1
|
de Araújo JLF, Rossi ÁD, de Almeida JM, Alves HJ, Leitão IDC, de Ávila RE, Castiñeiras ACP, Oliveira JDS, Galliez RM, Tonini MDL, Faffe DS, Barroso SPCB, Resende GG, Gonçalves CCA, Castiñeiras TMPP, Tanuri A, Teixeira MM, Aguiar RS, Cardoso CC, de Souza RP. Genetic determinants of COVID-19 severity and mortality: ACE1 Alu 287 bp polymorphism and ACE1, ACE2, TMPRSS2 expression in hospitalized patients. PeerJ 2025; 13:e18508. [PMID: 39850833 PMCID: PMC11756369 DOI: 10.7717/peerj.18508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/21/2024] [Indexed: 01/25/2025] Open
Abstract
Background The angiotensin-converting enzyme 2 (ACE2) and the transmembrane serine protease 2 (TMPRSS2) are central human molecules in the SARS-CoV-2 virus-host interaction. Evidence indicates that ACE1 may influence ACE2 expression. This study aims to determine whether ACE1, ACE2, and TMPRSS2 mRNA expression levels, along with the ACE1 Alu 287 bp polymorphism (rs4646994), contribute to the severity and mortality of COVID-19. Methods Swabs were collected in two Brazilian cities in 2020: Belo Horizonte (n = 134) and Rio de Janeiro (n = 41). A swab of mild patients in Rio de Janeiro who were not hospitalized (n = 172) was also collected. All analyzed biological material was obtained from residual diagnostic samples in 2020, prior to the emergence of SARS-CoV-2 variants of concern. ACE1, ACE2, TMPRSS2, and B2M (reference gene) expression levels were evaluated in 40 cycles of quantitative PCR. ACE1 Alu 287 bp polymorphism was genotyped using the FastStart Universal SYBR Green Master kit. Results The median age differed between clinical sites (p = 0.016), but no difference in median days of hospitalization was observed (p = 0.329). Age was associated with severity (p = 0.014) and mortality (p = 0.014) in the Belo Horizonte cohort. No alteration in ACE1, ACE2 and TMPRSS2 expression was associated with severity or mortality. ACE1 polymorphism rs4646994 did not influence the likelihood of either outcome. A meta-analysis including available data from the literature showed significant effects: the D-allele conferred risk (OR = 1.39; 95% CI [1.12-1.72]).
Collapse
Affiliation(s)
- João Locke Ferreira de Araújo
- Departamento de genética, ecologia e evolução, Laboratório de biologia integrativa, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de biorregulação, Laboratório de imunofarmacologia e biologia molecular, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Átila Duque Rossi
- Departamento de genética, Laboratório de Virologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jessica Maciel de Almeida
- Departamento de genética, Laboratório de Virologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hugo José Alves
- Departamento de genética, ecologia e evolução, Laboratório de biologia integrativa, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela de Carvalho Leitão
- Núcleo de Enfrentamento e Estudos de Doenças Infecciosas Emergentes e Reemergentes (NEEDIER), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Anna Carla Pinto Castiñeiras
- Núcleo de Enfrentamento e Estudos de Doenças Infecciosas Emergentes e Reemergentes (NEEDIER), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jéssica da Silva Oliveira
- Marinha do Brasil, Instituto de Pesquisas Biomédicas, Hospital Naval Marcilio Dias, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Mello Galliez
- Núcleo de Enfrentamento e Estudos de Doenças Infecciosas Emergentes e Reemergentes (NEEDIER), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marlon Daniel Lima Tonini
- Marinha do Brasil, Instituto de Pesquisas Biomédicas, Hospital Naval Marcilio Dias, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Débora Souza Faffe
- Núcleo de Enfrentamento e Estudos de Doenças Infecciosas Emergentes e Reemergentes (NEEDIER), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Shana Priscila Coutinho Barroso Barroso
- Marinha do Brasil, Instituto de Pesquisas Biomédicas, Hospital Naval Marcilio Dias, Rio de Janeiro, Rio de Janeiro, Brazil
- Clínica RioVet, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Gomes Resende
- Hospital das Clínicas, (HC-UFMG/EBSERH), Belo Horizonte, MG, Brazil, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cássia Cristina Alves Gonçalves
- Departamento de genética, Laboratório de Virologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Núcleo de Enfrentamento e Estudos de Doenças Infecciosas Emergentes e Reemergentes (NEEDIER), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Terezinha Marta Pereira Pinto Castiñeiras
- Núcleo de Enfrentamento e Estudos de Doenças Infecciosas Emergentes e Reemergentes (NEEDIER), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Departamento de genética, Laboratório de Virologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renato Santana Aguiar
- Departamento de genética, ecologia e evolução, Laboratório de biologia integrativa, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto D’OR de Pesquisa e Ensino, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cynthia Chester Cardoso
- Departamento de genética, Laboratório de Virologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renan Pedra de Souza
- Departamento de genética, ecologia e evolução, Laboratório de biologia integrativa, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Abbaszadeh H, Kabiri-Rad H, Mohammadi F, Zangoie S, Rajabi-Moghaddam M, Ghafari S, Ziaee M, Javanmard D, Miri-Moghaddam E. The Association Between Genetic Variants in ACE1and ACE2 Genes with Susceptibility to COVID-19 Infection. Biochem Genet 2024; 62:4679-4692. [PMID: 38349438 DOI: 10.1007/s10528-024-10722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/28/2024] [Indexed: 03/27/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) receptors facilitate the entry of the causative virus severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) into target cells. Some ACE gene variants have been suggested to be involved in COVID-19 pathogenesis. So, the aim was to assess the association between ACE1 rs4646994 and ACE2 rs2285666 genes polymorphisms and the susceptibility and severity of COVID-19. This case-control study was conducted on 197 patients with COVID-19 and 197 healthy controls. ACE-1 insertion/deletion (I/D) (rs4646994) and ACE2 rs2285666 genes polymorphisms were determined by the amplification refractory mutation system- polymerase chain reaction (ARMS-PCR) technique. The DD genotype of ACE1 I/D polymorphism was associated with increased susceptibility to COVID-19 infection (p = 0.012), whereas the ID genotype of this polymorphism was associated with decreased susceptibility (p = 0.003) (significance level = 0.017). There was no significant association in allele and genotype distribution of ACE2 rs2285666 polymorphism between cases and controls. The ACE1 I/D polymorphism may be considered as a risk factor for COVID-19 susceptibility.
Collapse
Affiliation(s)
- Hamid Abbaszadeh
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamid Kabiri-Rad
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariba Mohammadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Soheila Zangoie
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdieh Rajabi-Moghaddam
- Department of Pathology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Shokouh Ghafari
- Cellular and Molecular Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Masood Ziaee
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Davod Javanmard
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ebrahim Miri-Moghaddam
- Department of Molecular Medicine, Faculty of Medicine, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran, 9717853577.
| |
Collapse
|
3
|
Fajar JK, Tamara F, Putranto W, Prabowo NA, Harapan H. Insertion/deletion (I/D) polymorphisms of angiotensin-converting enzyme gene and their implications for susceptibility and severity of COVID-19: A systematic review and meta-analysis. NARRA J 2024; 4:e727. [PMID: 39816082 PMCID: PMC11731805 DOI: 10.52225/narra.v4i3.727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025]
Abstract
The insertion or deletion polymorphisms of the angiotensin-converting enzyme gene (ACE I/D) have been the subject of significant research related to coronavirus disease 2019 (COVID-19). Despite this, the findings have remained uncertain and debatable. The aim of this study was to determine the associations between the ACE I/D polymorphisms and the susceptibility as well as the severity of COVID-19. A meta-analysis study (PROSPERO: CRD42022384562) was conducted by searching the articles published on PubMed, Scopus, and Embase as of May 15, 2023. Information regarding the impact of ACE I/D variant on the susceptibility to COVID-19 and its severity was collected and analyzed utilizing the Mantel-Haenszel method with a random effects model or fixed effects model, depending on the presence or absence of heterogeneity. Out of 3,335 articles, 21 articles were included, of which 13 investigated the association between ACE I/D and the risk of COVID-19 infection and 18 of them examined its influence on disease severity. The D allele of ACE increased risk of COVID-19 infection (OR: 1.41; 95%CI: 1.08-1.85; p-Egger: 0.0676; p-Heterogeneity: <0.001; p=0.0120), while ACE I allele (OR: 0.71; 95%CI: 0.54-0.93; p-Egger: 0.0676; p-Heterogeneity: <0.001; p=0.012) and II genotype (OR: 0.55; 95%CI: 0.34-0.87; p-Egger: 0.200; p-Heterogeneity: <0.001; p=0.011) decreased the risk of infection. Additionally, there was a notable association between the ACE ID genotype and an elevated likelihood of experiencing severe COVID-19 within the Asian population (OR: 1.46; 95%CI: 1.15-1.84; p-Egger: 0.092; p-Heterogeneity: 0.116; p=0.002). The presence of ACE I/D polymorphisms significantly influences the likelihood of being susceptible to and experiencing the severity of COVID-19.
