1
|
Zeng J, Wu C, Li P, Li J, Wang B, Xu J, Gao W, Chen K. Enhancing Mechanical and Antimicrobial Properties of Dialdehyde Cellulose-Silver Nanoparticle Composites through Ammoniated Nanocellulose Modification. Molecules 2024; 29:2065. [PMID: 38731558 PMCID: PMC11085600 DOI: 10.3390/molecules29092065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Given the widespread prevalence of viruses, there is an escalating demand for antimicrobial composites. Although the composite of dialdehyde cellulose and silver nanoparticles (DAC@Ag1) exhibits excellent antibacterial properties, its weak mechanical characteristics hinder its practical applicability. To address this limitation, cellulose nanofibers (CNFs) were initially ammoniated to yield N-CNF, which was subsequently incorporated into DAC@Ag1 as an enhancer, forming DAC@Ag1/N-CNF. We systematically investigated the optimal amount of N-CNF and characterized the DAC@Ag1/N-CNF using FT-IR, XPS, and XRD analyses to evaluate its additional properties. Notably, the optimal mass ratio of N-CNF to DAC@Ag1 was found to be 5:5, resulting in a substantial enhancement in mechanical properties, with a 139.8% increase in tensile elongation and a 33.1% increase in strength, reaching 10% and 125.24 MPa, respectively, compared to DAC@Ag1 alone. Furthermore, the inhibition zones against Escherichia coli and Staphylococcus aureus were significantly expanded to 7.9 mm and 15.9 mm, respectively, surpassing those of DAC@Ag1 alone by 154.8% and 467.9%, indicating remarkable improvements in antimicrobial efficacy. Mechanism analysis highlighted synergistic effects from chemical covalent bonding and hydrogen bonding in the DAC@Ag1/N-CNF, enhancing the mechanical and antimicrobial properties significantly. The addition of N-CNF markedly augmented the properties of the composite film, thereby facilitating its broader application in the antimicrobial field.
Collapse
Affiliation(s)
- Jinsong Zeng
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (J.Z.); (C.W.); (J.L.); (B.W.); (J.X.); (W.G.); (K.C.)
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Chen Wu
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (J.Z.); (C.W.); (J.L.); (B.W.); (J.X.); (W.G.); (K.C.)
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Pengfei Li
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (J.Z.); (C.W.); (J.L.); (B.W.); (J.X.); (W.G.); (K.C.)
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- School of Environment and Energy, South China University of Technology, Guangzhou 510640, China
| | - Jinpeng Li
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (J.Z.); (C.W.); (J.L.); (B.W.); (J.X.); (W.G.); (K.C.)
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Bin Wang
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (J.Z.); (C.W.); (J.L.); (B.W.); (J.X.); (W.G.); (K.C.)
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Jun Xu
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (J.Z.); (C.W.); (J.L.); (B.W.); (J.X.); (W.G.); (K.C.)
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Wenhua Gao
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (J.Z.); (C.W.); (J.L.); (B.W.); (J.X.); (W.G.); (K.C.)
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Kefu Chen
- Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (J.Z.); (C.W.); (J.L.); (B.W.); (J.X.); (W.G.); (K.C.)
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| |
Collapse
|
2
|
Dou J, Ilina P, Cruz CD, Nurmi D, Vidarte PZ, Rissanen M, Tammela P, Vuorinen T. Willow Bark-Derived Material with Antibacterial and Antibiofilm Properties for Potential Wound Dressing Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16554-16567. [PMID: 37104679 PMCID: PMC10636761 DOI: 10.1021/acs.jafc.3c00849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023]
Abstract
Tree stems contain wood in addition to 10-20% bark, which remains one of the largest underutilized biomasses on earth. Unique macromolecules (like lignin, suberin, pectin, and tannin), extractives, and sclerenchyma fibers form the main part of the bark. Here, we perform detailed investigation of antibacterial and antibiofilm properties of bark-derived fiber bundles and discuss their potential application as wound dressing for treatment of infected chronic wounds. We show that the yarns containing at least 50% of willow bark fiber bundles significantly inhibit biofilm formation by wound-isolated Staphylococcus aureus strains. We then correlate antibacterial effects of the material to its chemical composition. Lignin plays the major role in antibacterial activity against planktonic bacteria [i.e., minimum inhibitory concentration (MIC) 1.25 mg/mL]. Acetone extract (unsaturated fatty acid-enriched) and tannin-like (dicarboxylic acid-enriched) substances inhibit both bacterial planktonic growth [MIC 1 and 3 mg/mL, respectively] and biofilm formation. The yarn lost its antibacterial activity once its surface lignin reached 20.1%, based on X-ray photoelectron spectroscopy. The proportion of fiber bundles at the fabricated yarn correlates positively with its surface lignin. Overall, this study paves the way to the use of bark-derived fiber bundles as a natural-based material for active (antibacterial and antibiofilm) wound dressings, upgrading this underappreciated bark residue from an energy source into high-value pharmaceutical use.
