect grapevines (Vitis vinifera) worldwide. In Chile, Phaeomoniella chlamydospora is the major fungal trunk pathogen associated with GTDs. In the vineyards, the natural infections by P. chlamydospora are associated with air-borne conidia dispersed onto fresh pruning wounds from pycnidia. These pruning wounds are considered an important entrance for fungal trunk pathogens such as P. chlamydospora in the host in the field. However, the duration of the susceptibility of grapevine annual pruning wounds to P. chlamydospora is still unknown in Chile. Therefore, this study aimed to evaluate the period of susceptibility of pruning wounds of different ages to artificial infection of P. chlamydospora on grapevine cv. Cabernet Sauvignon, Central Chile. Artificial inoculations of a conidial suspension (105 conidia/mL) of P. chlamydospora were used to determine the susceptibility of pruning wounds of different ages, from 1, 15, 30, and 45 days after pruning. The experiments were conducted on lignified cuttings in a greenhouse, and on vine spurs in two vineyards (Buin and Nancagua, Central Chile) during two consecutive seasons. The results indicated that the pruning wounds of grapevine cv. Cabernet Sauvignon were very susceptible to infections by P. chlamydospora, with a percentage of pruning wounds infected from 97 to 71% for cuttings, and 96% to 60% for spurs, during the first 15 days after pruning. However, the susceptibility of pruning wounds of different ages in cuttings and spurs of grapevine, generally decreased as the time from pruning to inoculation increased. Moreover, the pruning wounds the pruning wounds remained susceptible to artificial inoculation by P. chlamydospora for up 45 days after pruning with percent of wounds infected from 8.0 to 12.2, and 8.3 to 18.8% on cuttings and spurs of grapevine, respectively. Finally, this study constitutes study constitutes the first research focalized on the susceptibility of pruning wounds of various ages of grapevine cv. Cabernet Sauvignon to artificial inoculations by P. chlamydospora in Central Chile.
Collapse
Affiliation(s)
- Gonzalo A. Díaz
- Laboratorio de Patología Frutal, Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - Bernardo A. Latorre
- Departamento de Fruticultura, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
24
|
Muntean MD, Drăgulinescu AM, Tomoiagă LL, Comșa M, Răcoare HS, Sîrbu AD, Chedea VS. Fungal Grapevine Trunk Diseases in Romanian Vineyards in the Context of the International Situation. Pathogens 2022; 11:1006. [PMID: 36145437 PMCID: PMC9503734 DOI: 10.3390/pathogens11091006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Vitis vinifera, known as the common grape vine, represents one of the most important fruit crops in the world. Romania is a wine-producing country with a rich and long tradition in viticulture. In the last decade, increasing reports of damage caused by grapevine trunk diseases (GTDs) have raised concerns in all wine producing countries. Up to now, no study was performed regarding the GTDs situation in Romania, an important grapevine grower in Europe. In this study, we aim, after a comprehensive presentation of the fungal GTDs worldwide, to review the scientific information related to these diseases in Romania in order to open a national platform in an international framework. In order to achieve this, we consulted over 500 references from different scientific databases and cited 309 of them. Our review concludes that, in Romania, there is little amount of available literature on this matter. Three out of six fungal GTDs are reported and well documented in all of the Romanian viticultural zones (except for viticultural zone 4). These are Eutypa dieback, Phomopsis dieback, and Esca disease. Of the fungal pathogens considered responsible Eutypa lata, Phomopsis viticola and Stereum hirsutum are the most studied and well documented in Romania. Management measures are quite limited, and they mostly include preventive measures to stop the GTDs spread and the removal of affected grapevines.