Collapse
Affiliation(s)
- Jonny K. Fajar
- Department of Internal Medicine, Rumah Sakit Universitas Brawijaya, Malang, Indonesia
| | - Fredo Tamara
- Division of Nephrology and Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Wachid Putranto
- Division of Nephrology and Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Nurhasan A. Prabowo
- Department of Internal Medicine, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
4
|
Matsiyeuskaya NV, Kuzniatsova KU, Marozik PM, Kozlovski VI, Harchakova VU. Association of the polymorphism of the genes coding the renin-angiotensin system and the LZTFL1 gene with the severity and outcomes of SARS-CoV-2 infection. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF BELARUS, MEDICAL SERIES 2024; 21:294-304. [DOI: 10.29235/1814-6023-2024-21-4-294-304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The aim of the study is to establish the association of variants of a number of genes involved in the reninangiotensin system with the severity of SARS-CoV-2 infection.The study included 206 hospitalized patients with COVID-19: Group 1 – 99 patients with severe COVID-19; Group 2 ‒ 107 with moderate and mild forms of the disease.Polymorphic variants of the ACE rs4646994, ACE2 rs2074192 rs2285666 and rs413031713 and LZTFL1 rs10490770 genes were analyzed using quantitative PCR with TaqMan probes (Primetech, Belarus) on a CFX96 thermocycler (Bio-Rad, USA). AGT rs699 and AGTR1 rs5186 gene variants were determined using a Rotor-Gene Q thermocycler (QIAGEN, Germany), in accordance to the protocols of the manufacturer (Litekh, Russia).We revealed that the genetic markers of the severe COVID-19 infection in the Belarusian patients are the heterozygous T/C genotype of the LZTFL1 rs10490770 variant, as well as the A-A haplotype of the ACE2 rs2074192 and rs2285666 loci, and the A-A-C allelic combination of the ACE2 rs2074192, rs2285666 and AGT rs699 genes. Genetic markers associated with mild/moderate severity of COVID-19 were also identified: heterozygous A/C genotype of the AGTR1 rs5186 variant, G-G-T allelic combination at the ACE2 rs2074192 and rs2285666, AGT rs699 loci (among carriers of these gene variants, the risk of severe disease is reduced).The loci of the genes encoding the renin-angiotensin system – ACE2 rs2074192 and rs2285666, AGTR1 rs5186, and the LZTFL1 rs10490770 genes, as well as allelic combinations between the ACE2 rs2074192, rs2285666 and AGT rs699 loci are informative markers for predicting the severity of COVID-19.
Collapse
Affiliation(s)
| | | | - P. M. Marozik
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
| | | | | |
Collapse
|
5
|
Pimenta YC, Bonfim FFDO, Figueiredo CEDS, Pedroso BLDA, Silva MF, Olivares AIO, Delgado IF, Leite JPG, de Moraes MTB. Polymorphisms in the ACE I/D ( rs4646994) and ACE2 G8790A ( rs2285666) in Young Children Living in the Amazon Region and SARS-CoV-2 Infection. Trop Med Infect Dis 2024; 9:270. [PMID: 39591276 PMCID: PMC11598624 DOI: 10.3390/tropicalmed9110270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/21/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
COVID-19 infection caused by SARS-CoV-2 continues to cause significant mortality and morbidity. ACE2 is a key regulator of the renin-angiotensin-aldosterone system (RAAS). Differences in COVID-19 severity are thought to be due to the imbalance of RAAS/ACE mutations. This retrospective study evaluated the detection and genetic susceptibility to SARS-CoV-2 infection in 202 children ≤3 years of age living in the Amazon region in 2021. The angiotensin-converting enzyme ACE I/D (rs4646994) and ACE2 G8790A (rs2285666) polymorphisms were detected by SYBR GREEN real-time PCR and PCR-RFLP/Alul digestion, respectively. SARS-CoV-2 detection was performed by RT-qPCR in feces and saliva samples collected simultaneously from the same children presenting acute gastroenteritis (AGE) or acute respiratory infection (ARI). The frequency of SARS-CoV-2 detected by qRT-PCR in children was low (5.9%, 12/202), although higher in the group of children with AGE (8.9%, 9/101) than with ARI (2.9%, 3/101). Susceptibility to SARS-CoV-2 infection was not verified due to the low frequency. Homozygous II (rs4646994) children were the majority (87.1%, 176/202). Boys with genotype A (rs2285666) were more susceptible to ARI and pneumonia symptoms than AGE (OR = 3.8, 95% CI 1.4-10.3, p 0.007). Boys with genotype G (rs4646994) or the combination II + G were more susceptible to acquiring AGE. Surveillance, along with understanding their causes, is crucial to controlling ARI and COVID-19 in children living in low-income countries.
Collapse
Affiliation(s)
- Yan Cardoso Pimenta
- Laboratory of Comparative and Environmental Virology, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (Y.C.P.); (F.F.d.O.B.); (C.E.d.S.F.); (B.L.d.A.P.); (M.F.S.); (J.P.G.L.)
- Post-Graduate Program in Sanitary Surveillance, National Institute for Quality Control in Health, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil;
- Post-Graduate Program in Tropical Medicine, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
| | - Flávia Freitas de Oliveira Bonfim
- Laboratory of Comparative and Environmental Virology, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (Y.C.P.); (F.F.d.O.B.); (C.E.d.S.F.); (B.L.d.A.P.); (M.F.S.); (J.P.G.L.)
| | - Carlos Eduardo da Silva Figueiredo
- Laboratory of Comparative and Environmental Virology, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (Y.C.P.); (F.F.d.O.B.); (C.E.d.S.F.); (B.L.d.A.P.); (M.F.S.); (J.P.G.L.)
- Post-Graduate Program in Tropical Medicine, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
- National Institute of Women, Children and Adolescents’ Health Fernandes Figueira, Oswald °Cruz Foundation (Fiocruz), Avenida Rui Barbosa, 716-Flamengo, Rio de Janeiro 22250-020, RJ, Brazil
| | - Bruno Loreto de Aragão Pedroso
- Laboratory of Comparative and Environmental Virology, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (Y.C.P.); (F.F.d.O.B.); (C.E.d.S.F.); (B.L.d.A.P.); (M.F.S.); (J.P.G.L.)
| | - Mauro França Silva
- Laboratory of Comparative and Environmental Virology, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (Y.C.P.); (F.F.d.O.B.); (C.E.d.S.F.); (B.L.d.A.P.); (M.F.S.); (J.P.G.L.)
- Post-Graduate Program in Tropical Medicine, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
- Technological Coordination, Tetraviral Vaccine, Immunobiological Technology Institute (Biomanguinhos), Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
| | - Alberto Ignacio Olivares Olivares
- Secretaria Estadual de Saúde de Roraima, SESAU/RR, Rua Madrid, 180-Aeroporto, Boa Vista 69310-043, RR, Brazil;
- Medicine & Health School, State University of Roraima, Rua Presidente Juscelino Kubitscheck, 300, Canarinho, Boa Vista 69360-000, RR, Brazil
| | - Isabella Fernandes Delgado
- Post-Graduate Program in Sanitary Surveillance, National Institute for Quality Control in Health, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil;
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (Y.C.P.); (F.F.d.O.B.); (C.E.d.S.F.); (B.L.d.A.P.); (M.F.S.); (J.P.G.L.)
| | - Marcia Terezinha Baroni de Moraes
- Laboratory of Comparative and Environmental Virology, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil; (Y.C.P.); (F.F.d.O.B.); (C.E.d.S.F.); (B.L.d.A.P.); (M.F.S.); (J.P.G.L.)
- Post-Graduate Program in Tropical Medicine, Oswald °Cruz Institute, Oswald °Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
| |
Collapse
|
6
|
Samet M, Yazdi M, Tajamolian M, Beygi M, Sheikhha MH, Hoseini SM. The Effect of Angiotensin-Converting Enzyme Insertion/Deletion Polymorphism on the Severity and Death Rate of COVID-19 in Iranian Patients. Biochem Genet 2024; 62:3568-3585. [PMID: 38145438 DOI: 10.1007/s10528-023-10614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
The study was designed to assess the association of ACE I/D polymorphism with the severity and prognosis of COVID-19 in the Iranian population. Hence, 186 adult patients were categorized into three clinical groups based on the severity of COVID-19: 1) Outpatients or mildly symptomatic patients as control (n = 71); 2) Hospitalized patients or severe symptomatic cases (n = 53); 3) Inpatients led to ICU/death or critically ill patients needed mechanical ventilation (n = 62). The possible association of ACE I/D polymorphism with the risk of comorbidities and serum level of C-reactive protein was evaluated in two severe cases. The results showed that the frequency of D and I alleles are 69.35% and 30.65%, respectively, in the total population. The analysis of allelic frequencies via Fisher's exact test confirmed significantly higher frequency of D allele in both severe groups than that in the mild one, 78.31% in Hospitalized patients (OR = 2.56; 95% CI 1.46 to 4.46; p-value = 0.0011) and 74.19% in Inpatients led to ICU/death (OR = 2.04; 95% CI = 1.22 to 3.43; p-value = 0.0094) compared to 58.45% in Outpatients. The results of genotype proportions displayed an association between COVID-19 severity and DD genotype. Overall, our findings in Iranian patients supported the undeniable role of the DD genotype in the intensity of the disease, comparable to other populations. Furthermore, there is no definite evidence regarding the protective effect of the I allele in our inquiry.
Collapse
Affiliation(s)
- Mohammad Samet
- Departments of Internal Medicine, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mehran Yazdi
- Departments of Internal Medicine, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Masoud Tajamolian
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdi Beygi
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hasan Sheikhha
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyed Mehdi Hoseini
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| |
Collapse
|
7
|
Gaber DA, Shokr M, Shaker O, Zaki KA, Khalil HS, Wahb AM. Serum ACE2 and S19P gene polymorphism in Egyptian patients with COVID-19 infection: correlation with disease severity. Sci Rep 2024; 14:5846. [PMID: 38462662 PMCID: PMC10925588 DOI: 10.1038/s41598-024-56260-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/04/2024] [Indexed: 03/12/2024] Open
Abstract
The expression of ACE2 is linked to disease severity in COVID-19 patients. The ACE2 receptor gene polymorphisms are considered determinants for SARS-CoV-2 infection and its outcome. In our study, serum ACE2 and its genetic variant S19P rs73635825 polymorphism were investigated in 114 SARS-CoV-2 patients. The results were compared with 120 control subjects. ELISA technique and allele discrimination assay were used for measuring serum ACE2 and genotype analysis of ACE2 rs73635825. Our results revealed that serum ACE2 was significantly lower in SARS-CoV-2 patients (p = 0.0001), particularly in cases with hypertension or diabetes mellitus. There was a significant difference in the genotype distributions of ACE2 rs73635825 A > G between COVID-19 patients and controls (p-value = 0.001). A higher frequency of the heterozygous AG genotype (65.8%) was reported in COVID-19 patients. The G allele was significantly more common in COVID-19 patients (p < 0.0001). The AG and GG genotypes were associated with COVID-19 severity as they were correlated with abnormal laboratory findings, GGO, CXR, and total severity scores with p < 0.05. Our results revealed that the ACE2 S19P gene variant is correlated with the incidence of infection and its severity, suggesting the usefulness of this work in identifying the susceptible population groups for better disease control.
