1
|
Viduka I, Štimac I, Jurić SL, Gulić T, Lisnić B, Zagorac GB, Lučin HM, Lučin P. Contribution of Sorting Nexin 3 in the Cytomegalovirus Assembly. Biomedicines 2025; 13:936. [PMID: 40299528 PMCID: PMC12024572 DOI: 10.3390/biomedicines13040936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Cytomegalovirus (CMV) infection expands early endosomes (EEs) into tubular extensions that may contribute to the control of virus replication and virion assembly. Sequential recruitment of protein coats and sorting nexins (SNXs) creates membrane zones at the EEs that serve as scaffolds for membrane tubulation and retrieval of cargo proteins, including host cell signaling proteins and viral glycoproteins. This study aims to investigate whether the SNX3-dependent zone of EEs contributes to CMV replication and assembly. Methods: Protein localization was analyzed by confocal imaging and expression by Western blot. The contribution of SNX3 to murine CMV (MCMV) replication, assembly compartment (AC) formation, and virion release was analyzed by siRNA and shRNA depletion. The impact of other downstream SNXs that act in EE tubulation was investigated by combined siRNA knockdowns of SNX1, SNX2, SNX4, SNX17, and SNX27 on cell lines expressing shRNA for SNX3. Results: The SNX3-162 isoform acting at EEs was efficiently knocked down by siRNA and shRNA. The SNX3-dependent EE zone recruited SNX27 and contributed to Rab10-dependent tubulation within the pre-AC. SNX3 was not essential for MCMV replication but contributed to the SNX27-, SNX17- and SNX4-dependent release of virions. Silencing SNX3 further reduced the release of virions after silencing SNX27, SNX4, and SNX17, three SNXs that control recycling to the plasma membrane. Conclusions: SNX3 contributes to the formation of pre-AC and MCMV assembly. It acts sequentially with SNX27, SNX4, and SNX17 along the recycling pathway in the process of the production and release of infection virions, suggesting that multiple membrane sources may contribute to the secondary envelopment of MCMV virions.
Collapse
Affiliation(s)
- Ivona Viduka
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (I.V.); (I.Š.); (S.L.J.); (T.G.); (G.B.Z.); (H.M.L.)
| | - Igor Štimac
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (I.V.); (I.Š.); (S.L.J.); (T.G.); (G.B.Z.); (H.M.L.)
| | - Silvija Lukanović Jurić
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (I.V.); (I.Š.); (S.L.J.); (T.G.); (G.B.Z.); (H.M.L.)
| | - Tamara Gulić
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (I.V.); (I.Š.); (S.L.J.); (T.G.); (G.B.Z.); (H.M.L.)
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Gordana Blagojević Zagorac
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (I.V.); (I.Š.); (S.L.J.); (T.G.); (G.B.Z.); (H.M.L.)
- Campus University Center Varaždin, University North, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Hana Mahmutefendić Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (I.V.); (I.Š.); (S.L.J.); (T.G.); (G.B.Z.); (H.M.L.)
- Campus University Center Varaždin, University North, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (I.V.); (I.Š.); (S.L.J.); (T.G.); (G.B.Z.); (H.M.L.)
- Campus University Center Varaždin, University North, Jurja Križanića 31b, 42000 Varaždin, Croatia
| |
Collapse
|
2
|
Lučin P, Mahmutefendić Lučin H. The Cell Biologist Potential of Cytomegalovirus to Solve Biogenesis and Maintenance of the Membrane Recycling System. Biomedicines 2025; 13:326. [PMID: 40002739 PMCID: PMC11853475 DOI: 10.3390/biomedicines13020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Cytomegalovirus (CMV) is an important pathogen that extensively remodels the nucleus and cytosol of an infected cell to establish a productive infection [...].