Collapse
Affiliation(s)
- Jinze Dou
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
| | - Polina Ilina
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Cristina D. Cruz
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Denise Nurmi
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
| | - Paula Zegarra Vidarte
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Marja Rissanen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
| | - Päivi Tammela
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Tapani Vuorinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
3
|
Yousefian F, Hesari R, Jensen T, Obagi S, Rgeai A, Damiani G, Bunick CG, Grada A. Antimicrobial Wound Dressings: A Concise Review for Clinicians. Antibiotics (Basel) 2023; 12:1434. [PMID: 37760730 PMCID: PMC10526066 DOI: 10.3390/antibiotics12091434] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Wound management represents a substantial clinical challenge due to the growing incidence of chronic skin wounds resulting from venous insufficiency, diabetes, and obesity, along with acute injuries and surgical wounds. The risk of infection, a key impediment to healing and a driver of increased morbidity and mortality, is a primary concern in wound care. Recently, antimicrobial dressings have emerged as a promising approach for bioburden control and wound healing. The selection of a suitable antimicrobial dressing depends on various parameters, including cost, wound type, local microbial burden and the location and condition of the wound. This review covers the different types of antimicrobial dressings, their modes of action, advantages, and drawbacks, thereby providing clinicians with the knowledge to optimize wound management.
Collapse
Affiliation(s)
| | - Roksana Hesari
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Taylor Jensen
- St. George’s University School of Medicine, West Indies P.O. Box 7, Grenada
| | - Sabine Obagi
- College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Ala Rgeai
- Hai Al-Andalus Primary Healthcare Center, Tripoli 13555, Libya
| | - Giovanni Damiani
- Italian Center of Precision Medicine and Chronic Inflammation, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy
| | - Christopher G. Bunick
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510, USA
- Program in Translational Biomedicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ayman Grada
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
An Overview on Wound Dressings and Sutures Fabricated by Electrospinning. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-021-0364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
5
|
Taïbi N, Ameraoui R, Kaced A, Abou-Mustapha M, Bouchama A, Djafri A, Taïbi A, Mellahi K, Hadjadj M, Touati S, Badri FZ, Djema S, Masmoudi Y, Belmiri S, Khammar F. Multifloral white honey outclasses manuka honey in methylglyoxal content: assessment of free and encapsulated methylglyoxal and anti-microbial peptides in liposomal formulation against toxigenic potential of Bacillus subtilis Subsp spizizenii strain. Food Funct 2022; 13:7591-7613. [PMID: 35731546 DOI: 10.1039/d2fo00566b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The therapeutic virtues of honey no longer need to be proven. Honey, which is rich in nutrients, is an excellent nutritional food because of its many properties; however, honey has been diverted from this primary function and used in clinical research. Evidence has shown that honey still possesses unknown properties and some of these aspects have never been addressed. In this work, two bioactive compounds found in honey (methylglyoxal and antimicrobial peptides) were evaluated for their anti-Bacillus subtilis activity with particular attention to their dilution factor. Although this bacterial strain does not possess an indigenous virulence factor gene, it becomes virulent by transferring plasmids with B. thuringiensis or expression of toxins from Bordetella pertussis. As is known, methylglyoxal is a toxic electrophile present in many eukaryotic and prokaryotic cells, which is generated by enzymatic and non-enzymatic reactions. Its overexpression successfully kills bacteria by inducing membrane disruption. Also, AMPs show potent inhibitory action against Gram-positive bacteria. Because of the lack of information concerning the main ingredients of honey, the microencapsulation process was used. Both methylglyoxal (MGO) and peptide-loaded liposomes were synthesized, characterized and compared to their free forms. The liposomal formulations contained a mixture of eggPC, cholesterol, and octadecylamine and their particle sizes were measured and their encapsulation efficacy calculated. The results revealed that Algerian multifloral white honey contained higher levels of MGO compared to manuka honey, which prevented bacterial growth and free MGO was relatively less effective. In fact, MGO killed BS in the loaded form with the same bacteriostatic and bactericidal index. However, the action of AMPs was different. Indeed, the investigation into the reactivity of MGO in the solvent indicated that regardless of the level of water added, honey is active at a fixed dilution. This data introduces the notion of dilution and abolishes the concept of concentration. Moreover, the synergistic antibacterial effect of the compounds in honey was diminished by the matrix effect. The degree of liposome-bacteria-fusion and the delay effect observed could be explain by both the composition and nature of the lipids used. Finally, this study reinforces the idea that under certain conditions, the metalloproteinases in honey produce AMPs.
Collapse
Affiliation(s)
- Nadia Taïbi
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria. .,Université des Sciences et de la Technologie Houari Boumediene (USTHB), Faculté des Sciences Biologiques (FSB), Laboratoire de Recherche sur les Zones Arides, (LRZA), BP 32 El Alia 16111, Bab Ezzouar 16111, Algeria
| | - Rachid Ameraoui
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Amel Kaced
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Mohamed Abou-Mustapha
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Abdelghani Bouchama
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Ahmed Djafri
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Amina Taïbi
- Laboratoire de Parasitologie et Mycologie, Laboratoire de Recherche Santé et production Animale, École Nationale Supérieure Vétérinaire, B.P. 228, Oued Smar, Alger, Algeria
| | - Kahina Mellahi
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Mohamed Hadjadj
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Souad Touati
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Fatima-Zohra Badri
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Souhila Djema
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Yasmina Masmoudi
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Sarah Belmiri
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques CRAPC, BP 384, Bou-Ismail, 42004, Tipaza, Algeria.
