1
|
Liu J, Wang T, Zhou Y, Wang X, Ma B, Su C, Duan X. Bacterial outer membrane vesicles in tumor prevention and treatment: advancements in research and application. J Mater Chem B 2025; 13:3786-3805. [PMID: 40019469 DOI: 10.1039/d4tb01899k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
As one of the major challenges to global health, the innovation of prevention and treatment methods for tumors has consistently been a focal point in medical research. In recent years, bacterial membrane vesicles (MVs), particularly outer membrane vesicles (OMVs) secreted by Gram-negative bacteria, have garnered significant attention due to their unique biological characteristics and potential anti-tumor effects. OMVs are bilayer lipid nanocapsules that are actively released by bacteria during their growth, typically ranging in diameter from 20 to 300 nm. They are rich in various biomolecules, including lipids, proteins, nucleic acids, and other small molecules. These components not only reflect the outer membrane structure of bacteria but also contain numerous pathogen-associated molecular patterns (PAMPs) related to bacterial pathogenicity and immunogenicity. Consequently, OMVs play an important role in bacterial resistance, antimicrobial activity, gene transfer, signal transduction, and immune regulation. Research and application of OMVs in anti-tumor therapy have made significant progress. This paper reviews the classification, characteristics, preparation, safety evaluation, biological functions, and specific research advancements of OMVs as antitumor drugs, immunomodulators, and carriers. Additionally, common methods for the preparation and modification of OMVs, including preliminary extraction, purification, characterization, and drug loading, are discussed. This paper also summarizes the challenges faced by OMVs in anti-tumor research and outlines future development directions, aiming to provide a reference for the further application of OMVs in tumor treatment.
Collapse
Affiliation(s)
- Jiayu Liu
- College of Inspection, Ningxia Medical University, Yinchuan 750004, China.
- The First School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Ting Wang
- The Second Clinical Medicine School of Ningxia Medical University, Yinchuan 750004, China
| | - Yongsheng Zhou
- The Second Clinical Medicine School of Ningxia Medical University, Yinchuan 750004, China
| | - Xiaohua Wang
- College of Inspection, Ningxia Medical University, Yinchuan 750004, China.
- The First School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Bin Ma
- Department of Oncology Surgery, The First People's Hospital of Yinchuan, Yinchuan 750004, China.
| | - Chunxia Su
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiangguo Duan
- College of Inspection, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
2
|
Sharifpour MF, Sikder S, Wong Y, Koifman N, Thomas T, Courtney R, Seymour J, Loukas A. Characterization of Spirulina-derived extracellular vesicles and their potential as a vaccine adjuvant. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70025. [PMID: 39676887 PMCID: PMC11635480 DOI: 10.1002/jex2.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Spirulina is an edible cyanobacterium that increasingly gaining recognition for it untapped potential in the biomanufacturing of pharmaceuticals. Despite the rapidly accumulating information on extracellular vesicles (EVs) from most other bacteria, nothing is known about Spirulina extracellular vesicles (SPEVs). This study reports the successful isolation, characterization and visualization of SPEVs for the first time and it further investigates the potential therapeutic benefits of SPEVs using a mouse model. SPEVs were isolated using ultracentrifugation and size-exclusion-chromatography. Cryo-Transmission Electron Microscopy revealed pleomorphic outer-membrane-vesicles and outer-inner-membrane-vesicles displaying diverse shapes, sizes and corona densities. To assess short- and long-term immune responses, mice were injected intraperitoneally with SPEVs, which demonstrated a significant increase in neutrophils and M1 macrophages at the injection site, indicating a pro-inflammatory effect induced by SPEVs without clinical signs of toxicity or hypersensitivity. Furthermore, SPEVs demonstrated potent adjuvanticity by enhancing antigen-specific IgG responses in mice by over 100-fold compared to an unadjuvanted model vaccine antigen. Mass-spectrometry identified 54 proteins within SPEVs, including three protein superfamily members linked to the observed pro-inflammatory effects. Our findings highlight the potential of SPEVs as a new class of vaccine adjuvant and warrant additional studies to further characterize the nature of the immune response.
