1
|
Kienzl M, Maitz K, Sarsembayeva A, Valadez-Cosmes P, Gruden E, Ristic D, Herceg K, Kargl J, Schicho R. Comparative Study of the Immune Microenvironment in Heterotopic Tumor Models. Cancers (Basel) 2024; 16:295. [PMID: 38254785 PMCID: PMC10813609 DOI: 10.3390/cancers16020295] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The tumor microenvironment (TME) is pivotal in cancer progression and the response to immunotherapy. A "hot" tumor typically contains immune cells that promote anti-tumor immunity, predicting positive prognosis. "Cold" tumors lack immune cells, suggesting a poor outlook across various cancers. Recent research has focused on converting "cold" tumors into "hot" tumors to enhance the success of immunotherapy. A prerequisite for the studies of the TME is an accurate knowledge of the cell populations of the TME. This study aimed to describe the immune TME of lung and colorectal cancer and melanoma, focusing on lymphoid and myeloid cell populations. We induced heterotopic immunocompetent tumors in C57BL/6 mice, using KP and LLC (Lewis lung carcinoma) cells for lung cancer, MC38 cells for colorectal cancer, and B16-F10 cells for melanoma. Immune cell infiltration was analyzed using multicolor flow cytometry in single-cell suspensions after tumor excision. KP cell tumors showed an abundance of neutrophils and eosinophils; however, they contained much less adaptive immune cells, while LLC cell tumors predominated in monocytes, neutrophils, and monocyte-derived dendritic cells. Monocytes and neutrophils, along with a significant T cell infiltration, were prevalent in MC38 tumors. Lastly, B16-F10 tumors were enriched in macrophages, while showing only moderate T cell presence. In conclusion, our data provide a detailed overview of the immune TME of various heterotopic tumors, highlighting the variabilities in the immune cell profiles of different tumor entities. Our data may be a helpful basis when investigating new immunotherapies, and thus, this report serves as a helpful tool for preclinical immunotherapy research design.
Collapse
Affiliation(s)
- Melanie Kienzl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Kathrin Maitz
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Arailym Sarsembayeva
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Paulina Valadez-Cosmes
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Eva Gruden
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Dusica Ristic
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Karolina Herceg
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| | - Rudolf Schicho
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| |
Collapse
|
2
|
Giordano G, Pancione M. MHC class III lymphocyte antigens 6 as endogenous immunotoxins: Unlocking immunotherapy in proficient mismatch repair colorectal cancer. WIREs Mech Dis 2024; 16:e1631. [PMID: 37818781 DOI: 10.1002/wsbm.1631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023]
Abstract
A majority of cancers, including colorectal cancer (CRC) with intact DNA mismatch repair, exhibit a paralyzed antitumor immune response and resistance to immune checkpoint inhibitors. Members of MHC class III lymphocyte antigen 6G (LY6G) encode glycosylphosphatidylinositol (GPI) proteins anchored to the membrane. Snake venom neurotoxins and LY6G proteins share a three-finger (3F) folding domain. LY6 proteins such as LY6G6D are gaining a reputation as excellent tumor-associated antigens that can potently inhibit anti-tumor immunity in cancers with proficient mismatch repair. Thus, we called MHC class III LY6G endogenous immunotoxins. Since the discovery of LY6G6D as a tumor-associated antigen, T-cell engagers (TcEs) have been developed to simultaneously bind LY6G6D on cancer cells and CD3 on T cells, improving the treatment of metastatic solid tumors that are resistant to ICIs. We present a current understanding of how alterations in MHC class III genes inhibit antitumor immunity, and how these understandings can be turned into effective treatments for patients who are refractory to standard immunotherapy. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics Cancer > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Liu J, Li J, Luo F, Wu S, Li B, Liu K. The Predictive Value of CD3+/CD8+ Lymphocyte Infiltration and PD-L1 Expression in Colorectal Cancer. Curr Oncol 2023; 30:9647-9659. [PMID: 37999119 PMCID: PMC10670477 DOI: 10.3390/curroncol30110699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
AIM The immune system plays an important role in tumor development and treatment. In this study, we aimed to determine the relationships among the expressions of PD-L1, CD3, CD8, MMR proteins, clinicopathological features, and prognosis of CRC. METHODS Immunohistochemistry was used to determine the expression of PD-L1, CD3, and CD8 in 771 patients with CRC. RESULTS The expression of PD-L1 in TC was related to the right colon, adenocarcinoma, and dMMR, and in IC, it was related to younger CRC patients and the TNM stage. The expression of CD3 and CD8 in tumor-infiltrating lymphocytes was related to lymph node metastasis and the TNM stage. The expression of PD-L1 in TC and IC was correlated with the infiltration of CD3+ and CD8+ lymphocytes. Univariate survival analysis showed that the expression of PD-L1 in TC, IC, and dMMR was related to a better prognosis. Multivariate survival analysis showed that age, TNM stage, and dMMR were independent prognostic factors for CRC. The OS of the chemotherapy was significantly higher than that of the non-chemotherapy in III-IV TNM stage patients; CRC patients with positive PD-L1 expression in TC or IC and dMMR did not benefit from chemotherapy. CONCLUSIONS PD-L1 expression in TC and IC was closely related to the density of CD3 and CD8 infiltration in tumor-infiltrating lymphocytes. The expression of CD3 and CD8 in tumor-infiltrating lymphocytes and the expression of PD-L1 in IC were linked to the TNM stage of CRC patients. PD-L1 expression in TC and IC and MMR status may act as an important biomarker for guiding the postoperative treatment of III-IV TNM stage CRC patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Kunping Liu
- Department of Pathology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan 511518, China
| |
Collapse
|
4
|
Alese OB, Wu C, Chapin WJ, Ulanja MB, Zheng-Lin B, Amankwah M, Eads J. Update on Emerging Therapies for Advanced Colorectal Cancer. Am Soc Clin Oncol Educ Book 2023; 43:e389574. [PMID: 37155942 DOI: 10.1200/edbk_389574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide. It is projected to increase by 3.2 million new cases and account for 1.6 million deaths by 2040. Mortality is largely due to limited treatment options for patients who present with advanced disease. Thus, the development of effective and tolerable therapies is crucial. Chemotherapy has been the backbone of systemic treatment of advanced CRC, but utility has been limited because of invariable resistance to therapy, narrow mechanisms of action, and unfavorable toxicity profile. Tumors that are mismatch repair-deficient have demonstrated remarkable response to immune checkpoint inhibitor therapy. However, most CRC tumors are mismatch repair-proficient and represent an unmet medical need. Although ERBB2 amplification occurs only in a few cases, it is associated with left-sided tumors and a higher incidence of brain metastasis. Numerous combinations of HER2 inhibitors have demonstrated efficacy, and antibody-drug conjugates against HER2 represent innovative strategies in this area. The KRAS protein has been classically considered undruggable. Fortunately, new agents targeting KRAS G12C mutation represent a paradigm shift in the management of affected patients and could lead the advancement in drug development for the more common KRAS mutations. Furthermore, aberrant DNA damage response is present in 15%-20% of CRCs, and emerging innovative combinations with poly (ADP-ribose) polymerase (PARP) inhibitors could improve the current therapeutic landscape. Multiple novel biomarker-driven approaches in the management of patients with advanced CRC tumors are reviewed in this article.
