1
|
Zibar Belasic T, Badnjevic M, Zigante M, Mohar Vitezic B, Spalj S, Markova-Car EP. Supragingival dental biofilm profile and biofilm control during orthodontic treatment with fixed orthodontic appliance: A randomized controlled trial. Arch Oral Biol 2024; 164:105984. [PMID: 38701663 DOI: 10.1016/j.archoralbio.2024.105984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVE The effectiveness of supragingival dental biofilm control during orthodontic treatment and changes in the bacterial profile were analyzed. DESIGN Sixty-four participants aged 12-22 years (57% female) were included in the study. Participants underwent orthodontic treatment with fixed appliances and were randomly assigned to one of the three groups, which during a period of one month: (I) used chlorhexidine digluconate (CHX), (II) used high concentration of fluoride (F) gel and (III) performed standard oral hygiene. The plaque and gingivitis index, pH of biofilm and white spot lesions (WSL) were assessed. Changes of the bacteria in the biofilm were analyzed by the quantitative polymerase chain reaction RESULTS: Increase in the plaque index, pH of biofilm, and WSL was observed during orthodontic treatment with standard oral hygiene. Large interindividual variability was present, and the effects of one-month use of fluorides and CHX on clinical parameters were not significant. Despite standard hygiene the abundance of studied biofilm bacteria increased - the most Streptoccocus mutans (14.2x) and S. salivarius (3.3x), moderate Veillonella parvula (3x) and the least S. sobrinus (2.3x) and Agregatibacter actinomycetemcomitans (1.9x). The use of CHX reduced S. sobrinus (2.2x) and A. actinomycetemcomitans (1.9x). Fluoride use reduced A. actinomycetemcomitans (1.3x) and S. sobrinus (1.2x). Fluorides better controlled S. mutans than CHX. CONCLUSION Bacterial biomass in supragingival biofilm increased during treatment with metal orthodontic appliances, with greater increase in cariogenic bacteria than periopathogens. Fluoride controlled S. mutans, while CHX S. sobrinus and A. actinomycetemcomitans.
Collapse
Affiliation(s)
- T Zibar Belasic
- University of Trieste, Department of Medical, Surgical and Health Sciences, Piazza dell'Ospitale 1, Trieste, Italy
| | - M Badnjevic
- University of Rijeka, Faculty of Dental Medicine, Department of Orthodontics, Kresimirova 40, Rijeka, Croatia.
| | - M Zigante
- University of Rijeka, Faculty of Dental Medicine, Department of Orthodontics, Kresimirova 40, Rijeka, Croatia; Clinical Hospital Center Rijeka, Dental Clinic, Kresimirova 40, Rijeka, Croatia
| | - B Mohar Vitezic
- Clinical Hospital Center Rijeka, Dental Clinic, Kresimirova 40, Rijeka, Croatia; University of Rijeka, Faculty of Medicine, Department of Microbiology and Parasitology, Brace Branchetta 20, Rijeka, Croatia
| | - S Spalj
- University of Rijeka, Faculty of Dental Medicine, Department of Orthodontics, Kresimirova 40, Rijeka, Croatia; Clinical Hospital Center Rijeka, Dental Clinic, Kresimirova 40, Rijeka, Croatia; J. J. Strossmayer University of Osijek, Faculty of Dental Medicine and Health, Department of Dental Medicine, Crkvena 21, Osijek, Croatia
| | - E P Markova-Car
- University of Rijeka, Faculty of Medicine, Department of Basic and Clinical Pharmacology and Toxicology, Brace Branchetta 20, Rijeka, Croatia
| |
Collapse
|
2
|
Xu W, Yu F, Addison O, Zhang B, Guan F, Zhang R, Hou B, Sand W. Microbial corrosion of metallic biomaterials in the oral environment. Acta Biomater 2024; 184:22-36. [PMID: 38942189 DOI: 10.1016/j.actbio.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
A wide variety of microorganisms have been closely linked to metal corrosion in the form of adherent surface biofilms. Biofilms allow the development and maintenance of locally corrosive environments and/or permit direct corrosion including pitting corrosion. The presence of numerous genetically distinct microorganisms in the oral environment poses a threat to the integrity and durability of the surface of metallic prostheses and implants used in routine dentistry. However, the association between oral microorganisms and specific corrosion mechanisms is not clear. It is of practical importance to understand how microbial corrosion occurs and the associated risks to metallic materials in the oral environment. This knowledge is also important for researchers and clinicians who are increasingly concerned about the biological activity of the released corrosion products. Accordingly, the main goal was to comprehensively review the current literature regarding oral microbiologically influenced corrosion (MIC) including characteristics of biofilms and of the oral environment, MIC mechanisms, corrosion behavior in the presence of oral microorganisms and potentially mitigating technologies. Findings included that oral MIC has been ascribed mostly to aggressive metabolites secreted during microbial metabolism (metabolite-mediated MIC). However, from a thermodynamic point of view, extracellular electron transfer mechanisms (EET-MIC) through pili or electron transfer compounds cannot be ruled out. Various MIC mitigating methods have been demonstrated to be effective in short term, but long term evaluations are necessary before clinical applications can be considered. Currently most in-vitro studies fail to simulate the complexity of intraoral physiological conditions which may either reduce or exacerbate corrosion risk, which must be addressed in future studies. STATEMENT OF SIGNIFICANCE: A thorough analysis on literature regarding oral MIC (microbiologically influenced corrosion) of biomedical metallic materials has been carried out, including characteristics of oral environment, MIC mechanisms, corrosion behaviors in the presence of typical oral microorganisms and potential mitigating methods (materials design and surface design). There is currently a lack of mechanistic understanding of oral MIC which is very important not only to corrosion researchers but also to dentists and clinicians. This paper discusses the significance of biofilms from a biocorrosion perspective and summarizes several aspects of MIC mechanisms which could be caused by oral microorganisms. Oral MIC has been closely associated with not only the materials research but also the dental/clinical research fields in this work.