Collapse
Affiliation(s)
| | - Suchandan Sikder
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| | - Yide Wong
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| | - Na'ama Koifman
- Centre for Microscopy and MicroanalysisThe University of QueenslandSt LuciaQueenslandAustralia
| | - Tamara Thomas
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| | - Robert Courtney
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| | - Jamie Seymour
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| | - Alex Loukas
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| |
Collapse
|
3
|
Banerji A, Brinkman NE, Davis B, Franklin A, Jahne M, Keely SP. Food Webs and Feedbacks: The Untold Ecological Relevance of Antimicrobial Resistance as Seen in Harmful Algal Blooms. Microorganisms 2024; 12:2121. [PMID: 39597512 PMCID: PMC11596618 DOI: 10.3390/microorganisms12112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial resistance (AMR) has long been framed as an epidemiological and public health concern. Its impacts on the environment are unclear. Yet, the basis for AMR is altered cell physiology. Just as this affects how microbes interact with antimicrobials, it can also affect how they interact with their own species, other species, and their non-living environment. Moreover, if the microbes are globally notorious for causing landscape-level environmental issues, then these effects could alter biodiversity and ecosystem function on a grand scale. To investigate these possibilities, we compiled peer-reviewed literature from the past 20 years regarding AMR in toxic freshwater cyanobacterial harmful algal blooms (HABs). We examined it for evidence of AMR affecting HAB frequency, severity, or persistence. Although no study within our scope was explicitly designed to address the question, multiple studies reported AMR-associated changes in HAB-forming cyanobacteria (and co-occurring microbes) that pertained directly to HAB timing, toxicity, and phase, as well as to the dynamics of HAB-afflicted aquatic food webs. These findings highlight the potential for AMR to have far-reaching environmental impacts (including the loss of biodiversity and ecosystem function) and bring into focus the importance of confronting complex interrelated issues such as AMR and HABs in concert, with interdisciplinary tools and perspectives.
Collapse
Affiliation(s)
- Aabir Banerji
- US Environmental Protection Agency, Office of Research and Development, Duluth, MN 55804, USA
| | - Nichole E. Brinkman
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Benjamin Davis
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Alison Franklin
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Michael Jahne
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Scott P. Keely
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| |
Collapse
|
4
|
Russo DA, Oliinyk D, Pohnert G, Meier F, Zedler JAZ. EXCRETE workflow enables deep proteomics of the microbial extracellular environment. Commun Biol 2024; 7:1189. [PMID: 39322645 PMCID: PMC11424642 DOI: 10.1038/s42003-024-06910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
Extracellular proteins play a significant role in shaping microbial communities which, in turn, can impact ecosystem function, human health, and biotechnological processes. Yet, for many ubiquitous microbes, there is limited knowledge regarding the identity and function of secreted proteins. Here, we introduce EXCRETE (enhanced exoproteome characterization by mass spectrometry), a workflow that enables comprehensive description of microbial exoproteomes from minimal starting material. Using cyanobacteria as a case study, we benchmark EXCRETE and show a significant increase over current methods in the identification of extracellular proteins. Subsequently, we show that EXCRETE can be miniaturized and adapted to a 96-well high-throughput format. Application of EXCRETE to cyanobacteria from different habitats (Synechocystis sp. PCC 6803, Synechococcus sp. PCC 11901, and Nostoc punctiforme PCC 73102), and in different cultivation conditions, identified up to 85% of all potentially secreted proteins. Finally, functional analysis reveals that cell envelope maintenance and nutrient acquisition are central functions of the predicted cyanobacterial secretome. Collectively, these findings challenge the general belief that cyanobacteria lack secretory proteins and suggest that multiple functions of the secretome are conserved across freshwater, marine, and terrestrial species.
Collapse
Affiliation(s)
- David A Russo
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany.
| | - Denys Oliinyk
- Functional Proteomics, Jena University Hospital, Jena, Germany
| | - Georg Pohnert
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Florian Meier
- Functional Proteomics, Jena University Hospital, Jena, Germany
| | - Julie A Z Zedler
- Synthetic Biology of Photosynthetic Organisms, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
5
|
Luz R, Cordeiro R, Gonçalves V, Vasconcelos V, Urbatzka R. Screening of Lipid-Reducing Activity and Cytotoxicity of the Exometabolome from Cyanobacteria. Mar Drugs 2024; 22:412. [PMID: 39330293 PMCID: PMC11433081 DOI: 10.3390/md22090412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Cyanobacteria are rich producers of secondary metabolites, excreting some of these to the culture media. However, the exometabolome of cyanobacteria has been poorly studied, and few studies have dwelled on its characterization and bioactivity assessment. In this work, exometabolomes of 56 cyanobacterial strains were characterized by HR-ESI-LC-MS/MS. Cytotoxicity was assessed on two carcinoma cell lines, HepG2 and HCT116, while the reduction in lipids was tested in zebrafish larvae and in a steatosis model with fatty acid-overloaded human liver cells. The exometabolome analysis using GNPS revealed many complex clusters of unique compounds in several strains, with no identifications in public databases. Three strains reduced viability in HCT116 cells, namely Tolypotrichaceae BACA0428 (30.45%), Aphanizomenonaceae BACA0025 (40.84%), and Microchaetaceae BACA0110 (46.61%). Lipid reduction in zebrafish larvae was only observed by exposure to Dulcicalothrix sp. BACA0344 (60%). The feature-based molecular network shows that this bioactivity was highly correlated with two flavanones, a compound class described in the literature to have lipid reduction activity. The exometabolome characterization of cyanobacteria strains revealed a high chemodiversity, which supports it as a source for novel bioactive compounds, despite most of the time being overlooked.