Collapse
Affiliation(s)
- Olatunji B Alese
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | | | - William J Chapin
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mark B Ulanja
- Christus Ochsner St Patrick Hospital, Lake Charles, LA
| | | | | | - Jennifer Eads
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Bao X, Wang D, Dai X, Liu C, Zhang H, Jin Y, Tong Z, Li B, Tong C, Xin S, Li X, Wang Y, Liu L, Zhu X, Fu Q, Zheng Y, Deng J, Tian W, Guo T, Zhao P, Cheng W, Fang W. An immunometabolism subtyping system identifies S100A9+ macrophage as an immune therapeutic target in colorectal cancer based on multiomics analysis. CELL REPORTS MEDICINE 2023; 4:100987. [PMID: 36990096 PMCID: PMC10140461 DOI: 10.1016/j.xcrm.2023.100987] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
Immunometabolism in the tumor microenvironment (TME) and its influence on the immunotherapy response remain uncertain in colorectal cancer (CRC). We perform immunometabolism subtyping (IMS) on CRC patients in the training and validation cohorts. Three IMS subtypes of CRC, namely, C1, C2, and C3, are identified with distinct immune phenotypes and metabolic properties. The C3 subtype exhibits the poorest prognosis in both the training cohort and the in-house validation cohort. The single-cell transcriptome reveals that a S100A9+ macrophage population contributes to the immunosuppressive TME in C3. The dysfunctional immunotherapy response in the C3 subtype can be reversed by combination treatment with PD-1 blockade and an S100A9 inhibitor tasquinimod. Taken together, we develop an IMS system and identify an immune tolerant C3 subtype that exhibits the poorest prognosis. A multiomics-guided combination strategy by PD-1 blockade and tasquinimod improves responses to immunotherapy by depleting S100A9+ macrophages in vivo.
Collapse
|
6
|
Jou E, Rodriguez-Rodriguez N, McKenzie ANJ. Emerging roles for IL-25 and IL-33 in colorectal cancer tumorigenesis. Front Immunol 2022; 13:981479. [PMID: 36263033 PMCID: PMC9573978 DOI: 10.3389/fimmu.2022.981479] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide, and is largely refractory to current immunotherapeutic interventions. The lack of efficacy of existing cancer immunotherapies in CRC reflects the complex nature of the unique intestinal immune environment, which serves to maintain barrier integrity against pathogens and harmful environmental stimuli while sustaining host-microbe symbiosis during homeostasis. With their expression by barrier epithelial cells, the cytokines interleukin-25 (IL-25) and IL-33 play key roles in intestinal immune responses, and have been associated with inappropriate allergic reactions, autoimmune diseases and cancer pathology. Studies in the past decade have begun to uncover the important roles of IL-25 and IL-33 in shaping the CRC tumour immune microenvironment, where they may promote or inhibit tumorigenesis depending on the specific CRC subtype. Notably, both IL-25 and IL-33 have been shown to act on group 2 innate lymphoid cells (ILC2s), but can also stimulate an array of other innate and adaptive immune cell types. Though sometimes their functions can overlap they can also produce distinct phenotypes dependent on the differential distribution of their receptor expression. Furthermore, both IL-25 and IL-33 modulate pathways previously known to contribute to CRC tumorigenesis, including angiogenesis, tumour stemness, invasion and metastasis. Here, we review our current understanding of IL-25 and IL-33 in CRC tumorigenesis, with specific focus on dissecting their individual function in the context of distinct subtypes of CRC, and the potential prospects for targeting these pathways in CRC immunotherapy.
Collapse
Affiliation(s)
- Eric Jou
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|
7
|
Defining the Immune Checkpoint Landscape in Human Colorectal Cancer Highlights the Relevance of the TIGIT/CD155 Axis for Optimizing Immunotherapy. Cancers (Basel) 2022; 14:cancers14174261. [PMID: 36077799 PMCID: PMC9454990 DOI: 10.3390/cancers14174261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
While immune checkpoint (IC) therapies, particularly those targeting the PD-1/PD-L1 axis, have revolutionized the treatment of melanoma and several other cancers, their effect remains very limited in colorectal cancer (CRC). To define a comprehensive landscape of ICs in the human CRC tumor microenvironment (TME), we evaluated, using multiparametric flow cytometry, their ex vivo expression via tumor-infiltrating lymphocytes (TILs) (n = 40 CRCs) as well as that of their respective ligands on tumor and myeloid cells (n = 29). Supervised flow cytometry analyses showed that (i) most CD3+ TILs expressed PD-1 and TIGIT and, to a lesser extent, Tim-3, Lag3 and NKG2A, and (ii) EpCAM+ tumor cells and CD11b+ myeloid cells differed in their IC ligand expression profile, with a strikingly high expression of CD155 by tumor cells. An in situ analysis of IC and their ligands using immunohistochemistry on paraffin sections of CRC confirmed the overexpression of TIGIT and its ligand, CD155, in the TME. Most interestingly, an unsupervised clustering analysis of IC co-expression on CD4+ and CD8+ TILs identified two tumor subgroups, named IChigh and IClow. Altogether, our findings highlight the TIGIT/CD155 axis as a potential target that could be used in combination IC therapy in CRC.