| | - Farida Khammar
- Université des Sciences et de la Technologie Houari Boumediene (USTHB), Faculté des Sciences Biologiques (FSB), Laboratoire de Recherche sur les Zones Arides, (LRZA), BP 32 El Alia 16111, Bab Ezzouar 16111, Algeria
| |
Collapse
|
6
|
Al-Hatamleh MAI, Alshaer W, Hatmal MM, Lambuk L, Ahmed N, Mustafa MZ, Low SC, Jaafar J, Ferji K, Six JL, Uskoković V, Mohamud R. Applications of Alginate-Based Nanomaterials in Enhancing the Therapeutic Effects of Bee Products. Front Mol Biosci 2022; 9:865833. [PMID: 35480890 PMCID: PMC9035631 DOI: 10.3389/fmolb.2022.865833] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022] Open
Abstract
Since the ancient times, bee products (i.e., honey, propolis, pollen, bee venom, bee bread, and royal jelly) have been considered as natural remedies with therapeutic effects against a number of diseases. The therapeutic pleiotropy of bee products is due to their diverse composition and chemical properties, which is independent on the bee species. This has encouraged researchers to extensively study the therapeutic potentials of these products, especially honey. On the other hand, amid the unprecedented growth in nanotechnology research and applications, nanomaterials with various characteristics have been utilized to improve the therapeutic efficiency of these products. Towards keeping the bee products as natural and non-toxic therapeutics, the green synthesis of nanocarriers loaded with these products or their extracts has received a special attention. Alginate is a naturally produced biopolymer derived from brown algae, the desirable properties of which include biodegradability, biocompatibility, non-toxicity and non-immunogenicity. This review presents an overview of alginates, including their properties, nanoformulations, and pharmaceutical applications, placing a particular emphasis on their applications for the enhancement of the therapeutic effects of bee products. Despite the paucity of studies on fabrication of alginate-based nanomaterials loaded with bee products or their extracts, recent advances in the area of utilizing alginate-based nanomaterials and other types of materials to enhance the therapeutic potentials of bee products are summarized in this work. As the most widespread and well-studied bee products, honey and propolis have garnered a special interest; combining them with alginate-based nanomaterials has led to promising findings, especially for wound healing and skin tissue engineering. Furthermore, future directions are proposed and discussed to encourage researchers to develop alginate-based stingless bee product nanomedicines, and to help in selecting suitable methods for devising nanoformulations based on multi-criteria decision making models. Also, the commercialization prospects of nanocomposites based on alginates and bee products are discussed. In conclusion, preserving original characteristics of the bee products is a critical challenge in developing nano-carrier systems. Alginate-based nanomaterials are well suited for this task because they can be fabricated without the use of harsh conditions, such as shear force and freeze-drying, which are often used for other nano-carriers. Further, conjunction of alginates with natural polymers such as honey does not only combine the medicinal properties of alginates and honey, but it could also enhance the mechanical properties and cell adhesion capacity of alginates.
Collapse
Affiliation(s)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mohd Zulkifli Mustafa
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Siew Chun Low
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Khalid Ferji
- LCPM, CNRS, Université de Lorraine, Nancy, France
| | - Jean-Luc Six
- LCPM, CNRS, Université de Lorraine, Nancy, France
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- *Correspondence: Rohimah Mohamud,
| |
Collapse
|
7
|
Systematically Assessing Natural Compounds’ Wound Healing Potential with Spheroid and Scratch Assays. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:227-241. [DOI: 10.1007/5584_2022_727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Kubíčková J, Medek T, Husby J, Matonohová J, Vágnerová H, Marholdová L, Velebný V, Chmelař J. Nonwoven Textiles from Hyaluronan for Wound Healing Applications. Biomolecules 2021; 12:16. [PMID: 35053164 PMCID: PMC8773973 DOI: 10.3390/biom12010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 01/19/2023] Open
Abstract
Nonwoven textiles are used extensively in the field of medicine, including wound healing, but these textiles are mostly from conventional nondegradable materials, e.g., cotton or synthetic polymers such as polypropylene. Therefore, we aimed to develop nonwoven textiles from hyaluronan (HA), a biocompatible, biodegradable and nontoxic polysaccharide naturally present in the human body. For this purpose, we used a process based on wet spinning HA into a nonstationary coagulation bath combined with the wet-laid textile technology. The obtained HA nonwoven textiles are soft, flexible and paper like. Their mechanical properties, handling and hydration depend on the microscale fibre structure, which is tuneable by selected process parameters. Cell viability testing on two relevant cell lines (3T3, HaCaT) demonstrated that the textiles are not cytotoxic, while the monocyte activation test ruled out pyrogenicity. Biocompatibility, biodegradability and their high capacity for moisture absorption make HA nonwoven textiles a promising material for applications in the field of wound healing, both for topical and internal use. The beneficial effect of HA in the process of wound healing is well known and the form of a nonwoven textile should enable convenient handling and application to various types of wounds.