Collapse
Affiliation(s)
- Dalia A Gaber
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Helwan University, Cairo, Egypt.
- College of Medicine, Gulf Medical University, Ajman, UAE.
| | - Mohamed Shokr
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, MUST University, Cairo, Egypt
| | - Olfat Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Kamelia Ahmed Zaki
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, MUST University, Cairo, Egypt
| | - Haidy Samir Khalil
- Medical Microbiology and Immunology, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Amany M Wahb
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| |
Collapse
|
8
|
Bashar NAS, Gohar NMAH, Tantawy AA, Kamel MHM. Evaluation of relationship between TMPRSS2 p.(Val197Met) variant and COVID-19 susceptibility and severity. BMC Infect Dis 2024; 24:112. [PMID: 38254046 PMCID: PMC10802041 DOI: 10.1186/s12879-024-08987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The World Health Organization (WHO) declared Coronavirus Disease 2019 (COVID-19) a global pandemic on March 11, 2020. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection has killed millions of people and had a terrible effect on society. The transmembrane protease serine 2 (TMPRSS2) enzyme is essential in the initial phases of the interplay between the SARSCoV-2 and the host cells by assisting viral entrance. METHODS This observational case-control study involved 150 participants, 100 adult patients with COVID-19, 50 of whom appeared healthy and had no history of or symptoms of COVID-19 infection when the study was conducted. Between January and April 2022, patients were taken as inpatients in isolation units or through recruitment from the COVID-19 clinic at Kasr Al-Ainy Cairo University Hospitals. According to the National Institutes of Health guidelines (2021), they were categorised into three categories: mild, moderate, and severe. TMPRSS2 p.(Val197Met) variant genotyping was evaluated using TaqMan Real-Time PCR. RESULTS The study showed a substantial difference between the mild and severe COVID-19 patient groups regarding their TMPRSS2 (p.Val197Met) genotypes (P value = 0.046). The C allele was significantly more prevalent in the mild, moderate and severe COVID-19 patient categories (77.8%, 89.7% and 91.7%, respectively) and the control group (80%). Meanwhile, the T allele was more prevalent in the mild (22.2%) and control (20%) groups. There was a statistically significant difference in allelic distribution between the mild and severe groups (P value = 0.034). CONCLUSION The study showed a connection between the TMPRSS2 gene variant p.(Val197Met) and the degree of illness. We concluded that the T(mutant) allele was protective against severe COVID-19 because it was linked to lesser disease severity.
Collapse
Affiliation(s)
- Nora Ahmed Saleh Bashar
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Ahmed A Tantawy
- Department of Pulmonary Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Mai Hamed Mohamed Kamel
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Luoyi H, Yan P, Qihong F. Relationship between Angiotensin-Converting Enzyme Insertion/Deletion Polymorphism and the Risk of COVID-19: A Meta-Analysis. J Renin Angiotensin Aldosterone Syst 2023; 2023:3431612. [PMID: 38058963 PMCID: PMC10697777 DOI: 10.1155/2023/3431612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 08/13/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023] Open
Abstract
INTRODUCTION Research shows the correlation between angiotensin-converting enzyme (ACE) deletion and insertion (D/I) polymorphism and COVID-19 risk; yet, conclusive evidence is still lacking. Thus, a meta-analysis of relevant articles was performed to more accurately estimate the relationship of ACE I/D polymorphism with the risk of COVID-19. Material and Methods. Relevant literature from the PubMed database was systematically reviewed, and odds ratios (ORs) and associated 95% confidence intervals (CIs) were measured. Additionally, the metapackage from Stata version 15.0 was used for statistical analysis. RESULTS The meta-analysis eventually contained 8 studies, including 1362 COVID-19 cases and 4312 controls. Based on the data, the ACE I/D polymorphism did not show an association with COVID-19 risk (D vs. I: OR = 1.25, 95% CI = 0.96-1.64; DD vs. II: OR = 1.89, 95% CI = 0.95-3.74; DI vs. II: OR = 1.75, 95% CI = 0.92-3.31; dominant model: OR = 1.88, 95% CI = 0.99-3.53; and recessive model: OR = 1.24, 95% CI = 0.81-1.90). Further, subgroup analyses stratified based on case proved that the ACE D allele demonstrated an association with increasing risk of COVID-19 severity (D vs. I: OR = 1.64, 95% CI = 1.01-2.66; DD vs. II: OR = 4.62, 95% CI = 2.57-8.30; DI vs. II: OR = 3.07, 95% CI = 1.75-5.38; dominant model: OR = 3.74, 95% CI = 2.15-6.50; and recessive model: OR = 1.28, 95% CI = 0.46-3.51). CONCLUSIONS The ACE D allele was clearly related to an enhanced risk of COVID-19 severity. Hence, it is imperative to take into account the influence of genetic factors during the development of future vaccines.
Collapse
Affiliation(s)
- Hu Luoyi
- Department of Pediatrics, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei Province, China
| | - Pan Yan
- Department of Pediatrics, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei Province, China
| | - Fan Qihong
- Department of Pediatrics, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei Province, China
| |
Collapse
|
10
|
Varillas-Delgado D, Jimenez-Antona C, Lizcano-Alvarez A, Cano-de-la-Cuerda R, Molero-Sanchez A, Laguarta-Val S. Predictive Factors and ACE-2 Gene Polymorphisms in Susceptibility to Long COVID-19 Syndrome. Int J Mol Sci 2023; 24:16717. [PMID: 38069039 PMCID: PMC10705995 DOI: 10.3390/ijms242316717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Long COVID-19 syndrome is present in 5-10% of patients infected with SARS-CoV-2, and there is still little information on the predisposing factors that lead to its development. The purpose of the study was to evaluate the predictive factors in early symptoms, clinical features and the role of Angiotensin-Converting Enzyme-2 (ACE-2) c.513-1451G>A (rs2106806) and c.15643279T>C (rs6629110) polymorphisms in the susceptibility to developing Long COVID-19 syndrome subsequent to COVID-19 infectionA total of 29 patients who suffered COVID-19 were recruited in a descriptive longitudinal study of two groups: Long COVID-19 (n = 16) and non-Long COVID-19 (n = 13). Early symptoms and clinical features during COVID-19 were classified by a medical service. ACE-2 polymorphisms were genotyped by using a Single Nucleotide Primer Extension (SNPE). Of the early symptoms, fatigue, myalgia and headache showed a high risk of increasing Long COVID-19 susceptibility. Clinical features such as emergency care, SARS-CoV-2 reinfection, previous diseases, respiratory disease and brain fog also had a high risk of increasing Long COVID-19 susceptibility. The A allele in the rs2106806 variant was associated with an odds ratio (OR) of 4.214 (95% CI 2.521-8.853; p < 0.001), and the T allele in the rs6629110 variant was associated with an OR of 3.754 (95% CI 1.785-6.105; p = 0.002) of increasing Long COVID-19 susceptibility. This study shows the risk of ACE-2 polymorphisms, different early symptoms and clinical features during SARS-CoV-2 infection in susceptibility to Long COVID-19.
Collapse
Affiliation(s)
- David Varillas-Delgado
- Department of Exercise and Sport Science, Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo, 28223 Madrid, Spain;
| | - Carmen Jimenez-Antona
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Universidad Rey Juan Carlos, Alcorcon, 28922 Madrid, Spain; (C.J.-A.); (R.C.-d.-l.-C.); (A.M.-S.); (S.L.-V.)
| | - Angel Lizcano-Alvarez
- Department of Nursing and Stomatology, Faculty of Health Sciences, Universidad Rey Juan Carlos, Alcorcon, 28922 Madrid, Spain
| | - Roberto Cano-de-la-Cuerda
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Universidad Rey Juan Carlos, Alcorcon, 28922 Madrid, Spain; (C.J.-A.); (R.C.-d.-l.-C.); (A.M.-S.); (S.L.-V.)
| | - Alberto Molero-Sanchez
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Universidad Rey Juan Carlos, Alcorcon, 28922 Madrid, Spain; (C.J.-A.); (R.C.-d.-l.-C.); (A.M.-S.); (S.L.-V.)
| | - Sofia Laguarta-Val
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Universidad Rey Juan Carlos, Alcorcon, 28922 Madrid, Spain; (C.J.-A.); (R.C.-d.-l.-C.); (A.M.-S.); (S.L.-V.)