Collapse
|
8
|
Wang P, Sun LL, Clark R, Hristopoulos M, Chiu CP, Dillon M, Lin W, Lo AA, Chalsani S, Das Thakur M, Zimmerman Savill KM, Rougé L, Lupardus P, Piskol R, Husain B, Ellerman D, Shivva V, Leong SR, Ovacik M, Totpal K, Wu Y, Spiess C, Lee G, Leipold DD, Polson AG. Novel Anti-LY6G6D/CD3 T-Cell-Dependent Bispecific Antibody for the Treatment of Colorectal Cancer. Mol Cancer Ther 2022; 21:974-985. [PMID: 35364611 PMCID: PMC9381132 DOI: 10.1158/1535-7163.mct-21-0599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/21/2021] [Accepted: 03/21/2022] [Indexed: 01/07/2023]
Abstract
New therapeutics and combination regimens have led to marked clinical improvements for the treatment of a subset of colorectal cancer. Immune checkpoint inhibitors have shown clinical efficacy in patients with mismatch-repair-deficient or microsatellite instability-high (MSI-H) metastatic colorectal cancer (mCRC). However, patients with microsatellite-stable (MSS) or low levels of microsatellite instable (MSI-L) colorectal cancer have not benefited from these immune modulators, and the survival outcome remains poor for the majority of patients diagnosed with mCRC. In this article, we describe the discovery of a novel T-cell-dependent bispecific antibody (TDB) targeting tumor-associated antigen LY6G6D, LY6G6D-TDB, for the treatment of colorectal cancer. RNAseq analysis showed that LY6G6D was differentially expressed in colorectal cancer with high prevalence in MSS and MSI-L subsets, whereas LY6G6D expression in normal tissues was limited. IHC confirmed the elevated expression of LY6G6D in primary and metastatic colorectal tumors, whereas minimal or no expression was observed in most normal tissue samples. The optimized LY6G6D-TDB, which targets a membrane-proximal epitope of LY6G6D and binds to CD3 with high affinity, exhibits potent antitumor activity both in vitro and in vivo. In vitro functional assays show that LY6G6D-TDB-mediated T-cell activation and cytotoxicity are conditional and target dependent. In mouse xenograft tumor models, LY6G6D-TDB demonstrates antitumor efficacy as a single agent against established colorectal tumors, and enhanced efficacy can be achieved when LY6G6D-TDB is combined with PD-1 blockade. Our studies provide evidence for the therapeutic potential of LY6G6D-TDB as an effective treatment option for patients with colorectal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrew G. Polson
- Corresponding Author: Andrew G. Polson, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080. Phone: 650-225-5134; Fax: 650-225-6240; E-mail:
| |
Collapse
|
9
|
Ducoin K, Oger R, Bilonda Mutala L, Deleine C, Jouand N, Desfrançois J, Podevin J, Duchalais E, Cruard J, Benlalam H, Labarrière N, Bossard C, Jarry A, Gervois-Segain N. Targeting NKG2A to boost anti-tumor CD8 T-cell responses in human colorectal cancer. Oncoimmunology 2022; 11:2046931. [PMID: 35295095 PMCID: PMC8920231 DOI: 10.1080/2162402x.2022.2046931] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recently, the inhibitory CD94/NKG2A receptor has joined the group of immune checkpoints (ICs) and its expression has been documented in NK cells and CD8+ T lymphocytes in several cancers and some infectious diseases. In colorectal cancer (CRC), we previously reported that NKG2A+ tumor-infiltrating lymphocytes (TILs) are predominantly CD8+ αβ T cells and that CD94 overexpression and/or its ligand HLA-E were associated with a poor prognosis. This study aimed to thoroughly characterize the NKG2A+ CD8+ TIL subpopulation and document the impact of NKG2A on anti-tumor responses in CRC. Our findings highlight new features of this subpopulation: (i) enrichment in colorectal tumors compared to paired normal colonic mucosa, (ii) their character as tissue-resident T cells and their majority terminal exhaustion status, (iii) co-expression of other ICs delineating two subgroups differing mainly in the level of NKG2A expression and the presence of PD-1, (iv) high functional avidity despite reduced proliferative capacity and finally (v) inhibition of anti-tumor reactivity that is overcome by blocking NKG2A. From a clinical point of view, these results open a promising alternative for immunotherapies based on NKG2A blockade in CRC, which could be performed alone or in combination with other IC inhibitors, adoptive cell transfer or therapeutic vaccination.
Collapse
Affiliation(s)
- Kathleen Ducoin
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302. F-44000 Nantes, France
- LabEx IGO, Université de Nantes, Nantes, France
| | - Romain Oger
- LabEx IGO, Université de Nantes, Nantes, France
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France
| | - Linda Bilonda Mutala
- LabEx IGO, Université de Nantes, Nantes, France
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France
- Institut Roche, Boulogne-Billancourt, France
| | - Cécile Deleine
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302. F-44000 Nantes, France
- LabEx IGO, Université de Nantes, Nantes, France
| | - Nicolas Jouand
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France
| | - Juliette Desfrançois
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France
| | - Juliette Podevin
- CHU Nantes, Department of Digestive Surgery and IMAD, Nantes, France
| | - Emilie Duchalais
- CHU Nantes, Department of Digestive Surgery and IMAD, Nantes, France
| | - Jonathan Cruard
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France
| | - Houssem Benlalam
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302. F-44000 Nantes, France
- LabEx IGO, Université de Nantes, Nantes, France
| | - Nathalie Labarrière
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302. F-44000 Nantes, France
- LabEx IGO, Université de Nantes, Nantes, France
| | - Céline Bossard
- LabEx IGO, Université de Nantes, Nantes, France
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France
- CHU Nantes, Department of Digestive Surgery and IMAD, Nantes, France
| | - Anne Jarry
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302. F-44000 Nantes, France
- LabEx IGO, Université de Nantes, Nantes, France
| | - Nadine Gervois-Segain
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302. F-44000 Nantes, France
- LabEx IGO, Université de Nantes, Nantes, France
| |
Collapse
|
10
|
Ahmed MM, Zaki A, Alhazmi A, Alsharif KF, Bagabir HA, Haque S, Manda K, Ahmad S, Ali SM, Ishrat R. Identification and Validation of Pathogenic Genes in Sepsis and Associated Diseases by Integrated Bioinformatics Approach. Genes (Basel) 2022; 13:genes13020209. [PMID: 35205254 PMCID: PMC8872348 DOI: 10.3390/genes13020209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Sepsis is a clinical syndrome with high mortality and morbidity rates. In sepsis, the abrupt release of cytokines by the innate immune system may cause multiorgan failure, leading to septic shock and associated complications. In the presence of a number of systemic disorders, such as sepsis, infections, diabetes, and systemic lupus erythematosus (SLE), cardiorenal syndrome (CRS) type 5 is defined by concomitant cardiac and renal dysfunctions Thus, our study suggests that certain mRNAs and unexplored pathways may pave a way to unravel critical therapeutic targets in three debilitating and interrelated illnesses, namely, sepsis, SLE, and CRS. Sepsis, SLE, and CRS are closely interrelated complex diseases likely sharing an overlapping pathogenesis caused by erroneous gene network activities. We sought to identify the shared gene networks and the key genes for sepsis, SLE, and CRS by completing an integrative analysis. Initially, 868 DEGs were identified in 16 GSE datasets. Based on degree centrality, 27 hub genes were revealed. The gProfiler webtool was used to perform functional annotations and enriched molecular pathway analyses. Finally, core hub genes (EGR1, MMP9, and CD44) were validated using RT-PCR analysis. Our comprehensive multiplex network approach to hub gene discovery is effective, as evidenced by the findings. This work provides a novel research path for a new research direction in multi-omics biological data analysis.