Collapse
Affiliation(s)
- Jolana Kubíčková
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| | - Tomáš Medek
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| | - Jarmila Husby
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| | - Jana Matonohová
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| | - Hana Vágnerová
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| | - Lucie Marholdová
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| | - Josef Chmelař
- Contipro a.s., Dolní Dobrouč 401, 56102 Donny Dobrucci, Czech Republic
| |
Collapse
|
9
|
Bäumler W, Eckl D, Holzmann T, Schneider-Brachert W. Antimicrobial coatings for environmental surfaces in hospitals: a potential new pillar for prevention strategies in hygiene. Crit Rev Microbiol 2021; 48:531-564. [PMID: 34699296 DOI: 10.1080/1040841x.2021.1991271] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent reports provide evidence that contaminated healthcare environments represent major sources for the acquisition and transmission of pathogens. Antimicrobial coatings (AMC) may permanently and autonomously reduce the contamination of such environmental surfaces complementing standard hygiene procedures. This review provides an overview of the current status of AMC and the demands to enable a rational application of AMC in health care settings. Firstly, a suitable laboratory test norm is required that adequately quantifies the efficacy of AMC. In particular, the frequently used wet testing (e.g. ISO 22196) must be replaced by testing under realistic, dry surface conditions. Secondly, field studies should be mandatory to provide evidence for antimicrobial efficacy under real-life conditions. The antimicrobial efficacy should be correlated to the rate of nosocomial transmission at least. Thirdly, the respective AMC technology should not add additional bacterial resistance development induced by the biocidal agents and co- or cross-resistance with antibiotic substances. Lastly, the biocidal substances used in AMC should be safe for humans and the environment. These measures should help to achieve a broader acceptance for AMC in healthcare settings and beyond. Technologies like the photodynamic approach already fulfil most of these AMC requirements.
Collapse
Affiliation(s)
- Wolfgang Bäumler
- Department of Dermatology, University Hospital, Regensburg, Germany
| | - Daniel Eckl
- Department of Microbiology, University of Regensburg, Regensburg, Germany
| | - Thomas Holzmann
- Department of Infection Control and Infectious Diseases, University Hospital, Regensburg, Germany
| | - Wulf Schneider-Brachert
- Department of Infection Control and Infectious Diseases, University Hospital, Regensburg, Germany
| |
Collapse
|
10
|
Chitosan-Coated Poly(lactic acid) Nanofibres Loaded with Essential Oils for Wound Healing. Polymers (Basel) 2021; 13:polym13162582. [PMID: 34451121 PMCID: PMC8398845 DOI: 10.3390/polym13162582] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 01/05/2023] Open
Abstract
Chronic skin wounds are characterised by a non-healing process that makes necessary the application of wound dressings on the damaged area to promote and facilitate the recovery of skin’s physiological integrity. The aim of the present work is to develop a bioactive dressing that, once applied on the injured tissue, would exert antibacterial activity and promote adhesion and proliferation of fibroblasts. Nanofibres consisting of poly(lactic acid) (PLA) and essential oils (EOs) were electrospun and coated with a medium molecular weight chitosan (CS). Black pepper essential oil (BP-EO) or limonene (L), well-known for their antibacterial properties, were added to the PLA/acetone solution before electrospinning; phase separation phenomena occurred due to the poor solubility of the EOs in the PLA solution and led to fibres having surface nano-pores. The porous electrospun fibres were coated with CS to produce hydrophilic membranes that were easy to handle, biocompatible, and suited to promote cellular proliferation. The fibrous scaffolds were tested in terms of mechanical resistance, wettability, antibacterial activity, in-vitro cytotoxicity, and ability to promote fibroblasts’ adhesion and proliferation. The results obtained proved that the CS coating improved the hydrophilicity of the fibrous mats, enhanced EO’s antibacterial potential, and promoted cell adhesion and proliferation.
Collapse
|
11
|
Mosteiro-Miguéns DG, Herrera-Jiménez C, Lorenzo-Ruiz H, Domínguez-Martís EM, Novío S. Successful Treatment of a Venous Leg Ulcer With Manuka Honey: A Case Study. J Wound Ostomy Continence Nurs 2021; 48:79-82. [PMID: 33427815 DOI: 10.1097/won.0000000000000712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Refractory venous leg ulcers (VLUs) often require extended time to heal, and they carry a high risk of recurrence. This case study describes our experiences with a patient with a VLU refractory to multiple treatment strategies who was successfully treated with Manuka honey. CASE Mr S. was a 76-year-old man with multiple comorbid conditions and hypersensitivity to silver-based compounds, who developed 3 VLUs of his right lower extremity. He experienced 90 days of unsuccessful treatments using an iodized cadexomer ointment, hydrodetersive fiber dressings, hydrocolloid meshes, compression therapy, and antibiotic treatment without progression toward wound healing. We then initiated treatment with Manuka honey and continued compression therapy. His primary VLU was completely epithelialized within 38 days, and an adjacent VLU also showed progression toward healing. Mr S. reported clinically relevant improvement in wound-related pain at 17 days. CONCLUSION The use of Manuka honey proved effective in this patient with a VLU refractory to other treatment strategies.