| |
Collapse
|
11
|
Pecoraro V, Cuccorese M, Trenti T. Genetic polymorphisms of ACE1, ACE2, IFTM3, TMPRSS2 and TNFα genes associated with susceptibility and severity of SARS-CoV-2 infection: a systematic review and meta-analysis. Clin Exp Med 2023; 23:3251-3264. [PMID: 37055652 PMCID: PMC10101542 DOI: 10.1007/s10238-023-01038-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/01/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Some human polymorphisms of ACE1, ACE2, IFITM3, TMPRSS2 and TNFα genes may have an effect on the susceptibility to SARS-CoV-2 infection and increase the risk to develop severe COVID-19. We conducted a systematic review of current evidence to investigate the association of genetic variants of these genes with the susceptibility to virus infection and patient prognosis. METHODS We systematically searched Medline, Embase and The Cochrane Library for articles published until May 2022, and included observational studies covering genetic association of ACE1, ACE2, IFITM3, TMPRSS2 and TNFα genes with COVID-19 susceptibility or prognosis. We evaluated the methodological quality of included studies, and pooled data as convenient in meta-analysis (MA). Odds ratio (OR) values and 95% confidence intervals were calculated. RESULTS We included 35 studies (20 on ACE, 5 each on IFITM3, TMPRSS2, TNFα), enrolling 21,452 participants, of them 9401 were COVID-19 confirmed cases. ACE1 rs4646994 and rs1799752, ACE2 rs2285666, TMPRSS2 rs12329760, IFITM3 rs12252 and TNFα rs1800629 were identifies as common polymorphisms. Our MA showed an association between genetic polymorphisms and susceptibility to SARS-CoV-2 infection for IFITM3 rs12252 CC (OR 5.67) and CT (OR 1.64) genotypes. Furthermore, MA uncovered that both ACE DD (OR 1.27) and IFITM3 CC (OR 2.26) genotypes carriers had a significantly increased risk of developing severe COVID-19. DISCUSSION These results provide a critical evaluation of genetic polymorphisms as predictors in SARS-CoV-2 infection. ACE1 DD and IFITM3 CC polymorphisms would lead to a genetic predisposition for severe lung injury in patients with COVID-19.
Collapse
Affiliation(s)
- Valentina Pecoraro
- Department of Laboratory Medicine and Pathology, Azienda USL of Modena, Modena, Italy
| | - Michela Cuccorese
- Department of Laboratory Medicine and Pathology, Azienda USL of Modena, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Azienda USL of Modena, Modena, Italy
| |
Collapse
|
12
|
Waryah YM, Khidri FF, Nigar R, Devrajani T, Rajput AR, Waryah AM, Ujjan ID. Impact of ACE2 gene variations on COVID-19 pathogenicity in Pakistani patients. Saudi J Biol Sci 2023; 30:103813. [PMID: 37811480 PMCID: PMC10550763 DOI: 10.1016/j.sjbs.2023.103813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/24/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
Background COVID-19, caused by the SARS-CoV-2 virus, swiftly disseminated and was declared a pandemic. Variations in the ACE2 gene can impact the virus's ability to bind to ACE2 receptor, potentially influencing an individual's susceptibility and its association with COVID-19 severity across various populations. Methods In total, 200 individuals were sequenced for the ACE2 gene and potential impact of the found variants on the ACE2 protein was assessed using in-silico tools. Results Eight variations in the ACE2 gene were identified in 27 COVID-19 patients, of which four were missense and four were intronic variants. Three variants had a MAF of < 0.01 (c.251C > T, p.Pro86Leu; 15C > G, p.S5S; and c. 91 A > G, p.Lys31Glu). A missense variant, p.Pro86Leu, C > T, TT genotype, was found in 9 out of 200 individuals with an allele frequency of 0.045 and showed a significant association with COVID-19 (P = 0.003). The heterozygous allele of 15C > G, p.S5S, was found with a frequency of 0.02 (8/400) in eight patients, and its CG genotype showed a significant association with COVID-19 (P = 0.0068). The remaining identified variants were not associated with COVID-19 susceptibility. Conclusion The ACE2 gene sequence in Pakistani individuals exhibited a low frequency of identified variants in COVID-19 patients. Overall, only two variants were associated with susceptibility to the disease, possibly contributing to Pakistan's lower COVID-19 mortality and infection rates. However, individuals carrying the mutant variant experienced more severe symptoms.
Collapse
Affiliation(s)
- Yar Muhammad Waryah
- Scientific Ophthalmic and Research Laboratory, Sindh Institute of Ophthalmology and Visual Sciences, Hyderabad 71500, Pakistan
- Department of Pathology, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Feriha Fatima Khidri
- Department of Biochemistry, Bilawal Medical College, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
- Department of Molecular Biology and Genetics, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Roohi Nigar
- Department of Gynecology, Bilawal Medical College, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Tarachand Devrajani
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Ali Raza Rajput
- Department of Pathology, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
- Department of Molecular Biology and Genetics, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Ali Muhammad Waryah
- Department of Pathology, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
- Department of Molecular Biology and Genetics, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Ikram Din Ujjan
- Department of Pathology, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| |
Collapse
|
13
|
Sahranavard-Pirbazari P, Khoshghiafeh A, Kamali MJ, Esfandiar H, Bakhtiari M, Ahmadifard M. A comprehensive review of ACE2, ACE1, TMPRSS2 and IFITM3 gene polymorphisms and their effect on the severity of COVID-19. Adv Med Sci 2023; 68:450-463. [PMID: 37926001 DOI: 10.1016/j.advms.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/01/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Recent events have raised concerns about the outbreak of a pandemic by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). An infection caused by a virus can provoke an inflammatory reaction, which can result in severe lung damage, failure of several organs, and death. The unique genetic makeup of each individual may be a component in the development of each of these responses. In this context, genetic variants of the genes linked to the invasion of the virus into the host's body can be analyzed. Various elements have a function in viral entry. ACE2 is used by SARS-CoV-2 as a receptor to enter the cell. TMPRSS2 is then responsible for cutting the virus into its components. In addition, lung damage occurs when there is an imbalance between ACE1 and ACE2. Another component that plays a significant role in virus penetration is called IFITM3, which is created as a reaction to interferon. This protein prevents viruses in the Coronaviridae family from entering cells. This study aimed to analyze DNA polymorphisms in the ACE2, ACE1, TMPRSS2, and IFITM3 genes. Findings showed certain polymorphisms appear to be associated with the severity of the disease, including respiratory, coronary, and neurological disorders. The results also indicated that certain polymorphisms were protective against this virus. Varying populations have a different frequency of high-risk polymorphisms, so different treatment and preventative techniques must be implemented. Additional population studies should be conducted in this region to reduce the incidence of COVID-19-related morbidity and mortality.
Collapse
Affiliation(s)
| | - Azin Khoshghiafeh
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hanieh Esfandiar
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Marzieh Bakhtiari
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohamadreza Ahmadifard
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
14
|
Muhammad N, Naeemi H, Azeem A, Sadaqat R, Shehzad U, Siddique K, Hassan U, Raza A, Rashid MU. Genetic analysis of ACE2 peptidase domain in SARS-CoV-2-positive and SARS-CoV-2-negative individuals from Pakistan. Mol Biol Rep 2023; 50:4309-4316. [PMID: 36920597 PMCID: PMC10016156 DOI: 10.1007/s11033-023-08315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/31/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND The outbreak of coronavirus disease 2019 (COVID-19) has emerged as a serious public health emergency of global concern. Angiotensin converting enzyme 2 (ACE2) peptidase domain is important for the cellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Germline variants in ACE2 peptidase domain may influence the susceptibility for SARS-CoV-2 infection and disease severity in the host population. ACE2 genetic analysis among Caucasians showed inconclusive results. This is the first Asian study investigating the contribution of ACE2 germline variants to SARS-CoV-2 infection in Pakistani population. METHODS In total, 442 individuals, including SARS-CoV-2-positive (n = 225) and SARS-CoV-2-negative (n = 217) were screened for germline variants in ACE2 peptidase domain (exons 2, 3, 9, and 10) using high resolution melting and denaturing high-performance liquid chromatography analyses followed by DNA sequencing of variant fragments. The identified variant was analyzed by in silico tools for potential effect on ACE2 protein. RESULTS A missense variant, p.Lys26Arg, was identified in one SARS-CoV-2-positive (1/225; 0.4%) and three SARS-CoV-2-negative (3/217; 1.4%) individuals. No significant difference in the minor allele frequency of this variant was found among SARS-CoV-2-positive and SARS-CoV-2-negative individuals (1/313; 0.3% versus 3/328; 0.9%; P = 0.624), respectively. The SARS-CoV-2-positive patient carrying p.Lys26Arg showed mild COVID-19 disease symptoms. It was predicted as benign variant by in silico tool. No variant was detected in ACE2 residues important for binding of SARS-CoV-2 spike protein. CONCLUSION The p.Lys26Arg variant may have no association with SARS-CoV-2 susceptibility in Pakistani population. Whole ACE2 gene screening is warranted to clarify its role in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Noor Muhammad
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7-A, Block R-3, Johar Town, Lahore, Pakistan
| | - Humaira Naeemi
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7-A, Block R-3, Johar Town, Lahore, Pakistan
| | - Ayesha Azeem
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7-A, Block R-3, Johar Town, Lahore, Pakistan
| | - Rida Sadaqat
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7-A, Block R-3, Johar Town, Lahore, Pakistan
| | - Umara Shehzad
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7-A, Block R-3, Johar Town, Lahore, Pakistan
| | | | - Usman Hassan
- Department of Pathology, SKMCH&RC, Lahore, Pakistan
| | - Aun Raza
- Department of Internal Medicine, SKMCH&RC, Lahore, Pakistan
| | - Muhammad Usman Rashid
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7-A, Block R-3, Johar Town, Lahore, Pakistan.