Collapse
Affiliation(s)
- Mohd Murshad Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Almaz Zaki
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India; (A.Z.); (S.A.)
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, SMIRES for Consultation in Specialized, Jazan University, Jazan 45142, Saudi Arabia;
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia;
| | - Hala Abubaker Bagabir
- Department of Medical Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh 21589, Saudi Arabia;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
| | - Kailash Manda
- Institute of Nuclear Medicine and Applied Sciences, Defense Research Development Organization, New Delhi 110054, India;
| | - Shaniya Ahmad
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India; (A.Z.); (S.A.)
| | - Syed Mansoor Ali
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India; (A.Z.); (S.A.)
- Correspondence: (S.M.A.); (R.I.)
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
- Correspondence: (S.M.A.); (R.I.)
| |
Collapse
|
11
|
Sun L, Huang S, Li D, Mao Y, Wang Y, Wu J. Efficacy and Safety of Fruquintinib Plus PD-1 Inhibitors Versus Regorafenib Plus PD-1 Inhibitors in Refractory Microsatellite Stable Metastatic Colorectal Cancer. Front Oncol 2021; 11:754881. [PMID: 34692541 PMCID: PMC8526894 DOI: 10.3389/fonc.2021.754881] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/14/2021] [Indexed: 12/31/2022] Open
Abstract
Background Microsatellite stability (MSS) or mismatch repair proficient (pMMR) metastatic colorectal cancer (mCRC) is resistant to immune checkpoint inhibitors. Studies have shown that antiangiogenic drugs combined with programmed death receptor-1 (PD-1) inhibitors can improve immunosuppression. The purpose of this study was to compare the efficacy of fruquintinib combined with PD-1 inhibitor (FP) and regorafenib combined with PD-1 inhibitor (RP) in the treatment of advanced mCRC with MSS or pMMR. Materials and Methods We retrospectively collected advanced MSS or pMMR mCRC patient data from The Second Affiliated Hospital of Nanchang, China, from June 2019 to March 2021. Then, we analyzed and compared the efficacy and safety of FP and RP. Results A total of 51 patients who met the criteria were divided into FP (n = 28) and RP groups (n = 23). The overall response rate of the FP and RP groups was 7.1% and 8.7% and the disease control rate was 89.3% and 56.5%, respectively. The median progression-free survival (PFS) time was higher in the FP group than in the RP group (6.4 vs. 3.9 months, respectively; P = 0.0209). Patients with no liver metastasis, KRAS wild type, and left colon tumor may benefit from FP. Eight patients (15.7%) had grade 3 toxicity related to treatment. Cox multivariate regression analysis showed that the treatment method was an independent risk factor for median PFS time. Conclusion Our study indicates that FP could improve PFS time of patients with advanced mCRC compared with RP.
Collapse
Affiliation(s)
- Liying Sun
- Department of Digestive Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Shenglan Huang
- Department of Digestive Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Dan Li
- Department of Digestive Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Ye Mao
- Department of Digestive Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Yurou Wang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianbing Wu
- Department of Digestive Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| |
Collapse
|
12
|
Pyo J, Park HJ. Treatment Efficacy of Immune Checkpoint Inhibitors for Patients with Advanced or Metastatic Colorectal Cancer: A Systematic Review and Meta-Analysis. J Clin Med 2021; 10:3599. [PMID: 34441895 PMCID: PMC8397178 DOI: 10.3390/jcm10163599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
The treatment efficacy of immune checkpoint inhibitors (ICIs) in colorectal cancer (CRC) has been reported heterogeneously across clinical trials. We conducted a systematic review and meta-analysis to evaluate the efficacy of ICIs in patients with advanced/metastatic CRC. Ovid-Medline was searched to identify clinical trials providing the efficacy outcomes of overall response rate (ORR) or disease control rate (DCR). The pooled ORR and DCR were estimated across all studies and subgroups. Meta-regression was performed to find the influencing factors for treatment efficacy. A total of thirty studies (1870 patients) were eligible. The overall ORR and DCR were 20.1% and 58.5%, respectively, but these results were heterogeneous across studies. Multivariate meta-regression revealed that microsatellite phenotype (odds ratio of MSI-H/dMMR versus MSS/pMMR: 1.67, p < 0.001) and drug regimen (odds ratio of monotherapy versus combination therapy: 1.07, p = 0.019) were the source of heterogeneity and also significantly influenced factors for the efficacy of the treatment. Although the efficacy of ICIs as a first-line therapy was higher than that of ICIs as the second- or more-line therapy (ORR: 51.5% vs. 13.4%, DCR: 85% vs. 49.5%), multivariate regression showed that the line of therapy was not a significant factor for the treatment efficacy. Our study suggests that the microsatellite phenotype and drug regimen, rather than the line of treatment, are the primary factors influencing the treatment response among advanced/metastatic CRC patients treated with an ICI-based regimen.