Collapse
Affiliation(s)
- Weichen Xu
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China.
| | - Fei Yu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, 308 Ningxia Road, Qingdao 266021, China.
| | - Owen Addison
- Centre for Oral Clinical Translational Science, Faculty of Dentistry Oral and Craniofacial Sciences, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Binbin Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Fang Guan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Ruiyong Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Baorong Hou
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Wolfgang Sand
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Biofilm Centre, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
3
|
Zheng Y, Yang Y, Liu X, Liu P, Li X, Zhang M, Zhou E, Zhao Z, Wang X, Zhang Y, Zheng B, Yan Y, Liu Y, Xu D, Cao L. Accelerated corrosion of 316L stainless steel in a simulated oral environment via extracellular electron transfer and acid metabolites of subgingival microbiota. Bioact Mater 2024; 35:56-66. [PMID: 38283387 PMCID: PMC10810744 DOI: 10.1016/j.bioactmat.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
316L stainless steel (SS) is widely applied as microimplant anchorage (MIA) due to its excellent mechanical properties. However, the risk that the oral microorganisms can corrode 316L SS is fully neglected. Microbiologically influenced corrosion (MIC) of 316L SS is essential to the health and safety of all patients because the accelerated corrosion caused by the oral microbiota can trigger the release of Cr and Ni ions. This study investigated the corrosion behavior and mechanism of subgingival microbiota on 316L SS by 16S rRNA and metagenome sequencing, electrochemical measurements, and surface characterization techniques. Multispecies biofilms were formed by the oral subgingival microbiota in the simulated oral anaerobic environment on 316L SS surfaces, significantly accelerating the corrosion in the form of pitting. The microbiota samples collected from the subjects differed in biofilm compositions, corrosion behaviors, and mechanisms. The oral subgingival microbiota contributed to the accelerated corrosion of 316L SS via acidic metabolites and extracellular electron transfer. Our findings provide a new insight into the underlying mechanisms of oral microbial corrosion and guide the design of oral microbial corrosion-resistant materials.
Collapse
Affiliation(s)
- Ying Zheng
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yi Yang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, China
| | - Xianbo Liu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Pan Liu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, China
| | - Xiangyu Li
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, China
| | - Mingxing Zhang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, China
| | - Enze Zhou
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, China
| | - Zhenjin Zhao
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xue Wang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yuanyuan Zhang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Bowen Zheng
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yuwen Yan
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yi Liu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, China
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China
| | - Liu Cao
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
- Institute of Health Sciences, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Adsorption of Candida albicans on Ti-6Al-4V surface and its corrosion effects in artificial saliva. Bioelectrochemistry 2022; 148:108248. [PMID: 35988504 DOI: 10.1016/j.bioelechem.2022.108248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023]
Abstract
In this study, the corrosion behavior and mechanism of Ti-6Al-4V in artificial saliva with Candida albicans were investigated using electrochemical and surface analysis techniques. Fluorescence microscopy (FM) and confocal laser scanning microscopy (CLSM) showed that C. albicans could easily adsorb on the surface of Ti-6Al-4V alloy to form non-dense biofilm. The non-compact biofilm provided necessary conditions for pitting corrosion on Ti-6Al-4V alloys by scanning electron microscopy (SEM) observation. The potentiodynamic polarization (PDP) curves and electrochemical impedance spectroscopy (EIS) revealed that C. albicans significantly reduced the corrosion resistance of Ti-6Al-4V alloys. The cyclic voltammetry (CV) and differential pulse voltammetry (DPV) results indicated that C. albicans biofilm promoted electron transfer from the anodic sites to cathodic depolarizer during the corrosion process, showing that the role of oral fungi must be considered when evaluating the performance of oral materials. This study may provide a new clue for evaluating the corrosion resistance of dental implant materials in the oral environment.