| |
Collapse
|
15
|
Kaidashev I, Izmailova O, Shlykova O, Kabaliei A, Vatsenko A, Ivashchenko D, Dudchenko M, Volianskyi A, Zelinskyy G, Koval T, Dittmer U. Polymorphism of tmprss2 (rs12329760) but not ace2 (rs4240157), tmprss11a (rs353163) and cd147 (rs8259) is associated with the severity of COVID-19 in the Ukrainian population. ACTA BIO-MEDICA : ATENEI PARMENSIS 2023; 94:e2023030. [PMID: 36786264 PMCID: PMC9987503 DOI: 10.23750/abm.v94i1.13543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/30/2022] [Indexed: 02/15/2023]
Abstract
BACKGROUND AND AIM Angiotensin-converting enzyme 2 (ACE2), transmembrane serine 2 and serine 11A proteases (TMPRSS2, TMPRSS11A), and a cell surface cluster of differentiation 147 (CD147) might be a gene candidate that exerts the susceptibility to and mortality from coronavirus disease 19 (COVID-19). The aim of this study was to investigate the associations between ace2, tmprss2, tmprss11a, and cd147 polymorphic variants and the severity of COVID-19 in the Ukrainian population. METHODS The study population consisted of the Ukrainian population with COVID-19: patients without oxygen therapy (n=62), with non-invasive (n=92) and invasive (n=35) oxygen therapy, as well as control subjects (n=92). Allelic polymorphisms of ace2 rs4240157, tmprss2 rs12329760, and tmprss11a rs353163 were determined by real-time PCR, and cd147 rs8259 polymorphism was detected by PCR with subsequent restrictase analysis. We compared investigated polymorphisms distribution with other populations by meta-analysis. RESULTS Our study is the first to obtain data about the distribution of investigated gene polymorphisms in the Ukrainian population: tmprss2 rs12329760 - CC 60.9%, CT 35.9%, TT 3.2%; tmprss11a rs353163 - CC 46.7%, CT 40.2%, TT 13.1%; ace2 rs4240157 - CC 7.6%, C 18.5%, CT 22.8%, TT 19.6%, T 31.5%; cd147 rs8259 - TT 60.9%, AT 32.6%, AA 6.5%. This distribution was similar to the Northern, Western and Southern European populations. There was a statistically significant difference in the frequency of tmprss2 polymorphic genotypes CC 57.1%, CT 28.6%, and TT 14.3% (P<0.05) in COVID-19 patients with invasive oxygen therapy in comparison with non-invasive oxygen therapy. This tmprss2 mutation occurs in the scavenger receptor cysteine-rich (SRCR) domain and might be important for protein-protein interaction in a calcium-dependent manner. CONCLUSIONS Our study indicated the presence of an association between the tmprss2 rs12329760 polymorphism and the severity of COVID-19 in the Ukrainian population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gennadiy Zelinskyy
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen.
| | | | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen.
| |
Collapse
|
16
|
El-Sayed Marei Y, Abdallah Bayoumy A, Mohamed Abulazm Nassar H, Mansour B, Bakeir Hamady A. The Relation between ACE Gene Polymorphism and the Severity of COVID-19 Infection. Int J Microbiol 2023; 2023:4540287. [PMID: 36644496 PMCID: PMC9833908 DOI: 10.1155/2023/4540287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/25/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic, which emerged in China at the end of 2019, rapidly spread worldwide. The angiotensin-converting enzyme (ACE) gene contains an insertion/deletion (I/D) polymorphism that leads to a higher serum ACE level which is associated with several diseases and also with a high mortality rate in SARS. Therefore, this study aimed at assessing the association between ACE gene polymorphism and the risk and severity of COVID-19 disease in patients. Methodology. Forty-five SARS-CoV-2 infected patients and another random control group of 45 healthy individuals were included. The detection of ACE I/D gene polymorphism in both groups was done by PCR. Results 53% of infected patients with SARS-CoV-2 had an ACE deletion/deletion genotype (D/D), 27% had an ACE deletion/insertion genotype (D/I), and 20% had an ACE insertion/insertion genotype (I/I). On the one hand, the D/D variant was significantly detected in the COVID-19 patients compared to the control subjects, whereas the I/I variant was significantly detected in the control subjects compared to the COVID-19 patients (p = 0.004). The D/D variant subgroup showed the lowest lymphocytic count compared to the D/I or I/I subgroups. In addition, the C-reactive protein was significantly higher and the oxygen saturation was significantly lower in patients with the D/D allele compared to the other subgroups. Conclusions ACE gene polymorphism, particularly the DD genotype, was observed to affect the severity of COVID-19 infection.
Collapse
Affiliation(s)
- Yara El-Sayed Marei
- Medical Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmed Abdallah Bayoumy
- Chest Unit Internal Medicine Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | | | - Bassam Mansour
- Infection and Endemic Disease Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Asmaa Bakeir Hamady
- Medical Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
17
|
Mateos ER, Zarate PB, Gonzalez FB, Perez-Mendez MJ, Dávila-Gonzalez E, Garduno-Gutierrez A, Sotelo-Salas R, Juan CMJ, Horacio SC, Francisco LMP, Villanueva C. Angiotensin Converting Enzyme 1 Polymorphisms and Lipid Profile in Mexican Patients With COVID-19. In Vivo 2023; 37:433-439. [PMID: 36593047 PMCID: PMC9843789 DOI: 10.21873/invivo.13096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIM Renin-angiotensin system (RAS) is present in a diverse type of cells and plays an important role in lung physiology and pathophysiology. Angiotensin converting enzymes (ACE) are part of the RAS system. There are still controversies about the association of I/D polymorphisms of ACE1 with COVID-19 severity. The goal of the study was to determine whether there is an association of the I/D polymorphism with severity of COVID-19 in Mexican patients. PATIENTS AND METHODS The study included voluntary participants: 53 healthy individuals negative to RT-PCR COVID-19 (control), and 165 patients positive to COVID-19. Severity was defined by the need of hospitalization, invasive ventilation, shock, or multiple organ failure. The patient group consisted of 28 asymptomatic, 82 with mild, and 55 with severe COVID-19. I/D polymorphism was determined by PCR. Rutinary laboratory tests were performed in all the participants. RESULTS DD polymorphism was significantly associated with severe COVID-19, independently of comorbidities, or any other variable. Receiver operator characteristic curves demonstrated association of low total cholesterol, low high-density lipoproteins, and high c-reactive protein with severity of COVID-19. CONCLUSION The DD polymorphism was associated with the course of the infection and severity of COVID-19 in a sample of Mexican patients.
Collapse
Affiliation(s)
- Evelyn Romero Mateos
- Department of Postgraduate Studies, Medical School, National Polytechnic Institute, Mexico City, Mexico
| | - Paola Berenice Zarate
- Department of Postgraduate Studies, Medical School, National Polytechnic Institute, Mexico City, Mexico
| | | | - Maria Jose Perez-Mendez
- Department of Postgraduate Studies, Medical School, National Polytechnic Institute, Mexico City, Mexico
- Molecular Biology Laboratory, Public Health Laboratory of Mexico State, Toluca, Mexico
| | | | | | - Rosalva Sotelo-Salas
- Department of Epidemiology, Tlalnepantla Health Jurisdiction, Tlalnepantla, Mexico
| | | | | | | | - Cleva Villanueva
- Department of Postgraduate Studies, Medical School, National Polytechnic Institute, Mexico City, Mexico;
| |
Collapse
|
18
|
Gupta K, Kaur G, Pathak T, Banerjee I. Systematic review and meta-analysis of human genetic variants contributing to COVID-19 susceptibility and severity. Gene 2022; 844:146790. [PMID: 35987511 PMCID: PMC9384365 DOI: 10.1016/j.gene.2022.146790] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic has spawned global health crisis of unprecedented magnitude, claiming millions of lives and pushing healthcare systems in many countries to the brink. Among several factors that contribute to an increased risk of COVID-19 and progression to exacerbated manifestations, host genetic landscape is increasingly being recognized as a critical determinant of susceptibility/resistance to infection and a prognosticator of clinical outcomes in infected individuals. Recently, several case-control association studies investigated the influence of human gene variants on COVID-19 susceptibility and severity to identify the culpable mutations. However, a comprehensive synthesis of the recent advances in COVID-19 host genetics research was lacking, and the inconsistent findings of the association studies required reliable evaluation of the strength of association with greater statistical power. In this study, we embarked on a systematic search of all possible reports of genetic association with COVID-19 till April 07, 2022, and performed meta-analyses of all the genetic polymorphisms that were examined in at least three studies. After identifying a total of 84 studies that investigated the association of 130 polymorphisms in 61 genes, we performed meta-analyses of all the eligible studies. Seven genetic polymorphisms involving 15,550 cases and 444,007 controls were explored for association with COVID-19 susceptibility, of which, ACE1 I/D rs4646994/rs1799752, APOE rs429358, CCR5 rs333, and IFITM3 rs12252 showed increased risk of infection. Meta-analyses of 11 gene variants involving 6702 patients with severe COVID-19 and 8640 infected individuals with non-severe manifestations revealed statistically significant association of ACE2 rs2285666, ACE2 rs2106809, ACE2 rs2074192, AGTR1 rs5186, and TNFA rs1800629 with COVID-19 severity. Overall, our study presents a synthesis of evidence on all the genetic determinants implicated in COVID-19 to date, and provides evidence of correlation between the above polymorphisms with COVID-19 susceptibility and severity.