Collapse
Affiliation(s)
- Junhee Pyo
- Asan Medical Center, Department of Biomedical Engineering, College of Medicine, University of Ulsan, Seoul 05505, Korea;
| | - Hyo-Jung Park
- Asan Medical Center, Department of Radiology and Research Institute of Radiology, College of Medicine, University of Ulsan, Seoul 05505, Korea
| |
Collapse
|
13
|
Liu N, Shan F, Ma M. Strategic enhancement of immune checkpoint inhibition in refractory Colorectal Cancer: Trends and future prospective. Int Immunopharmacol 2021; 99:108017. [PMID: 34352568 DOI: 10.1016/j.intimp.2021.108017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC), known as a frequently fatal disease, ranking as the third most common malignancy, is the second leading cause of cancer related mortality worldwide. Metastases are common in CRC patients which account for approximately 25% of the patients at diagnosis, 50% of patients during treatment which is associated closely with CRC mortality. Conventional therapies such as surgery, chemotherapy, and radiotherapy are standards of care for the treatment of CRC patients. However, primary tumor recurrence and secondary disease in patients receiving standard of care treatment modalities occur in 50% of patients so that new treatment modalities are needed. Immune checkpoint inhibition (ICI) has transformed the management of patients suffered from metastatic CRC (mCRC) with mismatch repair deficiency (dMMR) and microsatellite instability (MSI) -high (MSI-H) while manifests ineffectiveness in preserved mismatch repair (pMMR) or microsatellite stable (MSS) "cold" tumors which makes up the majority (95%) of mCRC. In this review, we mainly lay emphasis on the development of combinations in therapy strategies with ICIs with other immune based treatment approaches to increase the intra-tumoral immune response and render tumors 'immune-reactive', thereby increasing the efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Fengping Shan
- Department of Immunology, College of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Mingxing Ma
- Department of Colorectal Cancer Surgery, Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
14
|
Kim N, Yu JI, Lim DH, Lee J, Kim ST, Hong JY, Kang WK, Jeong WK, Kim KM. Prognostic Impact of Sarcopenia and Radiotherapy in Patients With Advanced Gastric Cancer Treated With Anti-PD-1 Antibody. Front Immunol 2021; 12:701668. [PMID: 34305941 PMCID: PMC8298191 DOI: 10.3389/fimmu.2021.701668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND We explored the combined effects of sarcopenia (SAR) and radiotherapy (RT) on outcomes in patients with advanced gastric cancer (AGC) treated with immune-checkpoint blockade (ICB). METHODS Among 185 patients with AGC treated with ICB, we defined SAR as skeletal muscle index <49 cm2/m2 for men and <31 cm2/m2 for women; 93 patients met criteria. We defined high neutrophil-to-lymphocyte ratio (hNLR) as NLR≥3. Palliative RT was performed in 37 patients (20%) before ICB. RESULTS We frequently observed hNLR in patients with SAR (53% vs. 35%, p = 0.02). The median overall survival (OS) for the entire cohort was 5 months. Stratification by risk factors of SAR or hNLR revealed a significant difference in median OS (0 [N = 60] vs. 1 [N = 76] vs. 2 [N = 49]: 7.6 vs. 6.4 vs. 2.2 months, p < 0.001). Patients with microsatellite instability-high (MSI-H, N = 19) or Epstein-Barr virus (EBV)-positive tumors (N = 13) showed favorable outcomes compared to those with microsatellite stable (MSS, N = 142) tumors (median OS, not reached vs. 16.8 vs. 3.8 months, respectively). The benefit of RT was evident in patients with both SAR and hNLR (median OS, 3.1 vs. 1.3 months, p = 0.02) and MSS/EBV-negative tumor (median OS, 6.5 vs. 3.5 months, p = 0.03), but outcomes after RT in MSI-H tumor were not significantly different. In multivariable analysis, SAR/hNLR, molecular subtypes, and a history of RT were associated with OS (all p < 0.05). CONCLUSIONS We demonstrated the negative predictive value of SAR/hNLR on outcomes after ICB for AGC, and the history of RT could overcome the negative impact of SAR/hNLR and the MSS/EBV-negative subtype.
Collapse
Affiliation(s)
- Nalee Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Do Hoon Lim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jeeyun Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seung Tae Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jung Yong Hong
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Won Ki Kang
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Woo Kyoung Jeong
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyoung-Mee Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
15
|
Shi R, Li Y, Ran L, Dong Y, Zhou X, Tang J, Han L, Wang M, Pang L, Qi Y, Wu Y, Gao Y. Screening and identification of HLA-A2-restricted neoepitopes for immunotherapy of non-microsatellite instability-high colorectal cancer. SCIENCE CHINA-LIFE SCIENCES 2021; 65:572-587. [PMID: 34236583 DOI: 10.1007/s11427-021-1944-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022]
Abstract
Colorectal cancer has one of the highest mortality rates among malignant tumors, and most patients with non-microsatellite instability-high (MSI-H) colorectal cancer do not benefit from targeted therapy or immune checkpoint inhibitors. Identification of immunogenic neoantigens is a promising strategy for inducing specific antitumor T cells for cancer immunotherapy. Here, we screened potential high-frequency neoepitopes from non-MSI-H colorectal cancer and tested their abilities to induce tumor-specific cytotoxic T cell responses. Three HLA-A2-restricted neoepitopes (P31, P50, and P52) were immunogenic and could induce cytotoxic T lymphocytes in peripheral blood mononuclear cells from healthy donors and colorectal cancer patients. Cytotoxic T lymphocytes induced in HLA-A2.1/Kb transgenic mice could recognize and lyse mutant neoepitope-transfected HLA-A2+ cancer cells. Adoptive transfer of cytotoxic T lymphocytes induced by the peptide pool of these three neoepitopes effectively inhibited tumor growth and increased the therapeutic effects of anti-PD-1 antibody. These results revealed the potential of high-frequency mutation-specific peptide-based immunotherapy as a personalized treatment approach for patients with non-MSI-H colorectal cancer. The combination of adoptive T cell therapy based on these neoepitopes with immune checkpoint inhibitors, such as anti-PD-1, could provide a promising treatment strategy for non-MSI-H colorectal cancer.
Collapse
Affiliation(s)
- Ranran Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yubing Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ling Ran
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Dong
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiuman Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingwen Tang
- Department of Integrated Chinse and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Lu Han
- Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Mingshuang Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Liwei Pang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
16
|
Bai J, Chen H, Bai X. Relationship between microsatellite status and immune microenvironment of colorectal cancer and its application to diagnosis and treatment. J Clin Lab Anal 2021; 35:e23810. [PMID: 33938589 PMCID: PMC8183910 DOI: 10.1002/jcla.23810] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022] Open
Abstract
Due to advances in understanding the immune microenvironment of colorectal cancer (CRC), microsatellite classification (dMMR/MSI-H and pMMR/MSS) has become a key biomarker for the diagnosis and treatment of CRC patients and therefore has important clinical value. Microsatellite status is associated with a variety of clinicopathological features and affects drug resistance and the prognosis of patients. CRC patients with different microsatellite statuses have different compositions and distributions of immune cells and cytokines within their tumor microenvironments (TMEs). Therefore, there is great interest in reversing or reshaping CRC TMEs to transform immune tolerant "cold" tumors into immune sensitive "hot" tumors. This requires a thorough understanding of differences in the immune microenvironments of MSI-H and MSS type tumors. This review focuses on the relationship between CRC microsatellite status and the immune microenvironment. It focuses on how this relationship has value for clinical application in diagnosis and treatment, as well as exploring the limitations of its current application.