Collapse
|
5
|
Weller J, Vasudevan P, Kreikemeyer B, Ekat K, Jackszis M, Springer A, Chatzivasileiou K, Lang H. The role of bacterial corrosion on recolonization of titanium implant surfaces: An in vitro study. Clin Implant Dent Relat Res 2022; 24:664-675. [PMID: 35709098 DOI: 10.1111/cid.13114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Inflammation triggered by bacterial biofilms in the surrounding tissue is a major etiological factor for peri-implantitis and subsequent implant failure. However, little is known about the direct effects of bacterial corrosion and recolonization on implant failure PURPOSE: To investigate the influence of oral commensals on bacterial corrosion and recolonization of titanium surfaces. MATERIALS AND METHODS Streptococcus sanguinis (S. sanguinis) and Porphyromonas gingivalis (P. gingivalis), which are key bacteria in oral biofilm formation, were cultured on commercially pure titanium and titanium-aluminum-vanadium (Ti6Al4V) plates in artificial saliva/brain heart infusion medium under aerobic or anaerobic conditions. Biofilm formation was examined after 7 and 21 days by crystal violet and live/dead staining. Titanium ions released into culture supernatants were analyzed over a period of 21 days by atomic absorption spectrometry. Visual changes in surface morphology were investigated using scanning electron microscopy. Biofilm formation on sterilized, biocorroded, and recolonized implant surfaces was determined by crystal violet staining. RESULTS S. sanguinis and P. gingivalis formed stable biofilms on the titanium samples. Bacterial corrosion led to a significant increase in titanium ion release from these titanium plates (p < 0.01), which was significantly higher under aerobic conditions on pure titanium (p ≤ 0.001). No obvious morphological surface changes, such as pitting and discoloration, were detected in the titanium samples. During early biofilm formation, the addition of titanium ions significantly decreased the number of live cells. In contrast, a significant effect on biofilm mass was only detected with P. gingivalis. Bacterial corrosion had no influence on bacterial recolonization following sterilization of titanium and Ti6Al4V surfaces. CONCLUSION Bacterial corrosion differs between oral commensal bacteria and leads to increased titanium ion release from titanium plates. The titanium ion release did not influence biofilm formation or bacterial recolonization under in vitro conditions.
Collapse
Affiliation(s)
- Julia Weller
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, Rostock, Germany
| | - Praveen Vasudevan
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Rostock, Rostock, Germany
| | - Katharina Ekat
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Rostock, Rostock, Germany
| | - Mario Jackszis
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, University Medical Center Rostock, Rostock, Germany
| | - Armin Springer
- Medical Biology and Electron Microscopy Centre, Medical Faculty, University of Rostock, Rostock, Germany
| | - Kyriaki Chatzivasileiou
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, Rostock, Germany
| | - Hermann Lang
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
6
|
Kang Y, Li L, Li S, Zhou X, Xia K, Liu C, Qu Q. Temporary Inhibition of the Corrosion of AZ31B Magnesium Alloy by Formation of Bacillus subtilis Biofilm in Artificial Seawater. MATERIALS 2019; 12:ma12030523. [PMID: 30744166 PMCID: PMC6384576 DOI: 10.3390/ma12030523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/08/2019] [Accepted: 01/26/2019] [Indexed: 11/16/2022]
Abstract
It is well known that microorganisms tend to form biofilms on metal surfaces to accelerate/decelerate corrosion and affect their service life. Bacillus subtilis was used to produce a dense biofilm on an AZ31B magnesium alloy surface. Corrosion behavior of the alloy with the B. subtilis biofilm was evaluated in artificial seawater. The results revealed that the biofilm hampered extracellular electron transfer significantly, which resulted in a decrease of icorr and increase of Rt clearly compared to the control group. Moreover, an ennoblement of Ecorr was detected under the condition of B. subtilis biofilm covering. Significant reduction of the corrosion was observed by using the cyclic polarization method. All of these prove that the existence of the B. subtilis biofilm effectively enhances the anti-corrosion performance of the AZ31B magnesium alloy. This result may enhance the usage of bio-interfaces for temporary corrosion control. In addition, a possible corrosion inhibition mechanism of B. subtilis on AZ31B magnesium alloy was proposed.