Collapse
Affiliation(s)
- Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
- Department of Nursing, University Center Varaždin, University North, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Hana Mahmutefendić Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
- Department of Nursing, University Center Varaždin, University North, Jurja Križanića 31b, 42000 Varaždin, Croatia
| |
Collapse
|
3
|
Mahmutefendić Lučin H, Štimac I, Marcelić M, Skočaj M, Lisnić B, Omerović A, Viduka I, Radić B, Karleuša L, Blagojević Zagorac G, Deželjin M, Jurak Begonja A, Lučin P. Rab10-associated tubulation as an early marker for biogenesis of the assembly compartment in cytomegalovirus-infected cells. Front Cell Dev Biol 2025; 12:1517236. [PMID: 39866842 PMCID: PMC11760598 DOI: 10.3389/fcell.2024.1517236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Cytomegalovirus (CMV) infection reorganizes early endosomes (EE), recycling endosome (RE), and trans-Golgi network (TGN) and expands their intermediates into a large perinuclear structure that forms the inner part of the cytoplasmic assembly complex (AC). The reorganization begins and results with the basic configuration (known as pre-AC) in the early (E) phase of infection, but the sequence of developmental steps is not yet well understood. One of the first signs of the establishment of the inner pre-AC, which can be observed by immunofluorescence, is the accumulation of Rab10. This study aims to investigate whether Rab10-positive domain (Rab10-PD) is expanded during the E phase of infection. Methods We performed long-term live imaging of EGFP-Rab10 with epifluorescence imaging-enhanced digital holotomographic microscopy (DHTM), confocal imaging of known Rab10 interactors and identification of important Rab10 interactors with the proximity-dependent biotin identification assay (BioID). The accumulation of Rab10-PD was analyzed after knock-down of EHBP1 and Rabin8, two proteins that facilitate Rab10 recruitment to membranes, and after blocking of PI(4,5)P2 by PI(4,5)P2-binding protein domains. Results Our study shows the gradual expansion of Rab10-PD in the inner pre-AC, the association of Rab10 with EHBP1 and MICAL-L1, and the dependence of Rab10-PD expansion on EHBP1 and PI(4,5)P2 but not Rabin8, indicating the expansion of EE-derived tubular recycling endosome-like membranes in the pre-AC. Silencing of Rab10 and EHBP1 suggests that Rab10-PD expansion is not required for the establishment of the inner pre-AC nor for the expansion of downstream tubular domains. Conclusion The present work characterizes one of the earliest sequences in the establishment of pre-AC and suggests that subsets of EE-derived tubular membranes may serve as the earliest biomarkers in pre-AC biogenesis. Our study also indicates that the pre-AC biogenesis is complex and likely involves multiple parallel processes, of which Rab10-PD expansion is one. Our experiments, particularly our silencing experiments, show that Rab10 and EHBP-1 do not play a significant role in the later stages of inner pre-AC biogenesis or in the expansion of downstream tubular domains. A more comprehensive understanding of the tubular domain expansion remains to be established.
Collapse
Affiliation(s)
- Hana Mahmutefendić Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North-University Center Varaždin, Varaždin, Croatia
| | - Igor Štimac
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marina Marcelić
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Matej Skočaj
- Department of Biology, Biotechnical faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Alen Omerović
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ivona Viduka
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Barbara Radić
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ljerka Karleuša
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Gordana Blagojević Zagorac
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North-University Center Varaždin, Varaždin, Croatia
| | - Martina Deželjin
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North-University Center Varaždin, Varaždin, Croatia
| |
Collapse
|
4
|
Štimac I, Marcelić M, Radić B, Viduka I, Blagojević Zagorac G, Lukanović Jurić S, Rožmanić C, Messerle M, Brizić I, Lučin P, Mahmutefendić Lučin H. SNX27:Retromer:ESCPE-1-mediated early endosomal tubulation impacts cytomegalovirus replication. Front Cell Infect Microbiol 2024; 14:1399761. [PMID: 39359939 PMCID: PMC11445146 DOI: 10.3389/fcimb.2024.1399761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Cytomegaloviruses (CMVs) extensively reorganize the membrane system of the cell and establish a new structure as large as the cell nucleus called the assembly compartment (AC). Our previous studies on murine CMV (MCMV)-infected fibroblasts indicated that the inner part of the AC contains rearranged early endosomes, recycling endosomes, endosomal recycling compartments and trans-Golgi membrane structures that are extensively tubulated, including the expansion and retention of tubular Rab10 elements. An essential process that initiates Rab10-associated tubulation is cargo sorting and retrieval mediated by SNX27, Retromer, and ESCPE-1 (endosomal SNX-BAR sorting complex for promoting exit 1) complexes. Objective The aim of this study was to investigate the role of SNX27:Retromer:ESCPE-1 complexes in the biogenesis of pre-AC in MCMV-infected cells and subsequently their role in secondary envelopment and release of infectious virions. Results Here we show that SNX27:Retromer:ESCPE1-mediated tubulation is essential for the establishment of a Rab10-decorated subset of membranes within the pre-AC, a function that requires an intact F3 subdomain of the SNX27 FERM domain. Suppression of SNX27-mediated functions resulted in an almost tenfold decrease in the release of infectious virions. However, these effects cannot be directly linked to the contribution of SNX27:Retromer:ESCPE-1-dependent tubulation to the secondary envelopment, as suppression of these components, including the F3-FERM domain, led to a decrease in MCMV protein expression and inhibited the progression of the replication cycle. Conclusion This study demonstrates a novel and important function of membrane tubulation within the pre-AC associated with the control of viral protein expression.