Collapse
Affiliation(s)
- Rúben Luz
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal; (R.C.); (V.G.)
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning; UNESCO Chair—Land Within Sea: Biodiversity & Sustainability in Atlantic Islands, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Rita Cordeiro
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal; (R.C.); (V.G.)
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning; UNESCO Chair—Land Within Sea: Biodiversity & Sustainability in Atlantic Islands, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Vítor Gonçalves
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal; (R.C.); (V.G.)
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning; UNESCO Chair—Land Within Sea: Biodiversity & Sustainability in Atlantic Islands, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research—CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (V.V.); (R.U.)
- Department of Biology, Faculty of Sciences, University of Porto, 4069-007 Porto, Portugal
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research—CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (V.V.); (R.U.)
| |
Collapse
|
6
|
Cai X, He Y, Yu I, Imani A, Scholl D, Miller JF, Zhou ZH. Atomic structures of a bacteriocin targeting Gram-positive bacteria. Nat Commun 2024; 15:7057. [PMID: 39152109 PMCID: PMC11329794 DOI: 10.1038/s41467-024-51038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024] Open
Abstract
Due to envelope differences between Gram-positive and Gram-negative bacteria, engineering precision bactericidal contractile nanomachines requires atomic-level understanding of their structures; however, only those killing Gram-negative bacteria are currently known. Here, we report the atomic structures of an engineered diffocin, a contractile syringe-like molecular machine that kills the Gram-positive bacterium Clostridioides difficile. Captured in one pre-contraction and two post-contraction states, each structure fashions six proteins in the bacteria-targeting baseplate, two proteins in the energy-storing trunk, and a collar linking the sheath with the membrane-penetrating tube. Compared to contractile machines targeting Gram-negative bacteria, major differences reside in the baseplate and contraction magnitude, consistent with target envelope differences. The multifunctional hub-hydrolase protein connects the tube and baseplate and is positioned to degrade peptidoglycan during penetration. The full-length tape measure protein forms a coiled-coil helix bundle homotrimer spanning the entire diffocin. Our study offers mechanical insights and principles for designing potent protein-based precision antibiotics.
Collapse
Affiliation(s)
- Xiaoying Cai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Yao He
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Iris Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Anthony Imani
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Dean Scholl
- Pylum Biosciences, San Francisco, CA, 94080, USA
| | - Jeff F Miller
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
7
|
Sharma A, Maurya N, Sundaram S. Investigation of the toxicity of Cr (VI) against cyanobacteria and the mechanism of tolerance of the cyanobacterial consortia: a quantum mechanical approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50478-50492. [PMID: 39096455 DOI: 10.1007/s11356-024-34589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Hexavalent chromium (Cr (VI)) is a heavy metal that is distributed globally and poses a significant threat to the environment through various mechanisms. It can react with soil and water, leading to severe environmental damage. In this study, the toxicity of Cr (VI) was investigated by analyzing two major cyanobacteria species, Nostoc commune and Anabaena variabilis, commonly found in soil along with their consortia. The findings revealed that the toxicity mechanisms of Cr (VI) differed in individual monocultures, with Cr (VI) competing with various components. However, when the cyanobacteria species were combined, i.e., in consortia, they demonstrated an impressive retention of their functioning even in Cr (VI) concentration at 10 ppm. The study also concluded that non-photochemical quenching played a critical role in minimizing Cr (VI) toxicity. Furthermore, the research examined the role of the S-cycle in the process. The quantum yield of electron flux revealed that the Cr (VI) was competing with Qa in A. variabilis and with Qb in N. commune, albeit the photosystem dysfunction is only visible in the latter. The mechanism seemed to be quantum tunneling alteration because of the Cr (VI) having different energized quantum wells. The consortia proved to be behaving in a better manner as compared to the control. Overall, this study reveals the mode of toxicity of Cr (VI) in these two important cyanobacterial strains as well as it also discusses the mechanism of tolerance of consortia against Cr (VI) toxicity.