Collapse
Affiliation(s)
- Diego Gabriel Mosteiro-Miguéns
- Diego Gabriel Mosteiro-Miguéns, Badalona Serveis Assistencials (BSA), Health Care Centre of Morera-Pomar, Badalona, Barcelona, Spain
- Cristina Herrera-Jiménez, Badalona Serveis Assistencials (BSA), Health Care Centre of Morera-Pomar, Badalona, Barcelona, Spain
- Héctor Lorenzo-Ruiz, Badalona Serveis Assistencials (BSA), Health Care Centre of Morera-Pomar, Badalona, Barcelona, Spain
- Eva María Domínguez-Martís, Master in Health Care, Management and Care, Galician Public Health Care Service, Health Care Centre of Concepción Arenal, Santiago de Compostela, A Coruña, Spain
- Silvia Novío, Doctor of Dental Medicine, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, Faculty of Nursing, University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Cristina Herrera-Jiménez
- Diego Gabriel Mosteiro-Miguéns, Badalona Serveis Assistencials (BSA), Health Care Centre of Morera-Pomar, Badalona, Barcelona, Spain
- Cristina Herrera-Jiménez, Badalona Serveis Assistencials (BSA), Health Care Centre of Morera-Pomar, Badalona, Barcelona, Spain
- Héctor Lorenzo-Ruiz, Badalona Serveis Assistencials (BSA), Health Care Centre of Morera-Pomar, Badalona, Barcelona, Spain
- Eva María Domínguez-Martís, Master in Health Care, Management and Care, Galician Public Health Care Service, Health Care Centre of Concepción Arenal, Santiago de Compostela, A Coruña, Spain
- Silvia Novío, Doctor of Dental Medicine, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, Faculty of Nursing, University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Héctor Lorenzo-Ruiz
- Diego Gabriel Mosteiro-Miguéns, Badalona Serveis Assistencials (BSA), Health Care Centre of Morera-Pomar, Badalona, Barcelona, Spain
- Cristina Herrera-Jiménez, Badalona Serveis Assistencials (BSA), Health Care Centre of Morera-Pomar, Badalona, Barcelona, Spain
- Héctor Lorenzo-Ruiz, Badalona Serveis Assistencials (BSA), Health Care Centre of Morera-Pomar, Badalona, Barcelona, Spain
- Eva María Domínguez-Martís, Master in Health Care, Management and Care, Galician Public Health Care Service, Health Care Centre of Concepción Arenal, Santiago de Compostela, A Coruña, Spain
- Silvia Novío, Doctor of Dental Medicine, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, Faculty of Nursing, University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Eva María Domínguez-Martís
- Diego Gabriel Mosteiro-Miguéns, Badalona Serveis Assistencials (BSA), Health Care Centre of Morera-Pomar, Badalona, Barcelona, Spain
- Cristina Herrera-Jiménez, Badalona Serveis Assistencials (BSA), Health Care Centre of Morera-Pomar, Badalona, Barcelona, Spain
- Héctor Lorenzo-Ruiz, Badalona Serveis Assistencials (BSA), Health Care Centre of Morera-Pomar, Badalona, Barcelona, Spain
- Eva María Domínguez-Martís, Master in Health Care, Management and Care, Galician Public Health Care Service, Health Care Centre of Concepción Arenal, Santiago de Compostela, A Coruña, Spain
- Silvia Novío, Doctor of Dental Medicine, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, Faculty of Nursing, University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Silvia Novío
- Diego Gabriel Mosteiro-Miguéns, Badalona Serveis Assistencials (BSA), Health Care Centre of Morera-Pomar, Badalona, Barcelona, Spain
- Cristina Herrera-Jiménez, Badalona Serveis Assistencials (BSA), Health Care Centre of Morera-Pomar, Badalona, Barcelona, Spain
- Héctor Lorenzo-Ruiz, Badalona Serveis Assistencials (BSA), Health Care Centre of Morera-Pomar, Badalona, Barcelona, Spain
- Eva María Domínguez-Martís, Master in Health Care, Management and Care, Galician Public Health Care Service, Health Care Centre of Concepción Arenal, Santiago de Compostela, A Coruña, Spain
- Silvia Novío, Doctor of Dental Medicine, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, Faculty of Nursing, University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
12
|
Mikati MO, Miller JJ, Osbourn DM, Barekatain Y, Ghebremichael N, Shah IT, Burnham CAD, Heidel KM, Yan VC, Muller FL, Dowd CS, Edwards RL, Odom John AR. Antimicrobial Prodrug Activation by the Staphylococcal Glyoxalase GloB. ACS Infect Dis 2020; 6:3064-3075. [PMID: 33118347 PMCID: PMC8543975 DOI: 10.1021/acsinfecdis.0c00582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the rising prevalence of multidrug resistance, there is an urgent need to develop novel antibiotics. Many putative antibiotics demonstrate promising in vitro potency but fail in vivo due to poor drug-like qualities (e.g., serum half-life, oral absorption, solubility, and toxicity). These drug-like properties can be modified through the addition of chemical protecting groups, creating "prodrugs" that are activated prior to target inhibition. Lipophilic prodrugging techniques, including the attachment of a pivaloyloxymethyl group, have garnered attention for their ability to increase cellular permeability by masking charged residues and the relative ease of the chemical prodrugging process. Unfortunately, pivaloyloxymethyl prodrugs are rapidly activated by human sera, rendering any membrane permeability qualities absent during clinical treatment. Identification of the bacterial prodrug activation pathway(s) will allow for the development of host-stable and microbe-targeted prodrug therapies. Here, we use two zoonotic staphylococcal species, Staphylococcus schleiferi and S. pseudintermedius, to establish the mechanism of carboxy ester prodrug activation. Using a forward genetic screen, we identify a conserved locus in both species encoding the enzyme hydroxyacylglutathione hydrolase (GloB), whose loss-of-function confers resistance to carboxy ester prodrugs. We enzymatically characterize GloB and demonstrate that it is a functional glyoxalase II enzyme, which has the capacity to activate carboxy ester prodrugs. As GloB homologues are both widespread and diverse in sequence, our findings suggest that GloB may be a useful mechanism for developing species- or genus-level prodrug targeting strategies.