Collapse
Affiliation(s)
- Igor Štimac
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marina Marcelić
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Barbara Radić
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ivona Viduka
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Gordana Blagojević Zagorac
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North, University Center Varaždin, Varaždin, Croatia
| | - Silvija Lukanović Jurić
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Carmen Rožmanić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North, University Center Varaždin, Varaždin, Croatia
| | - Hana Mahmutefendić Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North, University Center Varaždin, Varaždin, Croatia
| |
Collapse
|
5
|
Bergner T, Cortez Rayas L, Freimann G, Read C, von Einem J. Secondary Envelopment of Human Cytomegalovirus Is a Fast Process Utilizing the Endocytic Compartment as a Major Membrane Source. Biomolecules 2024; 14:1149. [PMID: 39334915 PMCID: PMC11430300 DOI: 10.3390/biom14091149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Secondary envelopment of the human cytomegalovirus (HCMV) is a critical but not well-understood process that takes place at the cytoplasmic viral assembly complex (cVAC) where nucleocapsids acquire their envelope by budding into cellular membranes containing viral glycoproteins. Previous studies presented controversial results regarding the composition of the viral envelope, suggesting trans-Golgi and endosomal origins, as well as intersections with the exosomal and endocytic pathways. Here, we investigated the role of endocytic membranes for the secondary envelopment of HCMV by using wheat germ agglutinin (WGA) pulse labeling to label glycoproteins at the plasma membrane and to follow their trafficking during HCMV infection by light microscopy and transmission electron microscopy (TEM). WGA labeled different membrane compartments within the cVAC, including early endosomes, multivesicular bodies, trans-Golgi, and recycling endosomes. Furthermore, TEM analysis showed that almost 90% of capsids undergoing secondary envelopment and 50% of enveloped capsids were WGA-positive within 90 min. Our data reveal extensive remodeling of the endocytic compartment in the late stage of HCMV infection, where the endocytic compartment provides an optimized environment for virion morphogenesis and serves as the primary membrane source for secondary envelopment. Furthermore, we show that secondary envelopment is a rapid process in which endocytosed membranes are transported from the plasma membrane to the cVAC within minutes to be utilized by capsids for envelopment.
Collapse
Affiliation(s)
- Tim Bergner
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany; (T.B.); (G.F.)
| | - Laura Cortez Rayas
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany;
| | - Gesa Freimann
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany; (T.B.); (G.F.)
| | - Clarissa Read
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany; (T.B.); (G.F.)
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany;
| |
Collapse
|
6
|
Atemin A, Ivanova A, Peppel W, Stamatov R, Gallegos R, Durden H, Uzunova S, Vershinin MD, Saffarian S, Stoynov SS. Kinetic Landscape of Single Virus-like Particles Highlights the Efficacy of SARS-CoV-2 Internalization. Viruses 2024; 16:1341. [PMID: 39205315 PMCID: PMC11359012 DOI: 10.3390/v16081341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The efficiency of virus internalization into target cells is a major determinant of infectivity. SARS-CoV-2 internalization occurs via S-protein-mediated cell binding followed either by direct fusion with the plasma membrane or endocytosis and subsequent fusion with the endosomal membrane. Despite the crucial role of virus internalization, the precise kinetics of the processes involved remains elusive. We developed a pipeline, which combines live-cell microscopy and advanced image analysis, for measuring the rates of multiple internalization-associated molecular events of single SARS-CoV-2-virus-like particles (VLPs), including endosome ingression and pH change. Our live-cell imaging experiments demonstrate that only a few minutes after binding to the plasma membrane, VLPs ingress into RAP5-negative endosomes via dynamin-dependent scission. Less than two minutes later, VLP speed increases in parallel with a pH drop below 5, yet these two events are not interrelated. By co-imaging fluorescently labeled nucleocapsid proteins, we show that nucleocapsid release occurs with similar kinetics to VLP acidification. Neither Omicron mutations nor abrogation of the S protein polybasic cleavage site affected the rate of VLP internalization, indicating that they do not confer any significant advantages or disadvantages during this process. Finally, we observe that VLP internalization occurs two to three times faster in VeroE6 than in A549 cells, which may contribute to the greater susceptibility of the former cell line to SARS-CoV-2 infection. Taken together, our precise measurements of the kinetics of VLP internalization-associated processes shed light on their contribution to the effectiveness of SARS-CoV-2 propagation in cells.