Collapse
Affiliation(s)
- Maria-Doinița Muntean
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| | - Ana-Maria Drăgulinescu
- Electronics, Telecommunication and Information Technology Faculty, University Politehnica of Bucharest (UPB), 060042 Bucharest, Romania
| | | | - Maria Comșa
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| | - Horia-Silviu Răcoare
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| | - Alexandra Doina Sîrbu
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| | - Veronica Sanda Chedea
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| |
Collapse
|
25
|
Scarano L, Mazzone F, Mannerucci F, D’Amico M, Bruno GL, Marsico AD. Preliminary Studies on the In Vitro Interactions Between the Secondary Metabolites Produced by Esca-Associated Fungi and Enological Saccharomyces cerevisiae Strains. PLANTS 2022; 11:plants11172277. [PMID: 36079659 PMCID: PMC9459945 DOI: 10.3390/plants11172277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Esca-affected vines alter the carbohydrate metabolism, xylem transport of water and photosynthesis and show regular grapes (but berries do not reach maturity), and phenolic compounds are reduced in concentration, oxidate and polymerizate. Pullulan and a mixture of scytalone and isosclerone (9:1; w/w), secondary metabolites produced in vitro and in planta by Phaeoacremonium minimum (syn. P. aleophilum) and Phaeomoniella chlamydospora, were assayed against the strains Byosal HS1 and IOC 18-2007 in microvinifications with synthetic grape must. The presence of pullulan and pentaketides mix affects the growth and metabolism of the tested Saccharomyces cerevisiae strains. Assays at 100 and 1000 µg mL−1 inhibited the growth of both strains, while no effects were recorded when evaluated at 1 and 5 µg mL−1. In comparison with the controls, pullulan and the scytalone/isosclerone mixture at 10 µg mL−1 had a growth reduction, a lower alcohol yield, reduced the concentration of tartaric acid and malic acid; and slowed down the production of lactic acid, acetic acid and total polyphenol content of the tested S. cerevisiae strains. These metabolites could be applied as an alternative to the sulfite addition in the early stages of vinification to support the action of selected Saccharomyces. Appealing is the subtractive action of pullulan against tartaric acid. Further data are needed to confirm and validate the enological performance in freshly pressed grape juice.
Collapse
Affiliation(s)
- Leonardo Scarano
- Department of Soil, Plant and Food Sciences (Di.S.S.P.A.), University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology (CREA-VE), Via Casamassima, 148, 70010 Turi, Italy
| | - Francesco Mazzone
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology (CREA-VE), Via Casamassima, 148, 70010 Turi, Italy
| | - Francesco Mannerucci
- Department of Soil, Plant and Food Sciences (Di.S.S.P.A.), University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Margherita D’Amico
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology (CREA-VE), Via Casamassima, 148, 70010 Turi, Italy
| | - Giovanni Luigi Bruno
- Department of Soil, Plant and Food Sciences (Di.S.S.P.A.), University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
- Correspondence:
| | - Antonio Domenico Marsico
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology (CREA-VE), Via Casamassima, 148, 70010 Turi, Italy
| |
Collapse
|
26
|
Kenfaoui J, Lahlali R, Mennani M, Radouane N, Goura K, El Hamss H, El Ghadraoui L, Fontaine F, Tahiri A, Barka EA, Amiri S. Botryosphaeria Dieback (Lasiodiplodia viticola): An Imminent Emerging Threat to the Moroccan Vineyards. PLANTS 2022; 11:plants11162167. [PMID: 36015470 PMCID: PMC9412503 DOI: 10.3390/plants11162167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
A decline of various grapevines (Vitis vinifera L.) in the province of Doukkala in Morocco was observed in 2021. The causal pathogen was identified as Lasiodiplodia viticola based on morphological characteristics and phylogenetic analysis of the internal transcribed region (ITS), the β-tubulin gene (TUB) and calmodulin (cmdA). Koch’s postulates were confirmed by successful re-isolation of L. viticola from plants inoculated with the pathogen under controlled conditions. The disease was shown to be prevalent in Bni Hilal (71.43%), Laamria (60%), and Boulaouane (40%) districts, but was quasi-absent in Lmechrek. To understand the dominance of L. viticola as one of the grapevine trunk pathogens, effects of temperature (10–40 °C) and pH (pH 3–pH 12) on growth and sporulation were investigated. The species were able to grow in a range of temperatures ranging from 15 to 40°C and showed a higher growth rate at 35 °C. The fungus were also characterized by a broad optimum pH ranging between 3–12. This study is the first report dealing with L. viticola associated with grapevine trunk diseases in Morocco. Additional studies are therefore required to understand the high occurrence of this disease in vineyards, which is likely due to climate changes. A good understanding of this complex disease might help to develop a reliable and sustainable preventive control strategy.
Collapse
Affiliation(s)
- Jihane Kenfaoui
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30500, Morocco
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
- Correspondence: (R.L.); (E.A.B.); Tel.: +212-55-30-02-39 (R.L.); +33-3-2691-3441 (E.A.B.)
| | - Mohammed Mennani
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
| | - Nabil Radouane
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30500, Morocco
| | - Khadija Goura
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
- Laboratory of Biotechnology and Valorisation of Biological Resources, Department of Biology, Faculty of Science, Moulay Ismail University, Meknes 50070, Morocco
| | - Hajar El Hamss
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
| | - Lahsen El Ghadraoui
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30500, Morocco
| | - Florence Fontaine
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707 USC INRAE 1488, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Abdessalem Tahiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707 USC INRAE 1488, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Correspondence: (R.L.); (E.A.B.); Tel.: +212-55-30-02-39 (R.L.); +33-3-2691-3441 (E.A.B.)
| | - Said Amiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
| |
Collapse
|