Collapse
Affiliation(s)
- Abhijeet Sharma
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Neetu Maurya
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Shanthy Sundaram
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India.
| |
Collapse
|
8
|
Zhang T, Liu D, Zhang Y, Chen L, Zhang W, Sun T. Biomedical engineering utilizing living photosynthetic cyanobacteria and microalgae: Current status and future prospects. Mater Today Bio 2024; 27:101154. [PMID: 39113912 PMCID: PMC11304071 DOI: 10.1016/j.mtbio.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Cyanobacteria are the only prokaryotes capable of performing oxygenic photosynthesis on Earth. Besides their traditional roles serving as primary producers, cyanobacteria also synthesize abundant secondary metabolites including carotenoids, alkaloids, peptides, which have been reported to possess medicinal potentials. More importantly, the advancement of synthetic biology technology has further expanded their potential biomedical applications especially using living/engineered cyanobacteria, providing promising and attractive strategies for future disease treatments. To improve the understanding and to facilitate future applications, this review aims to discuss the current status and future prospects of cyanobacterial-based biomedical engineering. Firstly, specific properties of cyanobacteria related with biomedical applications like their natural products of bioactive compounds and heavy metal adsorption were concluded. Subsequently, based on these properties of cyanobacteria, we discussed the progress of their applications in various disease models like hypoxia microenvironment alleviation, wound healing, drug delivery, and so on. Finally, the future prospects including further exploration of cyanobacteria secondary metabolites, the integration of bioactive compounds synthesized by cyanobacteria in situ with medical diagnosis and treatment, and the optimization of in vivo application were critically presented. The review will promote the studies related with cyanobacteria-based biomedical engineering and its practical application in clinical trials in the future.
Collapse
Affiliation(s)
- Tong Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Dailin Liu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
9
|
Haavisto V, Landry Z, Pontrelli S. High-throughput profiling of metabolic responses to exogenous nutrients in Synechocystis sp. PCC 6803. mSystems 2024; 9:e0022724. [PMID: 38534128 PMCID: PMC11019784 DOI: 10.1128/msystems.00227-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Cyanobacteria fix carbon dioxide and release carbon-containing compounds into the wider ecosystem, yet they are sensitive to small metabolites that may impact their growth and physiology. Several cyanobacteria can grow mixotrophically, but we currently lack a molecular understanding of how specific nutrients may alter the compounds they release, limiting our knowledge of how environmental factors might impact primary producers and the ecosystems they support. In this study, we develop a high-throughput phytoplankton culturing platform and identify how the model cyanobacterium Synechocystis sp. PCC 6803 responds to nutrient supplementation. We assess growth responses to 32 nutrients at two concentrations, identifying 15 that are utilized mixotrophically. Seven nutrient sources significantly enhance growth, while 19 elicit negative growth responses at one or both concentrations. High-throughput exometabolomics indicates that oxidative stress limits Synechocystis' growth but may be alleviated by antioxidant metabolites. Furthermore, glucose and valine induce strong changes in metabolite exudation in a possible effort to correct pathway imbalances or maintain intracellular elemental ratios. This study sheds light on the flexibility and limits of cyanobacterial physiology and metabolism, as well as how primary production and trophic food webs may be modulated by exogenous nutrients.IMPORTANCECyanobacteria capture and release carbon compounds to fuel microbial food webs, yet we lack a comprehensive understanding of how external nutrients modify their behavior and what they produce. We developed a high throughput culturing platform to evaluate how the model cyanobacterium Synechocystis sp. PCC 6803 responds to a broad panel of externally supplied nutrients. We found that growth may be enhanced by metabolites that protect against oxidative stress, and growth and exudate profiles are altered by metabolites that interfere with central carbon metabolism and elemental ratios. This work contributes a holistic perspective of the versatile response of Synechocystis to externally supplied nutrients, which may alter carbon flux into the wider ecosystem.