Collapse
Affiliation(s)
- Marwa O Mikati
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Justin J Miller
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Damon M Osbourn
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Yasaman Barekatain
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Naomi Ghebremichael
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Ishaan T Shah
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Carey-Ann D Burnham
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Kenneth M Heidel
- Department of Chemistry, The George Washington University, Washington, DC 20052, United States
| | - Victoria C Yan
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Florian L Muller
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Cynthia S Dowd
- Department of Chemistry, The George Washington University, Washington, DC 20052, United States
| | - Rachel L Edwards
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Audrey R Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
13
|
Wijesooriya LI, Waidyathilake D. Antimicrobial Properties of Nonantibiotic Agents for Effective Treatment of Localized Wound Infections: A Minireview. INT J LOW EXTR WOUND 2020; 21:207-218. [PMID: 32746677 DOI: 10.1177/1534734620939748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Wounds present serious health problems in humans and animals. Importantly, if left untreated, wounds invariably lead to long-term morbidity. The inappropriate use and costs of antibiotics place significant challenges globally and affect the health budgets of many countries. Though some antibiotics are administered systemically, treatment of localized infections, in particular, chronic wound infections, does not need such therapy-this would minimize development of antibiotic resistance. Of these measures, nanoparticles of silver, ZnO, and gold seem to give promising results against common wound pathogens while having few limitations. Chemical components of essential oils, which are extracted from different plants, have been shown to act against common wound pathogens. Plant extracts have shown different mechanisms in biofilm elimination. Chlorhexidine and chlorine derivatives act as wound antiseptics. Attempts with biological agents such as maggots have also been shown to provide anti-infective as well as mechanical removal of wound debris. Honey, including those obtained from bees, has a wide coverage against wound pathogens. Glycerin and hypertonic saline are anti-infective through the concentration-dependent killing of pathogens. Hyperbaric oxygen acts against many wound pathogens, in particular anaerobes. This review is focused on nonantibiotic attempts for the cure of localized infections, in particular, chronic wounds with common wound pathogens.
Collapse
|
14
|
Yang M, Ward J, Choy KL. Nature-Inspired Bacterial Cellulose/Methylglyoxal (BC/MGO) Nanocomposite for Broad-Spectrum Antimicrobial Wound Dressing. Macromol Biosci 2020; 20:e2000070. [PMID: 32567254 DOI: 10.1002/mabi.202000070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/07/2020] [Indexed: 11/05/2022]
Abstract
Bacterial cellulose (BC) is a natural material produced by Acetobacter xylinum, widely used in wound dressings due to the high water-holding capacity and great mechanical strength. In this paper, a novel antimicrobial dressing made from BC/methylglyoxal (MGO) composite with a dip-coating method inspired by naturally antimicrobial Manuka honey is proposed, which to our best knowledge, has not yet to be reported. Characterizations by scanning electron microscope and atomic force microscopy show the interconnected nanostructure of BC and MGO and increase surface roughness of the BC/MGO composite. Thermal analysis indicates high temperature stability of both BC and BC/MGO, while compared with BC, BC/MGO exhibits slightly weaker thermal stability possibly due to reduction of hydrogen bonding and increase of crystallinity. Mechanical test confirms the strong mechanical property of BC and BC/MGO nanocomposite. From the disk diffusion antimicrobial test, the BC/MGO nanocomposite with highest MGO concentration (4%) shows great zone inhibition diameter (around 14.3, 12.3, 17.1, and 15.5 mm against Micrococcus luteus, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli). Compared with other antimicrobial wound dressing composite materials, the proposed BC/MGO nanocomposite has among the greatest antimicrobial property against broad-spectrum bacteria, making it a promising antimicrobial dressing in chronic wounds care.
Collapse
Affiliation(s)
- Manni Yang
- Institute for Materials Discovery, Department of Chemistry, University College London, Roberts Building 1.08 Laboratory, London, WC1E 7JE, UK
| | - John Ward
- The Advanced Center for Biochemical Engineering, Department of Biochemical Engineering, University College London, Room 6.09 Bernard Katz Building, London, WC1E 6BT, UK
| | - Kwang-Leong Choy
- Institute for Materials Discovery, Faculty of Maths and Physical Sciences, University College London, Room 1.07 Roberts Building, London, WC1E 7JE, UK
| |
Collapse
|
15
|
Khan SH, Younus H, Allemailem KS, Almatroudi A, Alrumaihi F, Alruwetei AM, Alsahli MA, Khan A, Khan MA. Potential of Methylglyoxal-Conjugated Chitosan Nanoparticles in Treatment of Fluconazole-Resistant Candida albicans Infection in a Murine Model. Int J Nanomedicine 2020; 15:3681-3693. [PMID: 32547022 PMCID: PMC7261666 DOI: 10.2147/ijn.s249625] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Fungal infections are becoming more prevalent and threatening because of the continuous emergence of azole-resistant fungal infections. The present study was aimed to assess the activity of free Methylglyoxal (MG) or MG-conjugated chitosan nanoparticles (MGCN) against fluconazole-resistant Candida albicans. MATERIALS AND METHODS A novel formulation of MGCN was prepared and characterized to determine their size, shape and polydispersity index. Moreover, the efficacy of fluconazole or MG or MGCN was determined against intracellular C. albicans in macrophages and the systematic candidiasis in a murine model. The safety of MG or MGCN was tested in mice by analyzing the levels of hepatic and renal toxicity parameters. RESULTS Candida albicans did not respond to fluconazole, even at the highest dose of 20 mg/kg, whereas MG and MGCN effectively eliminated C. albicans from the macrophages and infected mice. Mice in the group treated with MGCN at a dose of 10 mg/kg exhibited a 90% survival rate and showed the lowest fungal load in the kidney, whereas the mice treated with free MG at the same dose exhibited 50% survival rate. Moreover, the administration of MG or MGCN did not induce any liver and kidney toxicity in the treated mice. CONCLUSION The findings of the present work suggest that MGCN may be proved a promising therapeutic formulation to treat azole-resistant C. albicans infections.