Collapse
Affiliation(s)
| | | | | | - Indranil Banerjee
- Cellular Virology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Sector 81, S.A.S Nagar, Mohali 140306, India.
| |
Collapse
|
19
|
Aziz MA, Islam MS. Association of ACE1 I/D rs1799752 and ACE2 rs2285666 polymorphisms with the infection and severity of COVID-19: A meta-analysis. Mol Genet Genomic Med 2022; 10:e2063. [PMID: 36148537 PMCID: PMC9538166 DOI: 10.1002/mgg3.2063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/27/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND ACE1 I/D rs1799752 and ACE2 rs2285666 genetic polymorphisms could play a critical role in altering the clinical outcomes of SARS-CoV-2. The findings of previous studies remained inconclusive. This meta-analysis was performed to evaluate the association and provide a more reliable outcome. METHODS This study was completed following the updated recommendations of PRISMA using RevMan 5.4.1 statistical software. RESULTS A total of 11 studies with 950 severe cases and 1573 non-severe cases with COVID-19 infection were included. Pooled analysis showed that ACE1 I/D polymorphism was correlated with the severity of SARS-CoV-2 in the DD genotype and D allele for the fixed-effects model (OR:1.27 and OR:1.17). Besides, codominant 3, recessive, and allele models were associated with the severity of the fixed-effects model (OR:1.35, OR:1.37, and OR:1.20) in Caucasian ethnicity. ACE2 rs2285666 was linked with the severity in codominant 3 (OR:2.63, for both random- and fixed effects-models), overdominant (OR:1.97, for random-effects model and OR:1.97, for fixed effects-model), and recessive model (OR:0.41 for fixed- and random-effects model). Allele model of rs2285666 showed a significant association in the fixed-effects model (OR:1.61). CONCLUSION Our present meta-analysis suggests that ACE1 I/D rs1799752 and ACE2 rs2285666 variants may enhance the severity in SARS-CoV-2 infected patients. Future studies are warranted to verify our findings.
Collapse
Affiliation(s)
- Md. Abdul Aziz
- Department of Pharmacy, Faculty of Pharmacy and Health SciencesState University of BangladeshDhakaBangladesh,Laboratory of Pharmacogenomics and Molecular Biology, Department of PharmacyNoakhali Science and Technology UniversitySonapurBangladesh
| | - Mohammad Safiqul Islam
- Laboratory of Pharmacogenomics and Molecular Biology, Department of PharmacyNoakhali Science and Technology UniversitySonapurBangladesh,Department of Pharmacy, Faculty of ScienceNoakhali Science and Technology UniversitySonapurBangladesh
| |
Collapse
|
20
|
Keikha M, Karbalaei M. Global distribution of ACE1 (rs4646994) and ACE2 (rs2285666) polymorphisms associated with COVID-19: A systematic review and meta-analysis. Microb Pathog 2022; 172:105781. [PMID: 36116608 PMCID: PMC9476369 DOI: 10.1016/j.micpath.2022.105781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Recent studies emphasize the significant impact of the renin-angiotensin aldosterone system (RAAS) as a risk factor associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, according to the literature, the effect of rs4646994 and rs2285666 polymorphisms on susceptibility and progression to severe clinical outcomes is still controversial. Our aim was to investigate the effect of polymorphisms such as rs4646994 and rs2285666 on susceptibility to coronavirus disease-2019 (COVID-19). METHODS We conducted a comprehensive literature search using databases such as ISI Web of Science, PubMed, Scopus, and Google Scholar to retrieve studies on the effect of two polymorphisms (rs4646994 and rs2285666) of the angiotensin-converting enzyme (ACE) gene on COVID-19. Finally, the effect of each polymorphism on SARS-CoV-2 infection was measured based on the odds ratio with 95% confidence intervals. RESULTS Analysis of the rs4646994 polymorphism showed that the frequency of the D allele in patients infected with COVID-19 was higher than that the I allele. Moreover, the authors found that the DD genotype increased the risk of severe disease by 1.7-fold in Asian population, whereas, this was not the case in the Western population. However, the rs4646994 II genotype plays a protective role against COVID-19 in Western countries. In the case of the rs2285666 polymorphism based on patient ethnicity, the C allele had the highest frequency. Interestingly, in people harboring the GG and TT genotypes, the risk of progression to severe disease significantly increased, while people with genotypes such as GA, AA and CC seem to be more resistant to severe Covid-19. CONCLUSIONS Based on geographical region, the rs4646994 DD genotype may be considered as a predictive biomarker to identify the susceptibility of human to SARS-CoV-2 infection and severe COVID-19 outcomes. We also concluded that individuals with GG and TT genotypes are significantly more susceptible to severe outcomes of disease, while conversely, individuals with GA, AA, and CC genotypes are less susceptible to severe COVID-19.
Collapse
Affiliation(s)
- Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
21
|
Ma Y, Li Q, Chen J, Liu S, Liu S, He X, Ling Y, Zheng J, Corpe C, Lu H, Wang J. Angiotensin-Converting Enzyme 2 SNPs as Common Genetic Loci and Optimal Early Identification Genetic Markers for COVID-19. Pathogens 2022; 11:947. [PMID: 36015068 PMCID: PMC9415427 DOI: 10.3390/pathogens11080947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Angiotensin-converting enzyme 2 (ACE2) is implicated as a host cell receptor that causes infection in the pathogenesis of coronavirus disease 2019 (COVID-19), and its genetic polymorphisms in the ACE2 gene may promote cardiovascular disease and systemic inflammatory injury in COVID-19 patients. Hence, the genetic background may potentially explain the broad interindividual variation in disease susceptibility and/or severity. Methods: Genetic susceptibility to COVID-19 was analyzed by examining single-nucleotide polymorphisms (SNPs) of ACE2 in 246 patients with COVID-19 and 210 normal controls using the TaqMan genotyping assay. Results: We demonstrated that the ACE2 SNPs rs4646142, rs6632677, and rs2074192 were associated with COVID-19 (for all, p < 0.05), and the differences in the ACE2 SNPs rs4646142 and rs6632677 were correlated with COVID-19-related systemic inflammatory injury and cardiovascular risk. Specifically, rs4646142 was associated with high-sensitivity C-reactive protein (hs-CRP), prealbumin (PAB), apolipoprotein A (APOA), high-density lipoprotein (HDL), and acid glycoprotein (AGP) levels. Rs6632677 was also associated with elevated CRP, acid glycoprotein (AGP), and haptoglobin (HPT). Conclusions: Our results suggest that the ACE2 SNPs rs4646142 and rs6632677 may be common genetic loci and optimal early identification genetic markers for COVID-19 with cardiovascular risk.
Collapse
Affiliation(s)
- Yan Ma
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Qiuyue Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jun Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Songmei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shanshan Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiaomeng He
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yun Ling
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jianghua Zheng
- Department of Laboratory Medicine, Zhoupu Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Christopher Corpe
- Nutritional Science Department, King’s College London, 150 Stamford Street, Waterloo, London SE1 9NH, UK
| | - Hongzhou Lu
- National Clinical Research Centre for Infectious Diseases, The Third People’s Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China
| | - Jin Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
22
|
Angulo-Aguado M, Corredor-Orlandelli D, Carrillo-Martínez JC, Gonzalez-Cornejo M, Pineda-Mateus E, Rojas C, Triana-Fonseca P, Contreras Bravo NC, Morel A, Parra Abaunza K, Restrepo CM, Fonseca-Mendoza DJ, Ortega-Recalde O. Association Between the LZTFL1 rs11385942 Polymorphism and COVID-19 Severity in Colombian Population. Front Med (Lausanne) 2022; 9:910098. [PMID: 35795626 PMCID: PMC9251207 DOI: 10.3389/fmed.2022.910098] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/26/2022] [Indexed: 01/08/2023] Open
Abstract
Genetic and non-genetic factors are responsible for the high interindividual variability in the response to SARS-CoV-2. Although numerous genetic polymorphisms have been identified as risk factors for severe COVID-19, these remain understudied in Latin-American populations. This study evaluated the association of non-genetic factors and three polymorphisms: ACE rs4646994, ACE2 rs2285666, and LZTFL1 rs11385942, with COVID severity and long-term symptoms by using a case-control design. The control group was composed of asymptomatic/mild cases (n = 61) recruited from a private laboratory, while the case group was composed of severe/critical patients (n = 63) hospitalized in the Hospital Universitario Mayor-Méderi, both institutions located in Bogotá, Colombia. Clinical follow up and exhaustive revision of medical records allowed us to assess non-genetic factors. Genotypification of the polymorphism of interest was performed by amplicon size analysis and Sanger sequencing. In agreement with previous reports, we found a statistically significant association between age, male sex, and comorbidities, such as hypertension and type 2 diabetes mellitus (T2DM), and worst outcomes. We identified the polymorphism LZTFL1 rs11385942 as an important risk factor for hospitalization (p < 0.01; OR = 5.73; 95% CI = 1.2-26.5, under the allelic test). Furthermore, long-term symptoms were common among the studied population and associated with disease severity. No association between the polymorphisms examined and long-term symptoms was found. Comparison of allelic frequencies with other populations revealed significant differences for the three polymorphisms investigated. Finally, we used the statistically significant genetic and non-genetic variables to develop a predictive logistic regression model, which was implemented in a Shiny web application. Model discrimination was assessed using the area under the receiver operating characteristic curve (AUC = 0.86; 95% confidence interval 0.79-0.93). These results suggest that LZTFL1 rs11385942 may be a potential biomarker for COVID-19 severity in addition to conventional non-genetic risk factors. A better understanding of the impact of these genetic risk factors may be useful to prioritize high-risk individuals and decrease the morbimortality caused by SARS-CoV2 and future pandemics.