Collapse
Affiliation(s)
- Junge Bai
- The Fourth Hospital of Harbin Medical UniversityHarbinChina
| | - Hongsheng Chen
- Department of General SurgeryThe Fourth Hospital of Harbin Medical UniversityHarbinChina
| | - Xuefeng Bai
- Department of Colorectal SurgeryHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
17
|
Co-inhibitor expression on tumor infiltrating and splenic lymphocytes after dual checkpoint inhibition in a microsatellite stable model of colorectal cancer. Sci Rep 2021; 11:6956. [PMID: 33772035 PMCID: PMC7997991 DOI: 10.1038/s41598-021-85810-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/18/2021] [Indexed: 01/08/2023] Open
Abstract
Checkpoint inhibitors have demonstrated clinical impact in colorectal cancer with deficient mismatch repair and high microsatellite instability. However, the majority of patients have disease with stable microsatellites that responds poorly to immunotherapies. Combinations of checkpoint inhibitors are under investigation as a way of increasing immunogenicity and promoting a robust anti-tumor immune response. The purpose of this study is to quantify the immune responses induced by mono and dual checkpoint inhibition in a mismatch repair proficient model of colorectal cancer (CRC). Tumor growth rates were monitored over time and compared between groups. We utilized fluorescence-activated cell sorting to analyze CD8+ and CD4+ T cells after treatment with either single PD-1 inhibition or dual PD-1 and CTLA-4 inhibition. Additionally, we sought to quantify the expression of co-inhibitory surface molecules PD-1, LAG3, and TIM3. Dual checkpoint inhibition was associated with a significantly slower growth rate as compared to either mono PD-1 inhibition or control (p < 0.05). Neither monotherapy nor dual checkpoint inhibition significantly affected the tumoral infiltration of lymphocytes. After treatment with dual inhibitors, infiltrating CD8+ T cells demonstrated significantly less expression of PD-1 (1700 vs. 2545 and 2462; p < 0.05) and LAG3 (446.2 vs. 694.4 and 707; p < 0.05) along with significantly more expression of TIM3 (12,611 vs. 2961 and 4259; p < 0.05) versus the control and anti-PD-1 groups. These results suggest that dual therapy with anti-CTLA-4 and anti-PD-1 antibodies significantly inhibits growth of microsatellite stable CRC by suppressing immunosuppressive checkpoints. Upregulation of TIM3 represents a potential escape mechanism and a target for future combination immunotherapies in CRC.
Collapse
|
18
|
Patel MR, Falchook GS, Hamada K, Makris L, Bendell JC. A phase 2 trial of trifluridine/tipiracil plus nivolumab in patients with heavily pretreated microsatellite-stable metastatic colorectal cancer. Cancer Med 2021; 10:1183-1190. [PMID: 33544407 PMCID: PMC7926002 DOI: 10.1002/cam4.3630] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022] Open
Abstract
Background Microsatellite‐stable (MSS) colorectal cancer (CRC) tends to be poorly immunogenic, with limited treatment options. In MSS CRC xenograft models, trifluridine/tipiracil (FTD/TPI) plus programed death 1 inhibitors resulted in synergistic antitumor activity and increased tumor immunogenicity. This phase 2 study evaluated FTD/TPI plus nivolumab in patients with MSS metastatic CRC. Methods This single‐arm, safety lead‐in study used a Simon's two‐stage design (enrolling 6 patients in the safety lead‐in, proceeding to stage 2 if ≥2 of the first 15 patients achieved a partial or complete response per immune‐related response criteria [irRC] within 6 months). Patients with histologically proven MSS mCRC, and disease progression after ≥2 prior chemotherapy regimens received FTD/TPI (35 mg/m2 twice daily; days 1–5 and 8–12 every 28 days) plus nivolumab (3 mg/kg every 2 weeks). Results Between August 2016 and January 2017, 18 patients (50% men; median age 56.5 years) were enrolled; 72% had colon cancer and 56% had KRAS mutations. All patients received treatment (median, 2.5 cycles [range, 1–8]). No dose‐limiting toxicities were observed in the study. The most frequent adverse events (AEs) of any cause and grade were nausea (67%), diarrhea (61%), and neutropenia (50%); 13 patients (72%) experienced grade ≥3 AEs. No patients discontinued treatment because of AEs. No patient achieved a tumor response (either per Response Evaluation Criteria in Solid Tumors [RECIST] or irRC), and the study did not progress to the second stage. Stable disease was achieved in 8 patients per irRC and in 10 patients per RECIST. Median progression‐free survival was 2.2 months (95% CI, 1.8–6.0 months) per irRC and 2.8 months (95% CI, 1.8–5.1 months) per RECIST. Conclusion Patients with refractory MSS metastatic CRC failed to experience clinical benefit with FTD/TPI plus nivolumab, although safety data in this population indicated tolerability and feasibility of this combination. Trial registration number NCT02860546.