Collapse
Affiliation(s)
- Vilhelmiina Haavisto
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Zachary Landry
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Sammy Pontrelli
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
10
|
Sarasa-Buisan C, Nieves-Morión M, Arévalo S, Helm RF, Sevilla E, Luque I, Fillat MF. FurC (PerR) contributes to the regulation of peptidoglycan remodeling and intercellular molecular transfer in the cyanobacterium Anabaena sp. strain PCC 7120. mBio 2024; 15:e0323123. [PMID: 38334377 PMCID: PMC10936207 DOI: 10.1128/mbio.03231-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Microbial extracellular proteins and metabolites provide valuable information concerning how microbes adapt to changing environments. In cyanobacteria, dynamic acclimation strategies involve a variety of regulatory mechanisms, being ferric uptake regulator proteins as key players in this process. In the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120, FurC (PerR) is a global regulator that modulates the peroxide response and several genes involved in photosynthesis and nitrogen metabolism. To investigate the possible role of FurC in shaping the extracellular environment of Anabaena, the analysis of the extracellular metabolites and proteins of a furC-overexpressing variant was compared to that of the wild-type strain. There were 96 differentially abundant proteins, 78 of which were found for the first time in the extracellular fraction of Anabaena. While these proteins belong to different functional categories, most of them are predicted to be secreted or have a peripheral location. Several stress-related proteins, including PrxA, flavodoxin, and the Dps homolog All1173, accumulated in the exoproteome of furC-overexpressing cells, while decreased levels of FurA and a subset of membrane proteins, including several export proteins and amiC gene products, responsible for nanopore formation, were detected. Direct repression by FurC of some of those genes, including amiC1 and amiC2, could account for odd septal nanopore formation and impaired intercellular molecular transfer observed in the furC-overexpressing variant. Assessment of the exometabolome from both strains revealed the release of two peptidoglycan fragments in furC-overexpressing cells, namely 1,6-anhydro-N-acetyl-β-D-muramic acid (anhydroMurNAc) and its associated disaccharide (β-D-GlcNAc-(1-4)-anhydroMurNAc), suggesting alterations in peptidoglycan breakdown and recycling.IMPORTANCECyanobacteria are ubiquitous photosynthetic prokaryotes that can adapt to environmental stresses by modulating their extracellular contents. Measurements of the organization and composition of the extracellular milieu provide useful information about cyanobacterial adaptive processes, which can potentially lead to biomimetic approaches to stabilizing biological systems to adverse conditions. Anabaena sp. strain PCC 7120 is a multicellular, nitrogen-fixing cyanobacterium whose intercellular molecular exchange is mediated by septal junctions that traverse the septal peptidoglycan through nanopores. FurC (PerR) is an essential transcriptional regulator in Anabaena, which modulates the response to several stresses. Here, we show that furC-overexpressing cells result in a modified exoproteome and the release of peptidoglycan fragments. Phenotypically, important alterations in nanopore formation and cell-to-cell communication were observed. Our results expand the roles of FurC to the modulation of cell-wall biogenesis and recycling, as well as in intercellular molecular transfer.
Collapse
Affiliation(s)
- Cristina Sarasa-Buisan
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias e Instituto de Biocomputación y Física de Sistemas Complejos. Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Mercedes Nieves-Morión
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Sergio Arévalo
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Richard F. Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias e Instituto de Biocomputación y Física de Sistemas Complejos. Universidad de Zaragoza, Zaragoza, Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - María F. Fillat
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias e Instituto de Biocomputación y Física de Sistemas Complejos. Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
11
|
Ahmed AAQ, Besio R, Xiao L, Forlino A. Outer Membrane Vesicles (OMVs) as Biomedical Tools and Their Relevance as Immune-Modulating Agents against H. pylori Infections: Current Status and Future Prospects. Int J Mol Sci 2023; 24:ijms24108542. [PMID: 37239888 DOI: 10.3390/ijms24108542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Outer membrane vesicles (OMVs) are lipid-membrane-bounded nanoparticles that are released from Gram-negative bacteria via vesiculation of the outer membrane. They have vital roles in different biological processes and recently, they have received increasing attention as possible candidates for a broad variety of biomedical applications. In particular, OMVs have several characteristics that enable them to be promising candidates for immune modulation against pathogens, such as their ability to induce the host immune responses given their resemblance to the parental bacterial cell. Helicobacter pylori (H. pylori) is a common Gram-negative bacterium that infects half of the world's population and causes several gastrointestinal diseases such as peptic ulcer, gastritis, gastric lymphoma, and gastric carcinoma. The current H. pylori treatment/prevention regimens are poorly effective and have limited success. This review explores the current status and future prospects of OMVs in biomedicine with a special focus on their use as a potential candidate in immune modulation against H. pylori and its associated diseases. The emerging strategies that can be used to design OMVs as viable immunogenic candidates are discussed.