Collapse
Affiliation(s)
- Mariana Angulo-Aguado
- Center for Research in Genetics and Genomics – CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - David Corredor-Orlandelli
- Center for Research in Genetics and Genomics – CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Juan Camilo Carrillo-Martínez
- Center for Research in Genetics and Genomics – CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Mónica Gonzalez-Cornejo
- Center for Research in Genetics and Genomics – CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Eliana Pineda-Mateus
- Center for Research in Genetics and Genomics – CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Carolina Rojas
- Center for Research in Genetics and Genomics – CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Paula Triana-Fonseca
- Department of Molecular Diagnosis, Genética Molecular de Colombia SAS, Bogotá, Colombia
| | - Nora Constanza Contreras Bravo
- Center for Research in Genetics and Genomics – CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Adrien Morel
- Center for Research in Genetics and Genomics – CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | | | - Carlos M. Restrepo
- Center for Research in Genetics and Genomics – CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Dora Janeth Fonseca-Mendoza
- Center for Research in Genetics and Genomics – CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| | - Oscar Ortega-Recalde
- Center for Research in Genetics and Genomics – CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad Del Rosario, Bogotá, Colombia
| |
Collapse
|
23
|
Dobrijevic Z, Robajac D, Gligorijevic N, Šunderic M, Penezic A, Miljuš G, Nedic O. The association of ACE1, ACE2, TMPRSS2, IFITM3 and VDR polymorphisms with COVID-19 severity: A systematic review and meta-analysis. EXCLI JOURNAL 2022; 21:818-839. [PMID: 35949487 PMCID: PMC9360474 DOI: 10.17179/excli2022-4976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022]
Abstract
Genes involved in the regulation of viral recognition and its entry into a host cell have been identified as candidates for genetic association studies on COVID-19 severity. Published findings on the effects of polymorphisms within ACE1, ACE2, TMPRSS2, IFITM3 and VDR genes remained inconclusive, so we conducted a systematic review and meta-analysis in order to elucidate their potential involvement in the genetic basis underlying the severity of COVID-19 and/or an outcome of SARS-CoV-2 infection. Identification of potentially eligible studies was based on PubMed, Scopus and Web of Science database search. Relevant studies (n=29) with a total number of 8247 SARS-CoV-2-positive participants were included in qualitative synthesis, while results of 21 studies involving 5939 were pooled in meta-analysis. Minor allele I of rs1799752 located within ACE1 was identified as a protective variant against severe COVID-19, while its effect on mortality rate was opposite. Similarly, minor allele A of ACE2 polymorphism, rs2285666, was found to associate with a decreased risk of severe COVID-19 (P = 0.003, OR = 0.512, 95 % CI = 0.331-0.793). Statistical significance was also seen for the association between COVID-19 severity and rs12329760 located within TMPRSS2. Our results did not support the supposed association of rs12252 in IFITM3 and polymorphisms within VDR with disease severity. We conclude that genetic variants within ACE1, ACE2 and TMPRSS2 may be potential biomarkers of COVID-19 severity, which needs to be further confirmed in a larger set of studies.
Collapse
Affiliation(s)
- Zorana Dobrijevic
- University of Belgrade - Institute for the Application of Nuclear Energy (INEP), Belgrade, Serbia
| | - Dragana Robajac
- University of Belgrade - Institute for the Application of Nuclear Energy (INEP), Belgrade, Serbia
| | - Nikola Gligorijevic
- University of Belgrade - Institute for the Application of Nuclear Energy (INEP), Belgrade, Serbia
| | - Miloš Šunderic
- University of Belgrade - Institute for the Application of Nuclear Energy (INEP), Belgrade, Serbia
| | - Ana Penezic
- University of Belgrade - Institute for the Application of Nuclear Energy (INEP), Belgrade, Serbia
| | - Goran Miljuš
- University of Belgrade - Institute for the Application of Nuclear Energy (INEP), Belgrade, Serbia
| | - Olgica Nedic
- University of Belgrade - Institute for the Application of Nuclear Energy (INEP), Belgrade, Serbia
| |
Collapse
|
24
|
Tu H, Bao J. IFNL4, ACE1, PKR, IFNG, MBL2 genetic polymorphisms and severe COVID-19: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e29405. [PMID: 35623072 PMCID: PMC9276237 DOI: 10.1097/md.0000000000029405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/17/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Corona virus disease 2019 (COVID-19) is caused by SARS-CoV-2, the pathogenic process of SARS-Cov-2 is related to the angiotensin-2 converting enzyme (ACE-2) on host cells. The genetic polymorphisms among different populations may influence the progression of COVID-19. However, the effects of IFNL4, ACE1, PKR, IFNG, and MBL2 in severe COVID-19 have not been systematically assessed. METHODS We will include all relevant English and Chinese studies by searching the following electronic databases: PubMed, MEDLINE, Embase, Web of Science, Scopus, the Cochrane Library, and Google Scholar before March 31, 2022. Two researchers will independently screen and extract the literature. The methodological quality of the included studies will be evaluated by the Cochrane Handbook for Systematic Reviews of Interventions. RESULT This systematic review and meta-analysis will summarize the association of IFNL4, ACE1, PKR, IFNG, MBL2 genetic polymorphisms, and severe COVID-19. The results will be submitted to a peer-reviewed journal once completed. CONCLUSION The conclusion of our study will provide evidence for the early prevention of severe COVID-19. PROSPERO REGISTRATION NUMBER CRD42022301735.
Collapse
Affiliation(s)
- Hengjia Tu
- Guangzhou Medical University, Xinzao, Panyu District, Guangzhou City, Guangdong Province, People's Republic of China
| | - Junrong Bao
- Faculty of Big Data and Computing, Guangdong Baiyun University, No.1 Xueyuan Road Jianggao Town, Baiyun District, Guangzhou City, Guangdong Province, People's Republic of China
| |
Collapse
|
25
|
Clinical Utility of Amplification Refractory Mutation System-Based PCR and Mutation-Specific PCR for Precise and Rapid Genotyping of Angiotensin-Converting Enzyme 1 (ACE1-rs4646996 D>I) and Angiotensin-Converting Enzyme 2 (ACE2-rs4240157T>C) Gene Variations in Coronary Artery Disease and Their Strong Association with Its Disease Susceptibility and Progression. Diagnostics (Basel) 2022; 12:diagnostics12061321. [PMID: 35741131 PMCID: PMC9222124 DOI: 10.3390/diagnostics12061321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Experimental clinical and research studies demonstrated that the renin−angiotensin system (RAS) affects the pathogenesis of atherosclerosis and the prognosis of coronary heart disease (CHD). The results show that ACE2 (angiotensin I-converting enzyme 2) might act as a protective protein for cardiovascular diseases; however, only a few studies in human populations have been carried out. The aim of this study was to develop, optimize, and validate a direct T-ARMS-based PCR assay for the precise and rapid genotyping of ACE1-rs4646996 D>I and ACE2-rs4240157T>C and study their association with coronary artery disease susceptibility and progression. Methodology: This study included 149 consecutive coronary artery disease patients and 150 healthy controls. We utilized T-ARMS for the precise and rapid genotyping of ACE2-rs4240157; rs4646994. Results: Our results indicated that the ACE1-rs4646996 D>I genotypes observed between CAD cases and controls were statistically significant (p < 0.008) and, similarly, the ACE2-rs4240157T>C genotypes observed were significant (p < 0.0001). Moreover, the frequency of the D allele (ACE1-D>I) and C allele (ACE2-rs4240157T>C) was found to be higher among CAD patients than the HC. Our results indicated that in the codominant model, the ACE2-ID genotype was strongly associated with increased CAD susceptibility in a codominant model with an OR of 2.37, (95%) CI = (1.023−5.504), and p < 0.04. Similarly, the ACE2-DD genotype was strongly associated with an increased CAD susceptibility with an OR of 3.48, (95%) CI = (1.49 to 8.117), and p < 0.003. Similarly, in allelic comparison, the D allele was strongly associated with CAD susceptibility with an OR of 1.59, (95%) CI = (1.12−2.24), and p < 0.003. Our results revealed that there was a significant correlation between ACE2-I/D genotypes and hypertension, T2D, and obesity (p < 0.05). The results of ACE2 rs4240157 genotyping indicated a strong association in the codominant model with an increased CAD susceptibility with an OR of 3.62, (95%) CI = (2.027 to 6.481), and p < 0.0001. Similarly, in a dominant inheritance model, a strong association is observed between the ACE2 rs4240157 (CT+CC) genotype with an OR of 6.34, (95%) CI = (3.741 to 10.749), and p < 0.0001. In allelic comparison, the T allele was strongly associated with CAD susceptibility with an OR of 5.56, (95% CI = (3.56 to 7.17), and p < 0.0001. Similarly, our results revealed that there was a significant association of the ACE2-rs4240157T>C genotypes with Triglycerides (mg/dL), HDL-C (mg/dL), total Cholesterol (mg/dL), and C-reactive protein (mg/L) in CAD. Conclusion: It was indicated that the ARMS technique and MS-PCR assay proved to be fast, accurate, and reliable for ACE2-rs4240157T>C and ACE1-rs4646996 D>I, respectively, and can be used as a potential molecular tool in the diagnosis of genetic diseases in undeveloped and developing countries—where there might be a shortage of medical resources and supplies. ACE1-I>D genotypes were strongly associated with T2D, hypertension, and obesity (p < 0.002). Besides the ACE2-rs4240157 CT heterozygosity genotype, the T allele was strongly associated with CAD susceptibility. Future longitudinal studies in different ethnic populations with larger sample sizes are recommended to validate these findings
Collapse
|
26
|
Mir M, Mir R, Alghamdi MA, Alsayed B, Elfaki I, Al Bshabshe A, Farooq R, Alhujaily M, Alharthi M, Alamri MM, Al‑Shahrani A. Differential impact of the angiotensin‑converting enzyme‑2 (ACE2 rs4343 G>A) and miR‑196a2 rs11614913 C>T gene alterations in COVID‑19 disease severity and mortality. Exp Ther Med 2022; 23:418. [PMID: 35601073 PMCID: PMC9117950 DOI: 10.3892/etm.2022.11345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
The recent coronavirus outbreak from Wuhan China in late 2019 caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) resulted in a global pandemic of coronavirus-19 disease (COVID-19). Understating the underlying mechanism of the pathogenesis of coronavirus infection is important not only because it will help in accurate diagnosis and treatment of the infection but also in the production of effective vaccines. The infection begins when SARS-CoV-2 enters the cells through binding of its envelope glycoprotein to angiotensin-converting enzyme2 (ACE2). Gene variations of ACE2 and microRNA (miR)-196 are associated with viral infection and other diseases. The present study investigated the association of the ACE2 rs4343 G>A and miR-196a2 rs11614913 C>T gene polymorphisms with severity and mortality of COVID-19 using amplification refractory mutation system PCR in 117 COVID-19 patients and 103 healthy controls from three regions of Saudi Arabia. The results showed that ACE2 rs4343 GA genotype was associated with severity of COVID-19 (OR=2.10, P-value 0.0028) and ACE2 rs4343 GA was associated with increased mortality with OR=3.44, P-value 0.0028. A strong correlation between the ACE2 rs4343 G>A genotype distribution among COVID-19 patients was reported with respect to their comorbid conditions including sex (P<0.023), coronary artery disease (P<0.0001), oxygen saturation <60 mm Hg (P<0.0009) and antiviral therapy (0.003). The results also showed that the CT genotype and T allele of the miR-196a2 rs11614913 C>T were associated with decreased risk to COVID-19 with OR=0.76, P=0.006 and OR=0.54, P=0.005, respectively. These results need to be validated with future molecular genetic studies in a larger sample size and different populations.