Collapse
Affiliation(s)
- Shaheer Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh202002, India
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh202002, India
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah51452, Saudi Arabia
| | - Abdulmohsen M Alruwetei
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah51452, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah51452, Saudi Arabia
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah, 51452, Saudi Arabia
| |
Collapse
|
16
|
Brighina S, Restuccia C, Arena E, Palmeri R, Fallico B. Antibacterial activity of 1,2-dicarbonyl compounds and the influence of the in vitro assay system. Food Chem 2020; 311:125905. [DOI: 10.1016/j.foodchem.2019.125905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
|
17
|
Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater 2020; 107:25-49. [PMID: 32084600 DOI: 10.1016/j.actbio.2020.02.022] [Citation(s) in RCA: 335] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
Globally, chronic wounds impose a notable burden to patients and healthcare systems. Such skin wounds are readily subjected to bacteria that provoke inflammation and hence challenge the healing process. Furthermore, bacteria induce infection impeding re-epithelialization and collagen synthesis. With an estimated global market of $20.4 billion by 2021, appropriate wound dressing materials e.g. those composed of biopolymers originating from nature, are capable of alleviating the infection incidence and of accelerating the healing process. Particularly, biopolymeric nanofibrous dressings are biocompatible and mostly biodegradable and biomimic the extracellular matrix structure. Such nanofibrous dressings provide a high surface area and the ability to deliver antibiotics and antibacterial agents locally into the wound milieu to control infection. In this regard, with the dangerous evolution of antibiotic resistant bacteria, antibiotic delivery systems are being gradually replaced with antibacterial biohybrid nanofibrous wound dressings. This emerging class of wound dressings comprises biopolymeric nanofibers containing antibacterial nanoparticles, nature-derived compounds and biofunctional agents. Here, the most recent (since 2015) developments of antibacterial biopolymeric nanofibrous wound dressings, particularly those made of biohybrids, are reviewed and their antibacterial efficiency is evaluated based on a comprehensive literature analysis. Lastly, the prospects and challenges are discussed to draw a roadmap for further progresses and to open up future research avenues in this area. STATEMENT OF SIGNIFICANCE: With a global market of $20.4 billion by 2021, skin wound dressings are a crucial segment of the wound care industry. As an advanced class of bioactive wound dressing materials, natural polymeric nanofibers loaded with antibacterial agents, e.g. antimicrobial nanoparticles/ions, nature-derived compounds and biofunctional agents, have shown a remarkable potential for replacement of their classic counterparts. Also, given the expanding concern regarding antibiotic resistant bacteria, such biohybrid nanofibrous wound dressings can outperform classical drug delivery systems. Here, an updated overview of the most recent (since 2015) developments of antibacterial biopolymeric nanofibrous wound dressings is presented. In this review, while discussing about the antibacterial efficiency of such systems, the prospects and challenges are highlighted to draw a roadmap for further progresses in this area.
Collapse
|
18
|
Dong WH, Liu JX, Mou XJ, Liu GS, Huang XW, Yan X, Ning X, Russell SJ, Long YZ. Performance of polyvinyl pyrrolidone-isatis root antibacterial wound dressings produced in situ by handheld electrospinner. Colloids Surf B Biointerfaces 2020; 188:110766. [DOI: 10.1016/j.colsurfb.2019.110766] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022]
|
19
|
Liang A, Zhang M, Luo H, Niu L, Feng Y, Li M. Porous Poly(Hexamethylene Biguanide) Hydrochloride Loaded Silk Fibroin Sponges with Antibacterial Function. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E285. [PMID: 31936365 PMCID: PMC7013801 DOI: 10.3390/ma13020285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 11/17/2022]
Abstract
In order to endue silk fibroin (SF) sponges with antibacterial function, positively charged poly(hexamethylene biguanide) hydrochloride (PHMB) was incorporated in SF through electrostatic interaction and by freeze-drying technique. The influence of PHMB on the structure and antibacterial activities of SF sponges was investigated. The zeta potential of SF was increased significantly when PHMB was incorporated in SF. The pores with size from 80 to 300 µm and the microscale holes in the pore walls within PHMB-loaded SF sponges provided the channels of PHMB release. The PHMB loaded in the porous sponges showed continuous and slow release for up to 20 days. Effective growth inhibition of both Escherichia coli and Staphylococcus aureus was achieved when the mass ratio of PHMB/SF was higher than 2/100. These results suggest that the porous PHMB/SF sponges have the potential to be used as a novel wound dressing for open skin wounds.