Collapse
Affiliation(s)
- Abeer Ahmed Qaed Ahmed
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
12
|
Aytar Çelik P, Erdogan-Gover K, Barut D, Enuh BM, Amasya G, Sengel-Türk CT, Derkus B, Çabuk A. Bacterial Membrane Vesicles as Smart Drug Delivery and Carrier Systems: A New Nanosystems Tool for Current Anticancer and Antimicrobial Therapy. Pharmaceutics 2023; 15:pharmaceutics15041052. [PMID: 37111538 PMCID: PMC10142793 DOI: 10.3390/pharmaceutics15041052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Bacterial membrane vesicles (BMVs) are known to be critical communication tools in several pathophysiological processes between bacteria and host cells. Given this situation, BMVs for transporting and delivering exogenous therapeutic cargoes have been inspiring as promising platforms for developing smart drug delivery systems (SDDSs). In the first section of this review paper, starting with an introduction to pharmaceutical technology and nanotechnology, we delve into the design and classification of SDDSs. We discuss the characteristics of BMVs including their size, shape, charge, effective production and purification techniques, and the different methods used for cargo loading and drug encapsulation. We also shed light on the drug release mechanism, the design of BMVs as smart carriers, and recent remarkable findings on the potential of BMVs for anticancer and antimicrobial therapy. Furthermore, this review covers the safety of BMVs and the challenges that need to be overcome for clinical use. Finally, we discuss the recent advancements and prospects for BMVs as SDDSs and highlight their potential in revolutionizing the fields of nanomedicine and drug delivery. In conclusion, this review paper aims to provide a comprehensive overview of the state-of-the-art field of BMVs as SDDSs, encompassing their design, composition, fabrication, purification, and characterization, as well as the various strategies used for targeted delivery. Considering this information, the aim of this review is to provide researchers in the field with a comprehensive understanding of the current state of BMVs as SDDSs, enabling them to identify critical gaps and formulate new hypotheses to accelerate the progress of the field.
Collapse
Affiliation(s)
- Pınar Aytar Çelik
- Environmental Protection and Control Program, Eskisehir Osmangazi University, Eskisehir 26110, Turkey
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Kubra Erdogan-Gover
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Dilan Barut
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Blaise Manga Enuh
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Gülin Amasya
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Ceyda Tuba Sengel-Türk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Burak Derkus
- Department of Chemistry, Faculty of Science, Ankara University, Ankara 06560, Turkey
| | - Ahmet Çabuk
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
- Department of Biology, Faculty of Science, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| |
Collapse
|
13
|
Ma J, Guo T, Ren M, Chen L, Song X, Zhang W. Cross-feeding between cyanobacterium Synechococcus and Escherichia coli in an artificial autotrophic–heterotrophic coculture system revealed by integrated omics analysis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:69. [PMID: 35733176 PMCID: PMC9219151 DOI: 10.1186/s13068-022-02163-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/04/2022] [Indexed: 01/21/2023]
Abstract
Background Light-driven consortia, which consist of sucrose-secreting cyanobacteria and heterotrophic species, have attracted considerable attention due to their capability for the sustainable production of valuable chemicals directly from CO2. In a previous study, we achieved a one-step conversion of sucrose secreted from cyanobacteria to fine chemicals by constructing an artificial coculture system consisting of sucrose-secreting Synechococcus elongateus cscB+ and 3-hydroxypropionic acid (3-HP) producing Escherichia coli ABKm. Analyses of the coculture system showed that the cyanobacterial cells grew better than their corresponding axenic cultures. To explore the underlying mechanism and to identify the metabolic nodes with the potential to further improve the coculture system, we conducted integrated transcriptomic, proteomic and metabolomic analyses. Results We first explored how the relieved oxidative stress affected cyanobacterial cell growth in a coculture system by supplementing additional ascorbic acid to CoBG-11 medium. We found that the cell growth of cyanobacteria was clearly improved with an additional 1 mM ascorbic acid under axenic culture; however, its growth was still slower than that in the coculture system, suggesting that the improved growth of Synechococcus cscB+ may be caused by multiple factors, including reduced oxidative stress. To further explore the cellular responses of cyanobacteria in the system, quantitative transcriptomics, proteomics and metabolomics were applied to Synechococcus cscB+. Analyses of differentially regulated genes/proteins and the abundance change of metabolites in the photosystems revealed that the photosynthesis of the cocultured Synechococcus cscB+ was enhanced. The decreased expression of the CO2 transporter suggested that the heterotrophic partner in the system might supplement additional CO2 to support the cell growth of Synechococcus cscB+. In addition, the differentially regulated genes and proteins involved in the nitrogen and phosphate assimilation pathways suggested that the supply of phosphate and nitrogen in the Co-BG11 medium might be insufficient. Conclusion An artificial coculture system capable of converting CO2 to fine chemicals was established and then analysed by integrated omics analysis, which demonstrated that in the coculture system, the relieved oxidative stress and increased CO2 availability improved the cell growth of cyanobacteria. In addition, the results also showed that the supply of phosphate and nitrogen in the Co-BG11 medium might be insufficient, which paves a new path towards the optimization of the coculture system in the future. Taken together, these results from the multiple omics analyses provide strong evidence that beneficial interactions can be achieved from cross-feeding and competition between phototrophs and prokaryotic heterotrophs and new guidelines for engineering more intelligent artificial consortia in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02163-5.