Collapse
Affiliation(s)
- Mohammad Mir
- Department of Basic Medical Sciences (Biochemistry), College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Rashid Mir
- Prince Fahd Bin Sultan Research chair, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mushabab Ayed Alghamdi
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Badr Alsayed
- Department of Internal Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ali Al Bshabshe
- Department of Internal Medicine/Critical Care, College of Medicine King Khalid University, Abha 61421, Saudi Arabia
| | - Rabia Farooq
- Department of Basic Medical Sciences (Biochemistry), College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Muffarah Alharthi
- Department of Family Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohannad Mohammad Alamri
- Department of Family Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Al‑Shahrani
- Department of Family Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| |
Collapse
|
27
|
de Araújo JLF, Menezes D, de Aguiar RS, de Souza RP. IFITM3, FURIN, ACE1, and TNF-α Genetic Association With COVID-19 Outcomes: Systematic Review and Meta-Analysis. Front Genet 2022; 13:775246. [PMID: 35432458 PMCID: PMC9010674 DOI: 10.3389/fgene.2022.775246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/11/2022] [Indexed: 12/18/2022] Open
Abstract
Human polymorphisms may contribute to SARS-CoV-2 infection susceptibility and COVID-19 outcomes (asymptomatic presentation, severe COVID-19, death). We aimed to evaluate the association of IFITM3, FURIN, ACE1, and TNF-α genetic variants with both phenotypes using meta-analysis. The bibliographic search was conducted on the PubMed and Scielo databases covering reports published until February 8, 2022. Two independent researchers examined the study quality using the Q-Genie tool. Using the Mantel–Haenszel weighted means method, odds ratios were combined under both fixed- and random-effect models. Twenty-seven studies were included in the systematic review (five with IFITM3, two with Furin, three with TNF-α, and 17 with ACE1) and 22 in the meta-analysis (IFITM3 n = 3, TNF-α, and ACE1 n = 16). Meta-analysis indicated no association of 1) ACE1 rs4646994 and susceptibility, 2) ACE1 rs4646994 and asymptomatic COVID-19, 3) IFITM3 rs12252 and ICU hospitalization, and 4) TNF-α rs1800629 and death. On the other hand, significant results were found for ACE1 rs4646994 association with COVID-19 severity (11 studies, 692 severe cases, and 1,433 nonsevere controls). The ACE1 rs4646994 deletion allele showed increased odds for severe manifestation (OR: 1.45; 95% CI: 1.26–1.66). The homozygous deletion was a risk factor (OR: 1.49, 95% CI: 1.22–1.83), while homozygous insertion presented a protective effect (OR: 0.57, 95% CI: 0.45–0.74). Further reports are needed to verify this effect on populations with different ethnic backgrounds.Systematic Review Registration: https://www.crd.york.ac.uk/prosperodisplay_record.php?ID=CRD42021268578, identifier CRD42021268578
Collapse
|
28
|
Alsayed BA, Mir R. Severe COVID-19 Pneumonia and Genetic Susceptibility: A Case Report and Literature Review. Cureus 2022; 14:e23636. [PMID: 35371838 PMCID: PMC8971094 DOI: 10.7759/cureus.23636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 11/09/2022] Open
Abstract
Genetic susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) morbidity and mortality continues to evolve. This report presents a case of an apparently healthy male adult who developed severe coronavirus disease 2019 (COVID-19) and a study on relevant genetic mutations, namely, angiotensin-converting enzyme 2 (ACE2-rs4646994 I/D) gene, glutathione S-transferase (GST) M1 and T1 gene, and miR-423 rs6505162 C>A gene polymorphism. Results showed that the ACE-DD genotype of ACE2, (GSTM1+/+) (GSTT1−/−) genotype of GST gene, and CA genotype (heterozygosity) of miR-423 rs6505162 genes, which were found in the patient, could be independent risk factors of severe COVID-19, even without comorbidities.
Collapse
|
29
|
Biochemical Characterization and Molecular Determination of Estrogen Receptor-α (ESR1 PvuII-rs2234693 T>C) and MiRNA-146a (rs2910164 C>G) Polymorphic Gene Variations and Their Association with the Risk of Polycystic Ovary Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053114. [PMID: 35270805 PMCID: PMC8910123 DOI: 10.3390/ijerph19053114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 12/15/2022]
Abstract
Polycystic ovary syndrome (PCOS) is regarded as one of the most frequently encountered endocrine disorders and affects millions of young women worldwide, resulting in an array of complex metabolic alterations and reproductive failure. PCOS is a risk factor for diabetes mellitus, obstructive sleep apnea, obesity and depression in patients. Estrogen receptors (ESRs) are significant candidates in endocrine function and ovarian response in women. Moreover, microRNAs and long non-coding RNAs are emerging as principal mediators of gene expression and epigenetic pathways in various disease states. This study has characterized the clinical parameters in PCOS patients with comprehensive biochemical profiling compared to healthy controls and further examined the influence of allelic variations for estrogen receptor-α (ESR1 PvuII-rs2234693 T>C) and miRNA-146a (rs2910164 C>G) gene polymorphism on the risk of and susceptibility to PCOS. In this case-control study, we have used amplification refractory mutation specific (ARMS)-PCR to detect and determine the presence of these polymorphic variants in the study subjects. Our results demonstrated that most of the biochemical markers, which were analyzed in the study, show statistically significant alterations in PCOS patients, including fasting glucose, free insulin, HOMA-IR, LDL, HDL, cholesterol and hormones such as FSH, LH, testosterone and progesterone, which correlate with the established biochemical alterations in the disorder. Further, it is reported that for estrogen receptor-α (ESR1 PvuII-rs2234693 T>C), the frequency of the T allele (fT) was significantly higher among patients (0.64 vs. 0.44) compared to controls, while the frequency of the C allele (fC) was lower in patients (0.36 vs. 0.56) compared to controls. However, it was found that there was no association of an increased risk of PCOS with the ESR1 PvuII-rs2234693 C>T gene polymorphism. On the contrary, the study found strong association of miRNA-146a (rs2910164 C>G) gene polymorphism with an enhanced risk of PCOS. The frequency of the C allele (fC) was significantly higher among patients (0.52 vs. 0.36) compared to controls. The frequency of the G allele (fG) was found to be lower in patients (0.48 vs. 0.64) compared to controls. The codominant, dominant and recessive models display a statistically significant association of polymorphic variations with PCOS. Moreover, the G allele was associated strongly with PCOS susceptibility with an OR = 1.92 (95%) CI = (1.300−2.859), RR = 1.38 (1.130−1.691) p-value < 0.001.
Collapse
|
30
|
Polymorphisms and mutations of ACE2 and TMPRSS2 genes are associated with COVID-19: a systematic review. Eur J Med Res 2022; 27:26. [PMID: 35193695 PMCID: PMC8861605 DOI: 10.1186/s40001-022-00647-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
Objective To determine the effect of polymorphisms and mutations in angiotensin-converting enzyme 2 (ACE2) and Type 2 transmembrane serine proteases (TMPRSS2) genes on susceptibility to corona virus disease 2019 (COVID-19) and patient prognosis. Introduction From December 2019 to the current time, an outbreak of epidemic of COVID-19, characterized by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has occurred around the world. It is now clear that SARS-CoV-2 binds to human ACE2 receptors, with expression of these receptors correlated with the rate of SARS-CoV-2 infection and mortality. Polymorphisms in individual patient factors, such as ACE2 and TMPRSS2 genes have been linked with an increase in negative outcomes, although evidence to affirm remains debatable. Methods Here, we performed a systematic review, based on guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria, with the aim of assessing whether polymorphisms in ACE2 and TMPRSS2 genes affect the COVID-19 condition. We extensively searched PubMed, MEDLINE, Embase, the Cochrane Library, and Web of Science databases, for relevant articles and reports published in English between December 2019 and December 2021. Results A total of 495 full-text articles were downloaded, of which 185 were excluded after preliminary examination as they were duplicates. Finally, 310 articles were evaluated, by reading their titles and abstracts, and 208 of them eliminated based on our selection criteria. Finally, 33 articles met our inclusion criteria and were included in the final assessment. Genetic data from 33,923 patients with COVID-19 drawn from the general population and deriving from over 160 regions and 50 countries, as well as approximately 560,000 samples from global-public genetic databases, were included in our analysis. Ultimately, we identified 10 SNPs and 21 mutations in the ACE2 gene, along with 13 SNPs and 12 variants in the TMPRSS2 gene, which may be associated with COVID-19. Conclusions ACE2 and TMPRSS2 play vital roles in the onset, development, and prognosis of SARS-CoV-2 infection, and have both been strongly associated with vulnerability, intensity, and the clinical result of COVID-19. Overall, these genetic factors may have potential for future development of personalized drugs and vaccines against COVID-19. Trial registration: CRD42021239400 in PROSPERO 2021.
Collapse
|