Collapse
Affiliation(s)
- Yaxin Kang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Lei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Shunling Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Xin Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Ke Xia
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Chang Liu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Qing Qu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
7
|
Noumbissi S, Scarano A, Gupta S. A Literature Review Study on Atomic Ions Dissolution of Titanium and Its Alloys in Implant Dentistry. MATERIALS 2019; 12:ma12030368. [PMID: 30682826 PMCID: PMC6384935 DOI: 10.3390/ma12030368] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/06/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023]
Abstract
This review of literature paper was done in order to conduct a review of the literature and an assessment of the effects of titanium implant corrosion on peri-implant health and success in the oral environment. This paper evaluates and critically reviews the findings of the multiple in-depth in vivo and in vitro studies that are related to corrosion aspects of the titanium and its alloys. A literature survey was conducted by electronic search in Medline and studies that were published between 1940 and August 2018 were selected. The search terms used were types of corrosion, corrosion of titanium implants, titanium corrosion, metal ion release from the titanium implants, fretting and pitting corrosion, implant corrosion, peri implantitis, and corrosion. Both in vivo and in vitro studies were also included in the review. The search and selection resulted in 64 articles. These articles were divided on the basis of their context to different kinds of corrosion related to titanium dental implants. It is evident that metal ions are released from titanium and titanium alloy dental implants as a result of corrosion. Corrosion of implants is multifactorial, including electrical, chemical, and mechanical factors, which have an effect on the peri-implant tissues and microbiota. The literature surveyed showed that corrosion related to titanium and its alloys has an effect on the health of peri-implant soft and hard tissue and the long term survival of metal dental implants. It can be concluded that presence of the long-term corrosion reaction along with continuous corrosion leads to the release of ions into the peri-implant tissue but also to a disintegration of the implant that contribute to material fatigue and even fracture of the abutments and implant body or both. This combined impact of the corrosion, bacterial activity, chemical reactions, and functional stresses are to be looked at as important factors of implant failure. The findings can be used to explore the possible strategies of research to investigate the biological impact of implant materials.
Collapse
Affiliation(s)
- Sammy Noumbissi
- International Academy of Ceramic Implantology, Silver Spring, MD 20910, USA.
- Department of Medical, Oral and Biotechnological Sciences and CeSi Met, University of Chieti-Pescara, 66100 Chieti, Italy.
- Zirconia Implant Research Group, Silver Spring, MD 20910, USA.
| | - Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences and CeSi Met, University of Chieti-Pescara, 66100 Chieti, Italy.
- Zirconia Implant Research Group, Silver Spring, MD 20910, USA.
| | - Saurabh Gupta
- International Academy of Ceramic Implantology, Silver Spring, MD 20910, USA.
- Zirconia Implant Research Group, Silver Spring, MD 20910, USA.
- Oral & Maxillofacial Surgeon and Implantologist, Private Practice Dentistry, Bangalore 560042, India.
| |
Collapse
|
8
|
Multifaceted roles of environmental factors toward dental implant performance: Observations from clinical retrievals and in vitro testing. Dent Mater 2018; 34:e265-e279. [DOI: 10.1016/j.dental.2018.08.299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/16/2018] [Accepted: 08/29/2018] [Indexed: 12/27/2022]
|
9
|
Siddiqui DA, Guida L, Sridhar S, Valderrama P, Wilson TG, Rodrigues DC. Evaluation of oral microbial corrosion on the surface degradation of dental implant materials. J Periodontol 2018; 90:72-81. [DOI: 10.1002/jper.18-0110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/17/2018] [Accepted: 05/27/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Danyal A. Siddiqui
- Department of Bioengineering; The University of Texas at Dallas; Richardson TX
| | - Lidia Guida
- Department of Bioengineering; The University of Texas at Dallas; Richardson TX
| | | | | | | | | |
Collapse
|