Collapse
|
14
|
Callieri C, Cabello-Yeves PJ, Bertoni F. The "Dark Side" of Picocyanobacteria: Life as We Do Not Know It (Yet). Microorganisms 2022; 10:546. [PMID: 35336120 PMCID: PMC8955281 DOI: 10.3390/microorganisms10030546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Picocyanobacteria of the genus Synechococcus (together with Cyanobium and Prochlorococcus) have captured the attention of microbial ecologists since their description in the 1970s. These pico-sized microorganisms are ubiquitous in aquatic environments and are known to be some of the most ancient and adaptable primary producers. Yet, it was only recently, and thanks to developments in molecular biology and in the understanding of gene sequences and genomes, that we could shed light on the depth of the connection between their evolution and the history of life on the planet. Here, we briefly review the current understanding of these small prokaryotic cells, from their physiological features to their role and dynamics in different aquatic environments, focussing particularly on the still poorly understood ability of picocyanobacteria to adapt to dark conditions. While the recent discovery of Synechococcus strains able to survive in the deep Black Sea highlights how adaptable picocyanobacteria can be, it also raises more questions-showing how much we still do not know about microbial life. Using available information from brackish Black Sea strains able to perform and survive in dark (anoxic) conditions, we illustrate how adaptation to narrow ecological niches interacts with gene evolution and metabolic capacity.
Collapse
Affiliation(s)
- Cristiana Callieri
- National Research Council (CNR), Water Research Institute (IRSA), 28922 Verbania, Italy
| | - Pedro J. Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain;
| | | |
Collapse
|
15
|
Cardoso D, Lima S, Matinha-Cardoso J, Tamagnini P, Oliveira P. The Role of Outer Membrane Protein(s) Harboring SLH/OprB-Domains in Extracellular Vesicles’ Production in Synechocystis sp. PCC 6803. PLANTS 2021; 10:plants10122757. [PMID: 34961227 PMCID: PMC8707739 DOI: 10.3390/plants10122757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 01/07/2023]
Abstract
Cyanobacteria are a group of photosynthetic prokaryotes that contribute to primary production on a global scale. These microorganisms release vesicles to the extracellular environment, spherical nanosized structures, derived essentially from the outer membrane. Even though earlier works in model Gram-negative bacteria have hypothesized that outer membrane stability is crucial in vesicle formation, the mechanisms determining vesicle biogenesis in cyanobacteria remain unknown. Here, we report on the identification of six candidate genes encoding outer membrane proteins harboring SLH/OprB-domains in the genome of the model cyanobacterium Synechocystis sp. PCC 6803. Using a genetics-based approach, one gene was found to encode an essential protein (Slr1841), while the remaining five are not essential for growth under standard conditions. Vesicle production was monitored, and it was found that a mutant in the gene encoding the second most abundant SLH/OprB protein in Synechocystis sp. PCC 6803 outer membrane (Slr1908) produces more vesicles than any of the other tested strains. Moreover, the Slr1908-protein was also found to be important for iron uptake. Altogether, our results suggest that proteins containing the SLH/OprB-domains may have dual biological role, related to micronutrient uptake and to outer membrane stability, which, together or alone, seem to be involved in cyanobacterial vesicle biogenesis.