Collapse
Affiliation(s)
- Aleksandar Atemin
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str., 1113 Sofia, Bulgaria; (A.A.); (A.I.); (R.S.); (S.U.)
| | - Aneliya Ivanova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str., 1113 Sofia, Bulgaria; (A.A.); (A.I.); (R.S.); (S.U.)
| | - Wiley Peppel
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; (W.P.); (R.G.); (H.D.)
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Rumen Stamatov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str., 1113 Sofia, Bulgaria; (A.A.); (A.I.); (R.S.); (S.U.)
| | - Rodrigo Gallegos
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; (W.P.); (R.G.); (H.D.)
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Haley Durden
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; (W.P.); (R.G.); (H.D.)
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Sonya Uzunova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str., 1113 Sofia, Bulgaria; (A.A.); (A.I.); (R.S.); (S.U.)
| | - Michael D. Vershinin
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; (W.P.); (R.G.); (H.D.)
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Saveez Saffarian
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; (W.P.); (R.G.); (H.D.)
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Stoyno S. Stoynov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str., 1113 Sofia, Bulgaria; (A.A.); (A.I.); (R.S.); (S.U.)
| |
Collapse
|
7
|
Lučin P, Mahmutefendić Lučin H, Blagojević Zagorac G. Cytomegaloviruses reorganize endomembrane system to intersect endosomal and amphisome-like egress pathway. Front Cell Dev Biol 2023; 11:1328751. [PMID: 38178873 PMCID: PMC10766366 DOI: 10.3389/fcell.2023.1328751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Affiliation(s)
- Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North, University Center Varaždin, Varaždin, Croatia
| | - Hana Mahmutefendić Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North, University Center Varaždin, Varaždin, Croatia
| | - Gordana Blagojević Zagorac
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North, University Center Varaždin, Varaždin, Croatia
| |
Collapse
|
8
|
Kyrrestad I, Larsen AK, Sánchez Romano J, Simón-Santamaría J, Li R, Sørensen KK. Infection of liver sinusoidal endothelial cells with Muromegalovirus muridbeta1 involves binding to neuropilin-1 and is dynamin-dependent. Front Cell Infect Microbiol 2023; 13:1249894. [PMID: 38029264 PMCID: PMC10665495 DOI: 10.3389/fcimb.2023.1249894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSEC) are scavenger cells with a remarkably high capacity for clearance of several blood-borne macromolecules and nanoparticles, including some viruses. Endocytosis in LSEC is mainly via the clathrin-coated pit mediated route, which is dynamin-dependent. LSEC can also be a site of infection and latency of betaherpesvirus, but mode of virus entry into these cells has not yet been described. In this study we have investigated the role of dynamin in the early stage of muromegalovirus muridbeta1 (MuHV-1, murid betaherpesvirus 1, murine cytomegalovirus) infection in mouse LSECs. LSEC cultures were freshly prepared from C57Bl/6JRj mouse liver. We first examined dose- and time-dependent effects of two dynamin-inhibitors, dynasore and MitMAB, on cell viability, morphology, and endocytosis of model ligands via different LSEC scavenger receptors to establish a protocol for dynamin-inhibition studies in these primary cells. LSECs were challenged with MuHV-1 (MOI 0.2) ± dynamin inhibitors for 1h, then without inhibitors and virus for 11h, and nuclear expression of MuHV-1 immediate early antigen (IE1) measured by immune fluorescence. MuHV-1 efficiently infected LSECs in vitro. Infection was significantly and independently inhibited by dynasore and MitMAB, which block dynamin function via different mechanisms, suggesting that initial steps of MuHV-1 infection is dynamin-dependent in LSECs. Infection was also reduced in the presence of monensin which inhibits acidification of endosomes. Furthermore, competitive binding studies with a neuropilin-1 antibody blocked LSEC infection. This suggests that MuHV-1 infection in mouse LSECs involves virus binding to neuropilin-1 and occurs via endocytosis.