Collapse
Affiliation(s)
- Manish R Patel
- Florida Cancer Specialists and Sarah Cannon Research Institute, Sarasota, Florida, USA
| | | | | | | | - Johanna C Bendell
- Sarah Cannon Research Institute and Tennessee Oncology, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Cui Y, Ou Y, Luo Y, Yu J, Lin Y, Chen S. Effective management of advanced colon cancer genotyping microsatellite stable/microsatellite instable-low with Kirsten rat sarcoma viral oncogene mutation using nivolumab plus ipilimumab combined with regorafenib and irinotecan: A case report. SAGE Open Med Case Rep 2021; 9:2050313X211027737. [PMID: 35154775 PMCID: PMC8826103 DOI: 10.1177/2050313x211027737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 06/07/2021] [Indexed: 01/03/2023] Open
Abstract
Microsatellite stable /microsatellite instable-low is the most common colorectal cancer genotype, counting for approximately 85% of common colorectal cancer patients. Treatment of advanced microsatellite stable/microsatellite instable-low colorectal cancer is difficult and successful pharmacological treatment options are currently lacking. Here, we report a case of a 37-year-old man with advanced colorectal cancer genotyping microsatellite stable/microsatellite instable-low with a Kirsten rat sarcoma viral oncogene (G12V) mutation. Following palliative surgery, the patient did not response to the common recommended chemotherapy FOLFIRI regimen and other chemotherapy options. Finally, the patient was successfully treated using a unique combinational immunotherapy, using nivolumab plus ipilimumab combined with regorafenib and irinotecan. Significant improvement in the Karnofsky Performance Status scores, liver function and well-being, reduction in serum tumor biomarkers, and reduction in the size of multiple liver metastatic tumors was evident. This report provides a rare case in which a unique and effective combinational immunotherapy for refractory advanced colon cancer patients is discussed. It encourages further research into combined immunotherapy for immuno-insensitive colon cancer patients.
Collapse
Affiliation(s)
- Yingqiang Cui
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yimeng Ou
- Department of General Surgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongping Luo
- Department of General Surgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiongbiao Yu
- Department of General Surgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiguang Lin
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, Guangdong Pharmaceutical University, Guangzhou, China
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
- Yiguang Lin, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| | - Size Chen
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
20
|
Wang Y, Wei B, Gao J, Cai X, Xu L, Zhong H, Wang B, Sun Y, Guo W, Xu Q, Gu Y. Combination of Fruquintinib and Anti-PD-1 for the Treatment of Colorectal Cancer. THE JOURNAL OF IMMUNOLOGY 2020; 205:2905-2915. [PMID: 33028620 DOI: 10.4049/jimmunol.2000463] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022]
Abstract
Identification of effective therapies for colorectal cancer (CRC) remains an urgent medical need, especially for the microsatellite-stable (MSS) phenotype. In the current study, a combination of fruquintinib plus anti-PD-1 for MSS CRC therapy was investigated. First, a case of advanced MSS CRC was reported. After failure of multiline therapy, the patient finally achieved rapid response after receiving fruquintinib plus anti-PD-1 treatment. Then the effect of fruquintinib plus anti-PD-1 was verified using a murine syngeneic model of CT26 cells (MSS). The results showed that cotreatment significantly inhibited tumor growth and promote survival time for tumor-bearing mice compared with the single drug alone. In addition, fruquintinib/anti-PD-1 cotreatment decreased angiogenesis, enhanced normalization of the vascular structure, and alleviated tumor hypoxia. Moreover, the combination therapy reprogrammed the immune microenvironment by enhancing chemotactic factor release, increasing CD8+ T cell infiltration and activation, decreasing ration of regulatory T cells, and promoting M1/M2 ratio of macrophage. Finally, the enhanced antitumor effect of fruquintinib/anti-PD-1 cotreatment was significantly reversed in CD8 knockout mice compared with that in the wild-type mice. Our study indicated that combination of fruquintinib and anti-PD-1 could synergistically suppress CRC progression and altered the tumor microenvironment in favor of antitumor immune responses.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.,Department of Oncology, Cancer Rehabilitation Center, Jiangsu Province Hospital, Nanjing 210029, China
| | - Bin Wei
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.,Department of Oncology, Cancer Rehabilitation Center, Jiangsu Province Hospital, Nanjing 210029, China.,The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223001, China; and
| | - Jianhua Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiaomin Cai
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.,Department of Oncology, Cancer Rehabilitation Center, Jiangsu Province Hospital, Nanjing 210029, China
| | - Lingyan Xu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.,Department of Oncology, Cancer Rehabilitation Center, Jiangsu Province Hospital, Nanjing 210029, China
| | - Haiqing Zhong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Binglin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; .,Department of Oncology, Cancer Rehabilitation Center, Jiangsu Province Hospital, Nanjing 210029, China
| |
Collapse
|
21
|
Sferrazza G, Corti M, Brusotti G, Pierimarchi P, Temporini C, Serafino A, Calleri E. Nature-derived compounds modulating Wnt/ β -catenin pathway: a preventive and therapeutic opportunity in neoplastic diseases. Acta Pharm Sin B 2020; 10:1814-1834. [PMID: 33163337 PMCID: PMC7606110 DOI: 10.1016/j.apsb.2019.12.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin signaling is a conserved pathway that has a crucial role in embryonic and adult life. Dysregulation of the Wnt/β-catenin pathway has been associated with diseases including cancer, and components of the signaling have been proposed as innovative therapeutic targets, mainly for cancer therapy. The attention of the worldwide researchers paid to this issue is increasing, also in view of the therapeutic potential of these agents in diseases, such as Parkinson's disease (PD), for which no cure is existing today. Much evidence indicates that abnormal Wnt/β-catenin signaling is involved in tumor immunology and the targeting of Wnt/β-catenin pathway has been also proposed as an attractive strategy to potentiate cancer immunotherapy. During the last decade, several products, including naturally occurring dietary agents as well as a wide variety of products from plant sources, including curcumin, quercetin, berberin, and ginsenosides, have been identified as potent modulators of the Wnt/β-catenin signaling and have gained interest as promising candidates for the development of chemopreventive or therapeutic drugs for cancer. In this review we make an overview of the nature-derived compounds reported to have antitumor activity by modulating the Wnt/β-catenin signaling, also focusing on extraction methods, chemical features, and bio-activity assays used for the screening of these compounds.
Collapse
Affiliation(s)
- Gianluca Sferrazza
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Marco Corti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Gloria Brusotti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Pasquale Pierimarchi
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | | | - Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| |
Collapse
|
22
|
Mukherji R, Marshall JL, Seeber A. Genomic Alterations and Their Implications on Survival in Nonmetastatic Colorectal Cancer: Status Quo and Future Perspectives. Cancers (Basel) 2020; 12:E2001. [PMID: 32707813 PMCID: PMC7465976 DOI: 10.3390/cancers12082001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 02/08/2023] Open
Abstract
The selection of treatment according to genomic alterations is a standard approach in metastatic colorectal cancer but is only starting to have an impact in the earlier stages of the disease. The status if genes like KRAS, BRAF, and MMR has substantial survival implications, and concerted research efforts have revolutionized treatment towards precision oncology. In contrast, a genomic-based approach has not changed the adjuvant setting after curative tumor-resection in the daily routine so far. This review focuses on the current knowledge regarding prognostic and predictive genomic biomarkers in patients with locally advanced nonmetastasized colorectal cancer. Furthermore, we provide an outlook on future challenges for a personalized adjuvant treatment approach in patients with colorectal cancer.