Collapse
Affiliation(s)
| | | | | | | | | | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (A.L.); (M.Z.); (H.L.); (L.N.); (Y.F.)
| |
Collapse
|
20
|
Liu JX, Dong WH, Mou XJ, Liu GS, Huang XW, Yan X, Zhou CF, Jiang S, Long YZ. In Situ Electrospun Zein/Thyme Essential Oil-Based Membranes as an Effective Antibacterial Wound Dressing. ACS APPLIED BIO MATERIALS 2019; 3:302-307. [DOI: 10.1021/acsabm.9b00823] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jia-Xu Liu
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Wen-Hao Dong
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Xiao-Ju Mou
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Guo-Sai Liu
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Xiao-Wei Huang
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Xu Yan
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Cheng-Feng Zhou
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Shouxiang Jiang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yun-Ze Long
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
- Collaborative Innovation Center for Nanomaterials & Optoelectronic Devices, College of Physics, Qingdao University, Qingdao 266071, China
| |
Collapse
|
21
|
Afzal RK, Khalid F, Hannan A, Ahmed SA. Methylglyoxal: Antimicrobial activity against blood culture isolates of Salmonella Typhi and other Gram negative rods. Pak J Med Sci 2019; 35:1110-1114. [PMID: 31372152 PMCID: PMC6659080 DOI: 10.12669/pjms.35.4.807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Objectives: To evaluate the activity of Methylglyoxal against the blood culture isolates of Salmonella Typhi and various Gram negative rods and to compare the activity of Methylglyoxal against S. Typhi and other Gram negative rods. Methods: It was an experimental study conducted at the Department of Microbiology, University of Health Sciences (UHS), Lahore-Pakistan in collaboration with the Department of Microbiology, CMH Lahore, from July 2011 to June 2012. Recent blood culture isolates of S. Typhi and other Gram negative rods were collected from different hospitals of Lahore and kept stored at -80°C. As per the latest CLSI guidelines, morphological, biochemical and serological identification was carried out and antimicrobial susceptibility was tested. A multi-point inoculator was used to carry out agar dilution for determination of MICs of MGO. Results were determined after compilation of data using latest SPSS version. Results: MIC90 of MGO against the clinical isolates of S. Typhi was 0.20 mg/mL (2.8 mM) and against Gram negative rods it was 0.21 mg/mL (3.0 mM). The p-value of MICs of MGO against the isolates of S. Typhi was 0.023 when compared with Gram negative rods (p<0.05; statistically significant). Conclusion: MGO has a scientifically proven in vitro antimicrobial activity against blood culture isolates of S. Typhi and various Gram negative rods.
Collapse
Affiliation(s)
- Raja Kamran Afzal
- Dr. Raja Kamran Afzal, FCPS, PhD. Department of Pathology, Armed Forces Institute of Cardiology, Rawalpindi, Pakistan
| | - Fizza Khalid
- Fizza Khalid, Department of Pathology, University of Health Sciences, Lahore, Pakistan
| | - Abdul Hannan
- Dr. Abdul Hannan, Dip Card, FRCPath. Department of Pathology, University of Health Sciences, Lahore, Pakistan
| | - Syed Azhar Ahmed
- Dr. Syed Azhar Ahmed, FRCPath, PhD. Department of Pathology, Baqai Medical University, Karachi, Pakistan
| |
Collapse
|
22
|
Negut I, Grumezescu V, Grumezescu AM. Treatment Strategies for Infected Wounds. Molecules 2018; 23:E2392. [PMID: 30231567 PMCID: PMC6225154 DOI: 10.3390/molecules23092392] [Citation(s) in RCA: 382] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022] Open
Abstract
The treatment of skin wounds is a key research domain owing to the important functional and aesthetic role of this tissue. When the skin is impaired, bacteria can soon infiltrate into underlying tissues which can lead to life-threatening infections. Consequently, effective treatments are necessary to deal with such pathological conditions. Recently, wound dressings loaded with antimicrobial agents have emerged as viable options to reduce wound bacterial colonization and infection, in order to improve the healing process. In this paper, we present an overview of the most prominent antibiotic-embedded wound dressings, as well as the limitations of their use. A promising, but still an underrated group of potential antibacterial agents that can be integrated into wound dressings are natural products, especially essential oils. Some of the most commonly used essential oils against multidrug-resistant microorganisms, such as tea tree, St. John's Wort, lavender and oregano, together with their incorporation into wound dressings are presented. In addition, another natural product that exhibits encouraging antibacterial activity is honey. We highlight recent results of several studies carried out by researchers from different regions of the world on wound dressings impregnated with honey, with a special emphasis on Manuka honey. Finally, we highlight recent advances in using nanoparticles as platforms to increase the effect of pharmaceutical formulations aimed at wound healing. Silver, gold, and zinc nanoparticles alone or functionalized with diverse antimicrobial compounds have been integrated into wound dressings and demonstrated therapeutic effects on wounds.
Collapse
Affiliation(s)
- Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-77125, Romania.
- Faculty of Physics, University of Bucharest, Magurele 077125, Romania.
| | - Valentina Grumezescu
- National Institute for Lasers, Plasma and Radiation Physics, Magurele RO-77125, Romania.
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Bucharest 011061, Romania.
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Bucharest 011061, Romania.
- Research Institute of University of Bucharest, ICUB, Bucharest 050107, Romania.
| |
Collapse
|
23
|
Simões D, Miguel SP, Ribeiro MP, Coutinho P, Mendonça AG, Correia IJ. Recent advances on antimicrobial wound dressing: A review. Eur J Pharm Biopharm 2018; 127:130-141. [DOI: 10.1016/j.ejpb.2018.02.022] [Citation(s) in RCA: 564] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/07/2018] [Accepted: 02/16/2018] [Indexed: 12/15/2022]
|