Collapse
Affiliation(s)
- Delfim Cardoso
- MABBS—Mestrado em Aplicações em Biotecnologia e Biologia Sintética, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Steeve Lima
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- MCbiology Doctoral Program, ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Jorge Matinha-Cardoso
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Paula Tamagnini
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Paulo Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
- Correspondence: ; Tel.: +351-22-607-4900
| |
Collapse
|
16
|
Development of a highly sensitive luciferase-based reporter system to study two-step protein secretion in cyanobacteria. J Bacteriol 2021; 204:e0050421. [PMID: 34898262 DOI: 10.1128/jb.00504-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria, ubiquitous oxygenic photosynthetic bacteria, interact with the environment and their surrounding microbiome through the secretion of a variety of small molecules and proteins. The release of these compounds is mediated by sophisticated multi-protein complexes, also known as secretion systems. Genomic analyses indicate that protein and metabolite secretion systems are widely found in cyanobacteria; however little is known regarding their function, regulation and secreted effectors. One such system, the type IVa pilus system (T4aPS), is responsible for the assembly of dynamic cell surface appendages, type IVa pili (T4aP), that mediate ecologically relevant processes such as phototactic motility, natural competence and adhesion. Several studies have suggested that the T4aPS can also act as a two-step protein secretion system in cyanobacteria akin to the homologous type II secretion system in heterotrophic bacteria. To determine whether the T4aP are involved in two-step secretion of non-pilin proteins, we developed a NanoLuc-based quantitative secretion reporter for the model cyanobacterium Synechocystis sp. PCC 6803. The NLuc reporter presented a wide dynamic range with at least one order of magnitude more sensitivity than traditional immunoblotting. Application of the reporter to a collection of Synechocystis T4aPS mutants demonstrated that the two-step secretion of NLuc is independent of T4aP. In addition, our data suggest that secretion differences typically observed in T4aPS mutants are likely due to a disruption of cell envelope homeostasis. This study opens the door to explore protein secretion in cyanobacteria further. Importance Protein secretion allows bacteria to interact and communicate with the external environment. Secretion is also biotechnologically relevant, where it is often beneficial to target proteins to the extracellular space. Due to a shortage of quantitative assays, many aspects of protein secretion are not understood. Here we introduce a NanoLuc (NLuc)-based secretion reporter in cyanobacteria. NLuc is highly sensitive and can be assayed rapidly and in small volumes. The NLuc reporter allowed us to clarify the role of type IVa pili in protein secretion and identify mutations that increase secretion yield. This study expands our knowledge on cyanobacterial secretion and offers a valuable tool for future studies of protein secretion systems in cyanobacteria.
Collapse
|
17
|
Cellular and Molecular Strategies in Cyanobacterial Survival-"In Memory of Prof. Dr. Wolfgang Lockau". Life (Basel) 2021; 11:life11020132. [PMID: 33572088 PMCID: PMC7915015 DOI: 10.3390/life11020132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
|
18
|
Untargeted Lipidomics Analysis of the Cyanobacterium Synechocystis sp. PCC 6803: Lipid Composition Variation in Response to Alternative Cultivation Setups and to Gene Deletion. Int J Mol Sci 2020; 21:ijms21238883. [PMID: 33255174 PMCID: PMC7727718 DOI: 10.3390/ijms21238883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/21/2020] [Accepted: 11/21/2020] [Indexed: 12/18/2022] Open
Abstract
Cyanobacteria play an important role in several ecological environments, and they are widely accepted to be the ancestors of chloroplasts in modern plants and green algae. Cyanobacteria have become attractive models for metabolic engineering, with the goal of exploring them as microbial cell factories. However, the study of cyanobacterial lipids’ composition and variation, and the assessment of the lipids’ functional and structural roles have been largely overlooked. Here, we aimed at expanding the cyanobacterial lipidomic analytical pipeline by using an untargeted lipidomics approach. Thus, the lipid composition variation of the model cyanobacterium Synechocystis sp. PCC 6803 was investigated in response to both alternative cultivation setups and gene deletion. This approach allowed for detecting differences in total lipid content, alterations in fatty-acid unsaturation level, and adjustments of specific lipid species among the identified lipid classes. The employed method also revealed that the cultivation setup tested in this work induced a deeper alteration of the cyanobacterial cell lipidome than the deletion of a gene that results in a dramatic increase in the release of lipid-rich outer membrane vesicles. This study further highlights how growth conditions must be carefully selected when cyanobacteria are to be engineered and/or scaled-up for lipid or fatty acids production.
Collapse
|