Collapse
Affiliation(s)
- Reetu Mukherji
- Ruesch Center for The Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - John L. Marshall
- Ruesch Center for The Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck A-6020, Austria;
| |
Collapse
|
23
|
Fluoropyrimidine Modulation of the Anti-Tumor Immune Response-Prospects for Improved Colorectal Cancer Treatment. Cancers (Basel) 2020; 12:cancers12061641. [PMID: 32575843 PMCID: PMC7352193 DOI: 10.3390/cancers12061641] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy modulates the anti-tumor immune response and outcomes depend on the balance of favorable and unfavorable effects of drugs on anti-tumor immunity. 5-Florouracil (5-FU) is widely used in adjuvant chemotherapy regimens to treat colorectal cancer (CRC) and provides a survival benefit. However, survival remains poor for CRC patients with advanced and metastatic disease and immune checkpoint blockade therapy benefits only a sub-set of CRC patients. Here we discuss the effects of 5-FU-based chemotherapy regimens to the anti-tumor immune response. We consider how different aspects of 5-FU's multi-factorial mechanism differentially affect malignant and immune cell populations. We summarize recent studies with polymeric fluoropyrimidines (e.g., F10, CF10) that enhance DNA-directed effects and discuss how such approaches may be used to enhance the anti-tumor immune response and improve outcomes.
Collapse
|
24
|
Therapeutic Development of Immune Checkpoint Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:619-649. [PMID: 32185726 DOI: 10.1007/978-981-15-3266-5_23] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immune checkpoint blockade (ICB) has been proven to be an effective strategy for enhancing the effector activity of anti-tumor T cells, and checkpoint blockers targeting CTLA-4, PD-1, and PD-L1 have displayed strong and durable clinical responses in certain cancer patients. The new hope brought by ICB therapy has led to the boost in therapeutic development of ICBs in recent years. Nonetheless, the therapeutic efficacy of ICBs varies substantially among cancer types and patients, and only a proportion of cancer patients could benefit from ICBs. The emerging targets and molecules for enhancing anticancer immunity may bring additional therapeutic opportunities for cancer patients. The current challenges in the ICB therapy have been discussed, aimed to provide further strategies for maximizing the efficacy of ICB therapy.
Collapse
|
25
|
Jiao Q, Ren Y, Ariston Gabrie AN, Wang Q, Wang Y, Du L, Liu X, Wang C, Wang YS. Advances of immune checkpoints in colorectal cancer treatment. Biomed Pharmacother 2020; 123:109745. [DOI: 10.1016/j.biopha.2019.109745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
|
26
|
Miljanic M, Capasso A, Triplett TA, Eckhardt SG, Aung KL. Immune Checkpoint Blockade in Gastrointestinal Cancers: The Current Status and Emerging Paradigms. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2020; 3:3-15. [PMID: 35756177 PMCID: PMC9208391 DOI: 10.4103/jipo.jipo_1_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022]
Abstract
Immunotherapy is a rapidly evolving treatment paradigm that holds promise to provide long-lasting survival benefits for patients with cancer. This promise, however, remains unfulfilled for the majority of patients with gastrointestinal (GI) cancers, as significant limitations in efficacy exist with immune checkpoint inhibitors (ICIs) in this disease group. A plethora of novel combination treatment strategies are currently being investigated in various clinical trials to make them more efficacious as our understanding of molecular mechanisms mediating resistance to immunotherapy advances. In this article, we summarize the current status of immune checkpoint blockade in GI cancers and discuss the biological rationales that underlie the emerging treatment strategies being tested in ongoing clinical trials in combination with ICIs. We also highlight the promising early results from these strategies and provide future perspectives on enhancing response to immunotherapy for patients with GI cancers.
Collapse
Affiliation(s)
- Mihailo Miljanic
- Department of Oncology, The LIVESTRONG Cancer Institutes and Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Anna Capasso
- Department of Oncology, The LIVESTRONG Cancer Institutes and Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Todd A. Triplett
- Department of Oncology, The LIVESTRONG Cancer Institutes and Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - S. Gail Eckhardt
- Department of Oncology, The LIVESTRONG Cancer Institutes and Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Kyaw L. Aung
- Department of Oncology, The LIVESTRONG Cancer Institutes and Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
27
|
Yan C, Tu XX, Wu W, Tong Z, Liu LL, Zheng Y, Jiang WQ, Zhao P, Fang WJ, Zhang HY. Antibiotics and immunotherapy in gastrointestinal tumors: Friend or foe? World J Clin Cases 2019; 7:1253-1261. [PMID: 31236389 PMCID: PMC6580336 DOI: 10.12998/wjcc.v7.i11.1253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/07/2019] [Accepted: 04/18/2019] [Indexed: 02/05/2023] Open
Abstract
The incidence of gastrointestinal (GI) tumors is increasing year by year, and its pathogenesis is closely related to the intestinal flora. At present, the use of antibiotics is very common in the clinic. And cancer patients with low immunity are vulnerable to all sorts of infections, such as respiratory tract infections and urinary tract infections. Moreover, cancer patients easily run into fever and neutropenia induced by myelosuppression. Therefore, antibiotics are used extensively and even overused in many conditions. However, because of the special anatomical location of the gastrointestinal tract, the antibiotic usage will bring changes to the intestinal flora. Besides, with the expanding popularity of immunotherapy, various factors affecting the efficacy of immune checkpoint inhibitors (ICIs) have been extensively explored, including cancer-associated inflammation and the local and systemic factors that lead to immunosuppression. Some biomarkers for ICIs, including the expression of PD-L1, tumor mutation load, and microbiota, also have been investigated, and many studies have confirmed that gut microbiota can affect the efficacy of immunotherapy. But further studies on the influence of antibiotics directly on immunotherapy are rare. In this review, we discuss the relationship between GI tumors and antibiotics, the current status of immunotherapy in GI tumors, and the influence of antibiotics on immunotherapy.
Collapse
Affiliation(s)
- Cong Yan
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Xiao-Xuan Tu
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Wei Wu
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Zhou Tong
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Lu-Lu Liu
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Yi Zheng
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Wei-Qin Jiang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Peng Zhao
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Wei-Jia Fang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Hang-Yu Zhang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|