Collapse
Affiliation(s)
- Ingelin Kyrrestad
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
9
|
Membraneless Compartmentalization of Nuclear Assembly Sites during Murine Cytomegalovirus Infection. Viruses 2023; 15:v15030766. [PMID: 36992475 PMCID: PMC10053344 DOI: 10.3390/v15030766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Extensive reorganization of infected cells and the formation of large structures known as the nuclear replication compartment (RC) and cytoplasmic assembly compartment (AC) is a hallmark of beta-herpesvirus infection. These restructurings rely on extensive compartmentalization of the processes that make up the virus manufacturing chain. Compartmentalization of the nuclear processes during murine cytomegalovirus (MCMV) infection is not well described. In this study, we visualized five viral proteins (pIE1, pE1, pM25, pm48.2, and pM57) and replicated viral DNA to reveal the nuclear events during MCMV infection. As expected, these events can be matched with those described for other beta and alpha herpesviruses and contribute to the overall picture of herpesvirus assembly. Imaging showed that four viral proteins (pE1, pM25, pm48.2, and pM57) and replicated viral DNA condense in the nucleus into membraneless assemblies (MLAs) that undergo a maturation sequence to form the RC. One of these proteins (pM25), which is also expressed in a cytoplasmic form (pM25l), showed similar MLAs in the AC. Bioinformatics tools for predicting biomolecular condensates showed that four of the five proteins had a high propensity for liquid–liquid phase separation (LLPS), suggesting that LLPS may be a mechanism for compartmentalization within RC and AC. Examination of the physical properties of MLAs formed during the early phase of infection by 1,6-hexanediol treatment in vivo revealed liquid-like properties of pE1 MLAs and more solid-like properties of pM25 MLAs, indicating heterogeneity of mechanisms in the formation of virus-induced MLAs. Analysis of the five viral proteins and replicated viral DNA shows that the maturation sequence of RC and AC is not completed in many cells, suggesting that virus production and release is carried out by a rather limited number of cells. This study thus lays the groundwork for further investigation of the replication cycle of beta-herpesviruses, and the results should be incorporated into plans for high-throughput and single-cell analytic approaches.
Collapse
|
10
|
Turner DL, Mathias RA. The human cytomegalovirus decathlon: Ten critical replication events provide opportunities for restriction. Front Cell Dev Biol 2022; 10:1053139. [PMID: 36506089 PMCID: PMC9732275 DOI: 10.3389/fcell.2022.1053139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen that can cause severe disease in immunocompromised individuals, transplant recipients, and to the developing foetus during pregnancy. There is no protective vaccine currently available, and with only a limited number of antiviral drug options, resistant strains are constantly emerging. Successful completion of HCMV replication is an elegant feat from a molecular perspective, with both host and viral processes required at various stages. Remarkably, HCMV and other herpesviruses have protracted replication cycles, large genomes, complex virion structure and complicated nuclear and cytoplasmic replication events. In this review, we outline the 10 essential stages the virus must navigate to successfully complete replication. As each individual event along the replication continuum poses as a potential barrier for restriction, these essential checkpoints represent potential targets for antiviral development.
Collapse
Affiliation(s)
- Declan L. Turner
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Rommel A. Mathias
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Mahmutefendić Lučin H, Blagojević Zagorac G, Marcelić M, Lučin P. Host Cell Signatures of the Envelopment Site within Beta-Herpes Virions. Int J Mol Sci 2022; 23:9994. [PMID: 36077391 PMCID: PMC9456339 DOI: 10.3390/ijms23179994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Beta-herpesvirus infection completely reorganizes the membrane system of the cell. This system is maintained by the spatiotemporal arrangement of more than 3000 cellular proteins that continuously adapt the configuration of membrane organelles according to cellular needs. Beta-herpesvirus infection establishes a new configuration known as the assembly compartment (AC). The AC membranes are loaded with virus-encoded proteins during the long replication cycle and used for the final envelopment of the newly formed capsids to form infectious virions. The identity of the envelopment membranes is still largely unknown. Electron microscopy and immunofluorescence studies suggest that the envelopment occurs as a membrane wrapping around the capsids, similar to the growth of phagophores, in the area of the AC with the membrane identities of early/recycling endosomes and the trans-Golgi network. During wrapping, host cell proteins that define the identity and shape of these membranes are captured along with the capsids and incorporated into the virions as host cell signatures. In this report, we reviewed the existing information on host cell signatures in human cytomegalovirus (HCMV) virions. We analyzed the published proteomes of the HCMV virion preparations that identified a large number of host cell proteins. Virion purification methods are not yet advanced enough to separate all of the components of the rich extracellular material, including the large amounts of non-vesicular extracellular particles (NVEPs). Therefore, we used the proteomic data from large and small extracellular vesicles (lEVs and sEVs) and NVEPs to filter out the host cell proteins identified in the viral proteomes. Using these filters, we were able to narrow down the analysis of the host cell signatures within the virions and determine that envelopment likely occurs at the membranes derived from the tubular recycling endosomes. Many of these signatures were also found at the autophagosomes, suggesting that the CMV-infected cell forms membrane organelles with phagophore growth properties using early endosomal host cell machinery that coordinates endosomal recycling.
Collapse
Affiliation(s)
| | | | | | - Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|